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PACS. 74.40.+k – Fluctuations (noise, chaos, nonequilibrium superconductivity, localization,
etc.).

PACS. 74.25.Dw – Superconductivity phase diagrams.
PACS. 68.35.Rh – Phase transitions and critical phenomena.

Abstract. – Motivated by recent experimental progress in the critical regime of high-Tc

superconductors, we show how the tricritical point in a superconductor can be derived from
the Ginzburg-Landau theory as a consequence of vortex fluctuations. Our derivation explains
why usual renormalization group arguments always produce a first-order transition, in contrast
to experimental evidence and Monte Carlo simulations.

The critical regime of old-fashioned superconductors can be described extremely well by the
Ginzburg-Landau theory [1] in mean-field approximation [2,3]. The reason is the smallness of
the Ginzburg temperature interval ∆TG around the mean-field critical temperature TMF

c where
fluctuations become important [4]. A first discussion of the order of the superconductive phase
transition by Halperin, Lubensky, and Ma in 1972 [5] appeared therefore somewhat academic.

The situation has changed with the advent of modern high-Tc superconductors. In these
the Ginzburg temperature interval is large enough to observe violent field fluctuations and
see critical properties beyond mean field. Several experiments have found a critical point of
the XY universality class [6]. In addition, there seems to be recent evidence for an addi-
tional critical behavior associated with the so-called charged fixed point [7]. In view of future
experiments, it is important to understand precisely the nature of critical fluctuations.

The Ginzburg-Landau theory [1] describes a superconductor with the help of an energy
density

H(ψ,∇ψ,A,∇A) =
1
2

{
[(∇ − ieA)ψ]2 + τ |ψ|2 + g

2
|ψ|4

}
+

1
2
(∇ × A)2 , (1)

where ψ(x),A(x) are pair field and vector potential, respectively, and e is the charge of the
Cooper pairs. The parameter τ ≡ T/TMF

c −1 is a reduced temperature measuring the distance
from the characteristic temperature TMF

c at which the |ψ|2-term changes sign. The theory
needs gauge fixing, which is usually done by setting ψ(x) = ρ(x)eıθ(x), rewriting the covariant
derivative of ψ as

Dψ = [i(∇θ − eA)ρ+∇ρ]eiθ, (2)
c© EDP Sciences
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and eliminating the phase variable θ(x) by a local gauge transformation A → A+∇θ/e. This
brings H(ψ,∇ψ,A,∇A) to the form

H1 =
1
2
(∇ρ)2 + V (ρ) +

1
2
(∇ × A)2 +

ρ2e2

2
A2, (3)

where V (ρ) is the potential of the ρ-field:

V (ρ) =
τ

2
ρ2 +

g

4
ρ4. (4)

The last term in (3) is the famous Meissner-Higgs massmA = ρe [2,3] of the vector potential A.
An analogous mass in the gauge theory of electroweak interactions explains why interactions
are so much weaker than electromagnetic interactions.

At the mean-field level, the energy density (3) describes a second-order phase transition.
It takes place if τ drops below zero where the pair field ψ(x) acquires the nonzero expectation
value 〈ψ(x)〉 = ρ0 =

√−τ/g, the order parameter of the system. The ρ-fluctuations around
this value have a coherence length ξ = 1/

√−2τ . The Meissner-Higgs mass term in (3) gives
rise to a finite penetration depth of the magnetic field λ = 1/mA = 1/ρ0e. The ratio of the
two length scales κ ≡ λ/

√
2ξ, which for historic reasons carries a factor

√
2, is the Ginzburg

parameter whose mean-field value is κMF ≡ √
g/e2. Type-I superconductors have small values

of κ, type-II superconductors have large values. At the mean-field level, the dividing line is
at κ = 1/

√
2.

In high-Tc superconductors, field fluctuations become important. These can be taken
into account by calculating the partition function and field correlation functions from the
functional integral

Z =
∫

Dρ ρDA e−
∫

d3xH1 (5)

(in natural units with kBT = 1). So far, all analytic approximations to Z pursued since the
initial work [5] have had notorious difficulties in accounting for the order of the superconduc-
tive phase transition. In [5], simple renormalization group arguments [8] in 4− ε dimensions
suggested that the transition should be of first order. The technical signal for this was the
nonexistence of an infrared-stable fixed point in the renormalization group flow of the coupling
constants e and g as a function of the renormalization scale. However, due to the smallness
of the Ginzburg interval ∆TG, the first order was never verified experimentally. Since then,
there has been much work [9] trying to find an infrared-stable fixed point in higher loop orders
or by different resummations of the divergent perturbations expansions, with little success.

Recall the simplest argument suggesting a first-order nature of the transition arises at the
mean-field level of the pair field ρ as follows: The fluctuations of the vector potential are
Gaussian and can be integrated out in (5). Assuming ρ to be smooth, this may be done in the
Thomas-Fermi approximation [10], leading to an additional cubic term in the potential (4),
changing it to

V (ρ) =
τ

2
ρ2 +

g

4
ρ4 − c

3
ρ3, c ≡ e3

2π
. (6)

The cubic term generates, for τ < c2/4g, a second minimum at

ρ̃0 =
c

2g

(
1 +

√
1− 4τg

c2

)
. (7)

If τ decreases below
τ1 = 2c2/9g, (8)
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Fig. 1 – Potential for the order parameter ρ with cubic term. A new minimum develops around ρ1

causing a first-order transition for τ = τ1.

the new minimum lies lower than the one at the origin (see fig. 1), so that the order parameter
jumps from zero to

ρ1 = 2c/3g (9)

in a phase transition. At this point, the coherence length of the ρ-fluctuations ξ =
1/

√
τ + 3gρ2 − 2cρ has the finite value (the same as the fluctuations around ρ = 0)

ξ1 =
3
c

√
g

2
. (10)

The phase transition is therefore of first order.
This conclusion is reliable only if the jump of ρ0 is sufficiently large. For small jumps,

the mean-field discussion of the energy density (6) cannot be trusted. The place where the
transition becomes second order has, so far, never been explained satisfactorily within the
Ginzburg-Landau theory. This has been done only with the help of a dual disorder field theory
derived from the Ginzburg-Landau theory in refs. [11,12]. This theory is constructed in such
a way that its Feynman diagrams are direct pictures of the vortex lines of the superconductor.
The dual disorder field theory shows that there is indeed a first-order transition if the Ginzburg
parameter κ ≡ λ/

√
2ξ is smaller than the tricritical value κtric ≈ 0.8/

√
2. This point is close

to the mean-field value κ = 1/
√
2, where the superconductor changes from type II to type I,

and the average short-range repulsion between vortex lines changes into an attraction.
In contrast to the Ginzburg-Landau theory, the vector potential of the disorder field theory

is massive from the outset, so that its fluctuations do not generate a cubic term. Instead,
they generate an additional negative quartic term [11], making the transition first order for
κ < κtric, while leaving it second order for κ > κtric.

The purpose of this letter is to show how the tricritical point can be derived from the orig-
inal Ginzburg-Landau theory by a proper inclusion of fluctuation corrections. The mistake in
the above discussion of (1) lies in the neglect of vortex fluctuations. In fact, the transforma-
tion of the covariant derivative Dψ to the ρ-θ expression in eq. (2) is false. Since θ(x) and
θ(x)+2π are physically indistinguishable —the complex field ψ(x) is the same for both— the
correct substitution is

Dψ = [i(∇θ − 2πθv − eA)ρ+∇ρ]eiθ. (11)

The cyclic nature of the scalar field θ(x) requires the presence of a vector field θv(x) called
vortex gauge field. This field is a sum of δ-functions on Volterra surfaces across which θ(x)
has jumps by 2π. The boundary lines of the surfaces are vortex lines. They are found from
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the vortex gauge field θv(x) by forming the curl

∇ × θv(x) = jv(x), (12)

where jv(x) is the vortex density, a sum over δ-functions along the vortex lines δ(L;x) ≡∫
L
dx̄ δ(x − x̄). Vortex gauge transformations are deformations of the surfaces at fixed

boundary lines which add to θv(x) pure gradients of the form ∇δ(V ;x), where δ(V ;x) ≡∫
V
d3x̄ δ(x − x̄) are δ-functions on the volumes V over which the surfaces have swept. The

theory of these fields has been developed in the textbook [12] and the Cambridge lectures [13].
Being a gauge field, θv(x) may be modified by a further gradient of a smooth function to make
it purely transverse, ∇ · θv

T (x) = 0, as indicated by the subscript T . Since the vortex gauge
field is not a gradient, it cannot be absorbed into the vector potential by a gauge transforma-
tion. Hence it survives in the last term in eq. (3), and the correct partition function is

Z ≈
∫

Dθv
T

∫
DρρDA exp

[
−1
2
(∇ρ)2 − τ

2
ρ2 − g

4
ρ4 − 1

2
(∇ × A)2 − ρ2e2

2
(A − 2πθv

T /e)
2

]
.

(13)
The symbol

∫ Dθv
T does not denote an ordinary functional integral. It is defined as a sum over

all numbers and shapes of Volterra surfaces S in θv
T , across which the phase jumps by 2π [13].

The important observation is now that the partial partition function of the A-field con-
tained in (13)

Z1[ρ] ≡
∫

Dθv
TDA exp

[
−1
2

∫
d3x(∇ × A)2 − ρ2

2

∫
d3x[eA − 2πθv

T ]
2

]
(14)

can give rise to a second-order transition of the XY -model type if the Ginzburg parameter κ
is sufficiently large. To see this we integrate out the A-field and obtain

Z1[ρ] = exp
[∫

d3x
e3ρ3

6π

] ∫
Dθv

T exp
[
4π2ρ2

2

∫
d3x

(
1
2
θv

T
2 − θv

T

ρ2e2

−∇2 + ρ2e2
θv

T

)]
. (15)

The second integral can be simplified to

4π2ρ2

2

∫
d3x

(
θv

T

−∇2

−∇2 + ρ2e2
θv

T

)
. (16)

Integrating this by parts, and replacing ∇iθ
v
T ∇iθ

v
T by (∇ × θv

T )
2 = jv 2, since ∇ · θv

T = 0,
the partition function (15) without the prefactor takes the form

Z2[ρ] =
∫

Dθv
T exp

[
−4π2ρ2

2

∫
d3x

(
jv 1

−∇2 + ρ2e2
jv

)]
. (17)

This is the partition function of a grand-canonical ensemble of closed fluctuating vortex lines.
The interaction between them has a finite range equal to the penetration depth λ = 1/ρe.

It is well known how to compute pair and magnetic fields of the Ginzburg-Landau theory
for a single straight vortex line from the extrema of the energy density [2]. In an external
magnetic field, there exist triangular and various other regular arrays of vortex lattices and
various phase transitions. In the core of each vortex line, the pair field ρ goes to zero over a
distance ξ. If we want to sum over grand-canonical ensemble of fluctuating vortex lines of any
shape in the partition function (13), the space dependence of ρ causes complications. These
can be avoided by an approximation, in which the system is placed on a simple-cubic lattice



H. Kleinert: Vortex origin of tricritical point 893

of spacing a = α ξ, with α of the order of unity, and a fixed value ρ = ρ̃0 given by eq. (7).
Thus we replace the partial partition function (17) approximately by

Z2[ρ̃0] =
∑

{l;∇·l=0}
exp

[
−4π2ρ̃2

0a

2

∑
x

l(x)vρ̃0e(x − x′)l(x′)

]
. (18)

The sum runs over the discrete versions of the vortex density in (12). These are integer-
valued vectors l(x) = (l1(x), l2(x), l3(x)) which satisfy ∇ · l(x) = 0, where ∇ denotes the
lattice derivative. This condition restricts the sum over all l(x)-configurations in (18) to all
non–self-backtracking integer-valued closed loops. The function

vm(x) =
3∏

i=1

∫
d3(aki)
(2π)3

ei(k1x1+k2x2+k3x3)

2
∑3

i=1(1− cos aki) + a2m2
=

∫
dse−(6+m2)sIx1(2s)Ix2(2s)Ix3(2s).

(19)
is the lattice Yukawa potential.

The lattice partition function (18) is known to have a second-oder phase transition in
the universality class of the XY model. This can be seen by a comparison with the Villain
approximation [14] to the XY model, whose partition function is a lattice version of

ZV [ρ] =
∫

Dθ
∫

Dθv
T exp

[
− b

2

∫
d3x (∇θ − θv

T )
2

]
.

After integrating out θ(x), this becomes

ZV [ρ] = Det−1/2(−∇2)
∫

Dθv
T exp

[
− b

2

∫
d3xθv

T
2

]
, (20)

and we can replace θv 2
T by (∇ × θv

T )(−∇2)−1(∇ × θv
T ) = jv(−∇2)−1jv. By taking this

expression to a simple-cubic lattice we obtain the partition function (18), but with ρ̃2
0a replaced

by βV ≡ ba, and the Yukawa potential vρ̃0e(x) replaced by the Coulomb potential v0(x).
The partition function (18) has the same transition at roughly the same place as its local

approximation

Z2[ρ̃0] ≈
∑

{l;∇·l=0}
exp

[
−4π2ρ̃2

0a

2
vρ̃0e(0)

∑
x

l2(x)

]
. (21)

A similar approximation holds for the Villain model with v0(x) instead of vρ̃0e(x), and ρ̃2
0a

replaced by βV ≡ ba.
The Villain model is known to undergo a second-order phase transition of the XY -model

type at βV = r/3 with r ≈ 1, where the vortex lines become infinitely long [14]. Thus
we conclude that also the partition function (21) has a second-order phase transition of the
XY -model type at ρ̃2vρ̃0e(0)a ≈ v0(0)/3. The potential (19) at the origin has the hopping
expansion [12]

vm(0) =
∑

n=0,2,4

Hn

(a2m2 + 6)n+1
, H0 = 1, H2 = 6, . . . . (22)

To lowest order, this yields the ratio vm(0)/v0(0) ≡ 1/(m2/6+1). A more accurate numerical
fit to the ratio vm(0)/v0(0) which is good up to m2 ≈ 10 (thus comprising all interesting κ-
values since m2 is of the order of 3/κ2) is 1/(σm2/6+ 1) with σ ≈ 1.38. Hence the transition
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takes place at
ρ̃2
0a

(σ a2ρ̃2
0e

2/6 + 1)
≈ r

3
or ρ̃0 ≈ 1√

3a

√
r

1− σrae2/18
. (23)

The important point is now that this transition can only occur until ρ̃0 reaches the value
ρ1 = 2c/3g of eq. (9). From there on, the transition will no longer be of the XY -model type
but occur discontinuously as a first-order transition.

Replacing in (23) a by αξ1 of eq. (10), and ρ̃0 by ρ1, we find the equation for the mean-field
Ginzburg parameter κMF =

√
g/e2:

κ3
MF + α2σ

κMF

3
−

√
2α
πr

= 0. (24)

Inserting σ ≈ 1.38 and choosing α ≈ r ≈ 1, the solution of this equation yields the tricritical
value

κtric
MF ≈ 0.81/

√
2. (25)

In spite of the roughness of the approximations, this result is very close to the value 0.8/
√
2

derived from the dual theory in [11]. The approximation has three uncertainties. First, the
identification of the effective lattice spacing a = αξ with α ≈ 1; second, the associated neglect
of the x-dependence of ρ and its fluctuations; and third, the localization of the critical point
of the XY -model–type transition in eq. (23).

Our goal has been achieved: We have shown the existence of a tricritical point in a su-
perconductor directly within the fluctuating Ginzburg-Landau theory, by taking the vortex
fluctuations into account. This became possible after correcting the covariant derivative (2)
of ψ = ρeiθ to (11). For κ > 0.81/

√
2, vortex fluctuations give rise to an XY -model–type

second-order transition before the cubic term becomes relevant. This happens for κ < 0.81/
√
2

where the cubic term causes a discontinuous transition.

∗ ∗ ∗

The author is grateful to F. Nogueira for many valuable discussions.
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