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Abstract. Changes of field variables may lead to multivalued fields which do not satisfy the
Schwarz integrability conditions. Their quantum field theory needs special care as is shown in
an applications to the superconducting phase transitions.

1. Introduction

Changes of coordinates or field variables must not change the physical content of a theory. This
trivial requirement automatically guaranteed in quantum field theories. As a simple example
consider consider the path integral of a harmonic oscillator

Zω =

∫

Dx e−Aω [x] = exp

[

−D
2

Tr log(−∂2 + ω2)

]

≡ e−βFω . (1) {pix@mq2}

with an action

Aω[x] =
1

2

∫ β

0
dτ
[

ẋ2(τ) + ω2x2(τ)
]

, (2) {pix@m1}

and a free energy F = β−1 log sinh ω̄/2. Let us subject this path integral to a simple coordinate
transformation such as

x = xη(q) = q − ηq3/3. (3) {@}

where η is some expansion parammeter. The tranformed path integral

Z =

∫

Dq(τ) e−Aω [q]−Aint[q]−AJ [q] ≡ e−βF (4) {pix@m2}

has an interaction Aint[q] = Aah[q]+AJ [q], consisting of the anharmonic part of the transformed
action

Aah[q] =

∫ β

0
dτ

{

−η
[

q2(τ)q̇2(τ) +
ω2

3
q4(τ)

]

+ η2

[

1

2
q4(τ)q̇2(τ) +

ω2

18
q6(τ)

]

+ O(η3)

}

, (5) {pix@m7}

and a an anharmonic part due to the Jacobian Dx/Dq = exp[δ(0) log ∂x(q)/∂q]:

AJ [q] = −δ(0)
∫

dτ log
∂xη(q)

∂q
= −δ(0)

∫ β

0
dτ

[

−ηq2(τ) − η2

2
q4(τ) + . . .+ O(η3)

]

. (6) {pix@m4}



The transformed path integral (4) can no longer be solved exactly but only perturbatively as an
expansion in powers of the parameter η:

βF = βFω + 〈Aint〉c −
1

2!

〈

A2
int

〉

c
+ . . . = βFω + β

∞
∑

n=1

ηn Fn. (7) {chap10@2@m7

In order to guarantee coordinate invariance, all coefficients Fn have to vanish.
The Feynman diagrams contributing to Fn consist of vertices and three kinds of lines

representing the one-dimensional versions of the correlation functions

G(2)
µν (τ, τ ′) ≡

〈

qµ(τ)qν(τ ′)
〉

= , (8) {pix@p1}

∂τG
(2)
µν (τ, τ ′) ≡

〈

q̇µ(τ)qν(τ ′)
〉

= , (9) {pix@p2}

∂τ ′G(2)
µν (τ, τ ′) ≡

〈

qµ(τ)q̇ν(τ ′)
〉

= , (10) {pix@p2r}

∂τ∂τ ′G(2)
µν (τ, τ ′) ≡

〈

q̇µ(τ)q̇ν(τ ′)
〉

= . (11) {pix@p3}

These contain distributions Θ(τ − τ ′) and δ(τ − τ ′) (see Fig. 1), so that the Feynman integrals
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Figure 1. Green functions for perturbation expansions in curvilinear coordinates in natural
units with ω = 1. The second contains a Heaviside function Θ(τ), the third a Dirac δ-function
at the origin. {@f1}

run over products of ditributions which in the standard theory of generalized functions are
undefined. Recently, however, it is been shown that there is a way of defiening products of
distributions in such a way that all Fn vansih, i.e., that coordinate invariance can be maintained
[1].

The situation becomes much more involved if the transformed coordinates q(τ) are
multivalued fields in D dimensions. This happens, for instance, if a complex field ψ(x) in
a functional integral is replaced by its radial and azimuthal parts of ρ(x) ≡ |ψ(x)| and
θ(x) ≡ arctan[Imψ(x)/Reψ(x)]. A good example is the Landau-Pitaevski energy density of
superfluid helium near the critical point:

HHe(ψ,∇ψ,A,∇A) =
1

2

{

|∇ψ|2+τ |ψ|2 +
g

2
|ψ|4

}

, (12) {@ner}

The parameter τ ≡ T/TMF
c − 1 is a reduced temperature measuring the distance from the

characteristic temperature TMF
c at which the |ψ|2-term changes sign. Under a field tranformation

ψ(x) → ρ(x)eıθ(x), the energy density cannot be simply replaced by

H1 =
ρ2

2
(∇θ)2+

1

2
(∇ρ)2+

τ

2
ρ2 +

g

4
ρ4. (13) {@ner1}

as we might be tempted to do following the naive Leibnitz rule

Dψ = (i∇θρ+ ∇ρ)eiθ, (14) {@tr}



This rule is no longer valid. Since θ(x) and θ(x) + 2π correspond to the same complex field
ψ(x), the corrected Leibnitz rule reads

Dψ = [i(∇θ − 2πθ
v)ρ+ ∇ρ]eiθ, (15) {@trc}

The cyclic nature of the scalar field θ(x) requires the presence of a vector field θ
v(x) called

vortex gauge field . This field is a sum of δ-functions on Volterra surfaces across which θ(x) has
jumps by 2π. The boundary lines of the surfaces are vortex lines. They are found from the
vortex gauge field θ

v(x) by forming the curl

∇ × θ
v(x) = jv(x), (16) {@VD}

where jv(x) is the vortex density , a sum over δ-functions δ(L;x) ≡
∫

L dx̄ δ(x − x̄) along the
vortex lines L.

Vortex gauge transformations correspond to deformations of the surfaces at fixed boundary
lines which add to θ

v(x) pure gradients of the form ∇δ(V ;x), where δ(V ;x) ≡
∫

V d
3x̄ δ(x − x̄)

are δ-functions on the volumes V over which the surfaces have swept. The theory of these fields
has been developed in the textbook [2] and the Cambridge lectures [3]. Being a gauge field,
θ

v(x) may be modified by a further gradient of a smooth function to make it purely transverse,
∇ · θv

T (x) = 0, as indicated by the subscript T .
Since the vortex gauge field is not a gradient, it cannot be absorbed into the vector potential

by a gauge transformation. Hence it survives in the last term in Eq. (13), and the correct
partition function is

ZHe ≈
∫

Dθ
v
T

∫

DρρDA exp

[

−ρ
2

2
(∇θ)2 − 1

2
(∇ρ)2 − τ

2
ρ2 − g

4
ρ4 − 4π2ρ2

2
θ

v
T

2

]

. (17) {@XY1}

The symbol
∫

Dθ
v
T does not denote an ordinary functional integral. It is defined as a sum over

any number and all shapes of Volterra surfaces S in θ
v
T (x), across which the phase jumps by 2π

[3].
The important observation is now that due to the fluctuations of the vortex gauge field θ

v
T (x),

the partition function (17) possesses a second-order phase transition, the famous λ-transition
observed in in superfluid helium at 2.18 K. The critical exponents of this transition are in the
same universality as those of the so-called XY -model, which describes only interacting phase
angles θ(x) ∈ (0, 2π) on a lattice.

At the mean-field level, the λ-transition of (17) takes place if τ drops below zero where the pair
field ψ(x) acquires the nonzero expectation value 〈ψ(x)〉 = ρ0 =

√

−τ/g, the order parameter
of the system. The ρ-fluctuations around this value have a coherence length ξ = 1/

√
−2τ .

For a long time it has been a debate whether this transition persists if a fluctuating vector
potential A(x) is coupled minimally to the field ψ(x) in (18), which then becomes the Ginzburg-
Landau Hamiltonian density of superconductivity

Hsc(ψ,∇ψ,A,∇A) =
1

2

{

[(∇ − iqA)ψ]2+τ |ψ|2 +
g

2
|ψ|4

}

+
1

2
(∇ × A)2 . (18) {@ner}

Now ψ(x) is the field describing Cooper pairs of charge q = 2e. The theory needs gauge fixing,
which may be done by absorbing the gradient of the phase θ(x) of the field ψ(x) in the vector
potential, so that we can replace ψ(x) → ρ(x). The transverse vortex gauge field θ

v
T (x), however,

cannot be absorbed and it interacts with the vector potential A(x). This has a partial partition
function

ZA[ρ] ≡
∫

Dθ
v
TDA exp

{

−1

2

∫

d3x(∇ × A)2 − 1

2

∫

d3x ρ2(eA − 2πθ
v
T )2
}

. (19) {@EFF}



Without the vortex gauge field θ
v
T (x), the partition function (19) describes free bosons of space-

dependent mass ρ2(x). (13). If we ignore θ
v
T (x) and A(x), the total partition function has the

same form as in (17) and describes a second order phase transition.
Let us now admit the vector partition function (19), but still ignore vortices by setting

θ
v
T (x) ≡ 0, and ignoring the space dependence of ρ(x). Then the second term in (19) in the

condensed phase with ρ0 6= 0 generates a Meissner-Higgs mass term. This gives rise to a finite
penetration depth of the magnetic field λ = 1/mA = 1/ρ0q. The ratio of the two length scales
κ ≡ λ/

√
2ξ (which for historic reasons carries a factor

√
2) is the Ginzburg parameter whose

mean field value is κMF ≡
√

g/q2. Type I superconductors have small values of κ, type-II

superconductors have large values. At the mean-field level, the dividing line lies at κ = 1/
√

2.
Let us now allow for A(x)-fluctuations [still ignoring the vortex gauge field θ

v
T (x). At very

smooth ρ(x), they can be integrated out in (19) which becomes

Z0
A[ρ] = exp

[
∫

d3x
e3ρ3

6π

]

(20) {@Z=}

This adds the energy density (13) a cubic term −e3ρ3/6π. Such a term makes the transition
first-order. The feee energy has now a minimum at

ρ̃0 =
c

2g

(

1 +

√

1 − 4τg

c2

)

. (21) {@newmin}

If τ decreases below
τ1 = 2c2/9g. (22) {@tricr}

the new minimum lies lower than the one at the origin (see Fig. 2), so that the order parameter
jumps from zero to

ρ1 = 2c/3g (23) {@RHO1}

in a phase transition. At this point, the coherence length of the ρ-fluctuations ξ =
1/
√

τ + 3gρ2 − 2cρ has the finite value

ξ1 =
3

c

√

g

2
, (24) {@xi1}

this being the same as at ρ = 0. The jump from ρ = 0 to ρ1 implies a phase transition of
first-order [6].

Figure 2. Potential for the order parameter ρ with cubic term. At τ1, the order parameter
jumps from ρ = 0 to ρ1, corresponding to a phase transition of first-order. {@p}



However, this result is reliable only under the assumption of a smooth ρ(x). This is applicable
only in the type-I regime where vortex lines are absent. In the type-II regime, such lines can be
excited thermally and we can no longer ignore the vortex gauge field θ

v
T (x)]. This invalidates

the above conclusion and gives rise to a second-order transition (of the same XY -universality
class as in the superfluid) if the Ginzburg parameter κ is sufficiently large. Integrating now out
the A-field and obtain

ZA[ρ] = exp

[
∫

d3x
e3ρ3

6π

]
∫

Dθ
v
T exp

[

4π2ρ2

2

∫

d3x

(

1

2
θ

v
T

2 − θ
v
T

ρ2q2

−∇
2 + ρ2q2

θ
v
T

)]

,

rather than (20). The second integral can be simplified to

4π2ρ2

2

∫

d3x

(

θ
v
T

−∇
2

−∇
2 + ρ2q2

θ
v
T

)

. (25) {@EFF2p}

Integrating this by parts, and replacing ∇iθ
v
T ∇iθ

v
T by (∇ × θ

v
T )2 = jv 2, since ∇ · θv

T = 0, the
partition function (25) takes the form

ZA[ρ] = exp

[
∫

d3x
e3ρ3

6π

]
∫

Dθ
v
T exp

[

−4π2ρ2

2

∫

d3x

(

jv
1

−∇
2 + ρ2q2

jv
)]

. (26) {@EFF3}

This is the partition function of a grand-canonical ensemble of closed fluctuating vortex lines
L described by the δ-functions over lines in jv(x). The interaction between them has a finite
range equal to the penetration depth λ = 1/ρq. It is well-known how to compute pair and
magnetic fields of the Ginzburg-Landau theory for a single straight vortex line from the extrema
of the energy density (18). In an external magnetic field, there exist triangular and various other
regular arrays of vortex lattices and various phase transitions. In the core of each vortex line,
the pair field ρ goes to zero over a distance ξ. If we want to sum over grand-canonical ensemble
of fluctuating vortex lines of any shape in the partition function (17), the space dependence of ρ
causes complications. These can be avoided by an approximation, in which the system is placed
on a simple-cubic lattice of spacing a = α ξ, with α of the order of unity, and replacing the
variable ρ(x) by a fixed ρ = ρ̃0 given by Eq. (21). Thus we replace the partial partition function
(26) approximately by

Z2[ρ̃0] =
∑

{l;∇·l=0}

exp

[

−4π2ρ̃2
0a

2

∑

x

l(x)vρ̃0e(x− x′)l(x′)

]

. (27) {@EFF4}

The sum runs over the discrete versions of the vortex density in (16). These are integer-valued
vectors l(x) = (l1(x), l2(x), l3(x)) which satisfy ∇ · l(x) = 0, where ∇ denotes the lattice
derivative. This condition restricts the sum over all l(x)-configurations in (27) to all non-
selfbacktracking integer-valued closed loops. The function

vm(x) =
3
∏

i=1

∫

d3(aki)

(2π)3
ei(k1x1+k2x2+k3x3)

2
∑3

i=1(1 − cos aki) + a2m2
= Ix1

(2s)Ix2
(2s)Ix3

(2s). (28) {@YP}

is the lattice Yukawa potential.
The lattice partition function (27) is known to have a second-oder phase transition in

the universality class of the XY -model. This can be seen by a comparison with the Villain
approximation [4] to the XY model, whose partition function is a lattice version of

ZV [ρ] =

∫

Dθ
∫

Dθ
v
T exp

[

− b
2

∫

d3x (∇θ − θ
v
T )2
]

. (29) {@EFF7}



After integrating out θ(x), this becomes

ZV [ρ] = Det−1/2(−∇
2)

∫

Dθ
v
T exp

(

− b
2

∫

d3xθ
v
T

2

)

, (30) {@EFF7}

and we can replace θ
v 2
T by (∇×θ

v
T )(−∇

2)−1(∇×θ
v
T ) = jv(−∇

2)−1jv. By taking this expression
to a simple-cubic lattice we obtain the partition function (27), but with ρ̃2

0a replaced by βV ≡ ba,
and the Yukawa potential vρ̃0e(x) replaced by the Coulomb potential v0(x).

The partition function (27) has the same transition at roughly the same place as its local
approximation

Z2[ρ̃0] ≈
∑

{l;∇·l=0}

exp

[

−4π2ρ̃2
0a

2
vρ̃0e(0)

∑

x

l2(x)

]

. (31) {@EFF5}

A similar approximation holds for the Villain model with v0(x) instead of vρ̃0e(x), and ρ̃2
0a

replaced by βV ≡ ba.
The Villain model is known to undergo a second-order phase transition of the XY -model type

at βV = r/3 with r ≈ 1, where the vortex lines become infinitely long [4, 7]. Thus we conclude
that also the partition function (31) has a second-order phase transition of the XY -model type
at ρ̃2vρ̃0e(0)a ≈ v0(0)/3. The potential (28) at the origin has the hopping expansion [8]

vm(0) =
∑

n=0,2,4

Hn

(a2m2 + 6)n+1
, H0 = 1,H2 = 6, . . . . (32) {@}

To lowest order, this yields the ratio vm(0)/v0(0) ≡ 1/(m2/6+1). A more accurate numerical fit
to the ratio vm(0)/v0(0) which is good up to m2 ≈ 10 (thus comprising all interesting κ-values
since m2 is of the order of 3/κ2) is 1/(σ m2/6 + 1) with σ ≈ 1.38. Hence the transition takes
place at

ρ̃2
0a

(σ a2ρ̃2
0q

2/6 + 1)
≈ r

3
or ρ̃0 ≈ 1√

3a

√

r

1 − σraq2/18
. (33) {@rho0}

The important point is now that this transition can occur only until ρ̃0 reaches the value
ρ1 = 2c/3g of Eq. (23). From there on, the transition will no longer be of the XY -model
type but occur discontinuously as a first-order transition.

Replacing in (33) a by αξ1 of Eq. (24), and ρ̃0 by ρ1, we find the equation for the mean-field

Ginzburg parameter κMF =
√

g/q2:

κ3
MF + α2σ

κMF

3
−

√
2α

πr
= 0. (34) {@}

Inserting σ ≈ 1.38 and choosing α ≈ r ≈ 1, the solution of this equation yields the tricritical
value

κtric
MF ≈ 0.81/

√
2. (35) {@}

In spite of the roughness of the approximations, this result is very close to the value 0.8/
√

2
derived from the dual disorder field theory [5]. The approximation has three uncertainties. First,
the identification of the effective lattice spacing a = αξ with α ≈ 1; second the associated neglect
of the x-dependence of ρ and its fluctuations, and third the localization of the critical point of
the XY -model type transition in Eq. (33).

Our goal has been achieved: We have shown the existence of a tricritical point in a
superconductor directly within the fluctuating Ginzburg-Landau theory, by taking the vortex



fluctuations into account. This became possible after correcting the covariant derivative (14) of
ψ = ρeiθ to (15). For κ > 0.81/

√
2, vortex fluctuations give rise to an XY -model type second-

order transition before the cubic term becomes relevant. This happens for κ < 0.81/
√

2 where
the cubic term causes a discontinuous transition.

These examples show that the subtleties of functional integration over multivalued fields
are crucial for understanding important physical phenomena such a phase transitions. Similar
considerations are necessary in the context of elasticity theory where the energy is usually
expressed in terms of the strain uij = ∂iuj(x) of the displacement field ui(x) of the atoms
from their rest position. Such a descrition is also false since the displacement field ui(x) is a
multivalued field. It is defined only up to multiples of the lattice vectors. This multivaluedness
mut be taken into account with the help of a defect gauge field similar to θ

v(x), one for each
lattice direction. Its fluctuations give rise to the melting transition, as has been shown in the
textbook [9].
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