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Abstract

The power a of the Lévy tails of stock market fluctuations discovered in recent years are generally believed to be

universal. We show that for the Chinese stock market this is not true, the powers depending strongly on anomalous daily

index changes short before market closure, and weakly on the opening data.

r 2006 Elsevier B.V. All rights reserved.
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The study of price fluctuations of financial assets has long been an active field of finance [1–5]. In recent
years, the possibility to access and analyze huge amounts of high-frequency financial data with the help of
contemporary computer technology has attracted the interest of theoretical physicists [6–13], and led to several
significant empirical findings [14,15,18–21]. One of these is that the distribution of stock price fluctuations [22]
is characterized by a power-law decay with an exponent a ’ 3, which lies well outside the Lévy-stable range
0oao2 [23–27]. This is the so-called inverse cubic law of returns. The observed tails are absent in the previous
widely used distributions [12], most prominently in the normal distribution proposed by Bachelier [1], which
forms the basis of the Black–Scholes theory, in the truncated Lévy distribution of Mantegna and Stanley [15],
in the Meixner distributions [16], or in the generalized hyperbolic distributions [17]. Although the tails can be
fitted with the pure Lévy distribution as proposed by Mandelbrot [5], the distribution of the central most
probably events cannot.

Remarkably the empirical tail behavior appears to be universal, because it holds for stocks of different
economies, such as German stocks [23], US stocks [24,26], as well as various market indices such as the S&P
500, the Dow Jones, the NIKKEI, the Hang Seng, the Milan, and the DAX index [23,25,27]. In addition, the
scaling behavior of the distribution has been analyzed for US stocks and market indices [25,26], which
indicates that the tails of the distribution are well described by a power-law decay for time scales Dt from 1min
up to a certain value ðDtÞx [28]. By the central limiting theorem the distributions converge, of course, to
e front matter r 2006 Elsevier B.V. All rights reserved.
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Gaussian behavior for Dt longer than ðDtÞx, albeit quite slowly. All these empirical findings suggest that there
might be some universal underlying regularities governing the complex financial systems [29–32].

In order to explain the mechanism of the empirical power-law distribution, several theoretical models have
been proposed [33–35]. For instance, Solomon and Richmond [33] build a multiagent system by the use of a
generalized Lotka-Volterra model. A theory of Gabaix et al. [34] find this behavior on the basis of the
economic optimization by heterogeneous agents.

Such empirical results and corresponding theories have suggested the universality of the power-law distribution
of stock price fluctuations. The origin of this, however, is far from understood. When Huang [36] analyzed the 1-
min data of the Hang Seng index in the Hang Kong stock market from January 1994 to December 1997, he found
that the tail properties of the probability distribution of index fluctuations depend on the opening effect of each
trading day. When skipping the data in the first 20min of each morning session, the asymptotic behavior of the
probability distribution shows an exponential-type decay as PðxÞ� expð�ajxjÞ=jxj, where the index move x ¼ xðtÞ

over a time scale Dt satisfies xðtÞ ¼ indexðtÞ � indexðt� DtÞ. Moreover, he claims that this empirical result can be
derived from a Langevin approach [37]. In contrast, the case without any skip of the data is characterized by a
power-law decay with an exponent a ’ 3.

Further doubts on the universality were raised by K. Matia et al. [38], who tested the daily returns from
November 1994 to June 2002 for the 49 largest stocks of the National Stock Exchange, which has the highest
volume of trade in India. These authors found an exponential probability density function of normalized
returns g, to be defined below, as PðgÞ� expð�bgÞ, with the characteristic decay scales b ¼ 1:51� 0:05 for the
negative tail and b ¼ 1:34� 0:04 for the positive tail. This led them to suggest that the power-law behavior
merely holds for highly developed economies while the less highly developed ones follow a scale-dependent
behavior.

On the other hand, most financial markets exhibit rich patterns caused by periodic market closures. For
example, Cajueiro et al. [39] found that the intensity of the long-range dependence phenomena presented in
this market depends on the time of the day that the phenomena is measured. This kind of pattern seems to be
related to trading performed by different types of investors and the flow of information over the day.

The purpose of this paper is to test this hypothesis by analyzing the distributions of the Chinese market,
which should be comparable to the Indian one. In particular, we consider the influence of the opening effect,
and of the near-closure returns [40]. In addition, we study the scaling behavior of the distribution for time
scales from 1min up to 64min.

We analyze the Shanghai Stock Exchange (SSE) index [41], which is a market-value weighted index. The
data contain minute-by-minute records of every trading day from November 2000 to June 2004 [42], with the
total number of data exceeding 2� 105.

Define SðtÞ as the value of SSE index and the return GðtÞ over a time scale Dt as the forward change in the
logarithm of SðtÞ, namely, GðtÞ ¼ ln Sðtþ DtÞ � SðtÞ. Then we define the normalized return gðtÞ as,

gðtÞ ¼
GðtÞ � hGðtÞiT

s
. (1)

Here s is the standard deviation of GðtÞ, and h� � � iT denotes an average over the entire length of the time series.
Fig. 1(a) and (b) display the cumulative distributions of 1-min returns of the SSE index for the positive and

the negative tails, respectively. When the distributions are calculated with all data, which include near-closure
returns, both positive and negative tails cannot be fitted well by the regression fits, especially for large values of
g [43]. Consequently, in this case we obtain a ’ 2:46 in the region 1pgp8, and a ’ 1:52 in the region
8pgp20 for the positive tail. Likewise, we obtain a ’ 2:64 in the region 1pgp4, and a ’ 1:72 in the region
4pgp20 for the negative tail (see Eq. (2) for the definition of a). According to these results, there is definite
evidence for a power-law asymptotic behavior described by Lévy distributions with a � 3.

When the irregular near-closure returns are removed we still observe, for both positive and negative tails, a
power-law asymptotic behavior

Pðg4xÞ�x�a. (2)

The powers of these distributions are completely consistent with the previous empirical power-law
distributions found for different stock markets [23–27].
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Fig. 1. Cumulative distribution of the 1-min returns of the SSE index for (a) the positive tail and (b) the negative tail. Each figure displays

the distribution with (solid symbols) and without (open symbols) near-closure returns, respectively. Solid lines are the power-law

regression fits in the region 3pgp20 for the distributions without near-closure returns, which yield estimates a ¼ 3:19� 0:01 for the

positive tail and a ¼ 3:67� 0:01 for the negative tail.
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The power-law fit method [24–26] is applied to obtain the initial values of the exponents of power-law decay
for the positive and negative returns, respectively. Similar to the way in Refs. [44,45], the Hill estimator [46]
and its varieties [47,48] are further adapted for evaluating their standard errors. In fact, we use over 1% of the
total data to fit the tail distributions. Specifically, in the appropriate region of g for the positive and the
negative tails, the fits yield

a ¼
3:19� 0:01; 3pgp20 ðpositive tailÞ;

3:67� 0:01; 3pgp20 ðnegaive tailÞ;

(
(3)

well outside the Lévy-stable range, 0oao2. We observe a slight asymmetry between the 1-min positive and
negative returns from the SSE index. Notwithstanding, it behaves inconsistently and indicates a significant
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asymmetry in the distribution for the daily positive and negative returns of individual stocks from the ‘‘SSE’’
and ‘‘Shanghai Stock Exchange’’ [44]. It is found that the values of the exponents of the negative tails are
larger than those of the positive tails for individual stocks.

The notable difference between the cases with and without near-closure returns shows that the tail parameter of
the distribution is greatly affected by these irregular events. This is remarkable since the number of these events is
relatively small (847) compared to the total number of returns (205215). In order to study their influence, as well as
the data of returns for other certain time periods which might have a similar effect, we calculate the daily pattern
AðtdayÞ [27]. This quantity is defined as the average absolute value of index returns:

AðtdayÞ ¼
1

N

XN

j¼1

jGjðtdayÞj. (4)

The symbol tday indicates the trading time within a day [49], and the index j runs over all trading days. We
further find it useful to renormalize AðtdayÞ to a new quantity aðtdayÞ which has unit average. Generally
speaking, if the value of aðtdayÞ for the time tday is much larger than the values for other time periods, it may
imply that the data of g for the time tday contain more extreme values of the distribution, which gives them
greater influence on the tail properties. Fig. 2 depicts the value of aðtdayÞ for each trading time within a day.
Obviously, the near-closure value aðt ¼ 242Þ is much larger than the others (more than 10 times the average
level). This is why the near-closure data have severe impact upon the tail parameter.

Apart from this, there are other values of aðtdayÞ which exceed the average level: those in the first, roughly
10min within a trading day, near the end of the morning session, and those at the beginning of the afternoon
session. For the tails of the g-distributions these are not significant, however. In fact, removing them
causes only a small change of the tail parameter— the most significant change coming from the near-closure
returns [50].

Furthermore, we study the distribution of the normalized returns (near-closure returns are removed) for
longer time scales. In the region 3pgp20, for positive tails, the power-law regression fits yield
a ¼ 3:63� 0:14, and a ¼ 3:08� 0:10 for Dt ¼ 16 and 64min, respectively. Likewise, the corresponding values
of a for negative tails are a ¼ 3:71� 0:08 and a ¼ 3:29� 0:11, respectively. It seems that the distribution
maintains the power-law functional form for all these time scales. Note that here the values of exponents of
both the positive and the negative tails are almost balanced, even if it appears a little bit larger bias for the
values of the positive tails.
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Fig. 2. Normalized 1-min interval daily pattern for the return of the SSE index, where tday is the ordinal number of the trading time within

a day, aðtdayÞ is the normalized daily pattern defined as the average of the absolute value of returns, GjðtdayÞ. Note that Gjð242Þ which is

calculated by near-closure returns largely exceed the average level.
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Fig. 3. The slow convergence to Gaussian behavior is shown by the moment mk with increasing Dt ¼ 1, 16, and 64min, respectively.
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In the earlier study of the stock price returns of the US [26], near-closure returns were not removed, since
these would merely bring small changes to the tail parameters. Thus the question arises why their influence is
so much more relevant to the SSE index. This must be due to some specific characteristics of the Chinese stock
market. One reason may be that compared to mature stock markets such as those in the US, the Chinese
market depends more on government policies, and cases of insider trading are frequent. When some traders
acquire the information of certain forthcoming government policies that might affect the stock markets, they
act in last few minutes of the trading day, when it is too late for the others to react. Also, the supervision of
excessive prices of market orders may not be as strict as in the mature markets. The smaller fluctuations in the
morning are the overnight spillover of these activities.

To further verify the scaling behavior we analyze the moments of the distribution [25],

mk ¼ hjgj
ki, (5)

where h� � �i denotes an average over all normalized returns, and mk is calculated for 0pkp3. The moments
demonstrate a slow convergence to Gaussian behavior with increasing Dt, as shown in Fig. 3.

In summary, we have analyzed the asymptotic behavior of the distribution of normalized 1-min returns for
the SSE index. We find that the tail properties of the distribution are caused by the near-closure returns, the
relevant fall-off powers being a ’ 3. Moreover, for time scales Dt from 1min up to 64min, the distribution
shows a slow convergence to Gaussian behavior as required by the central limiting theorem. It is argued that
to remove opening and closure returns in the study of high-frequency changes of the emerging stock markets
qualifies as a standard empirical methodology and should be taken into account as a standard caveat in
empirical research.

We thank P. Chen, X.J. Qiu, H. Zhang and Y.N. Tang for useful comments and discussions. This project is
partially supported by the State Key Development Programme for Basic Research of China (Grant No
2001CB309308) and the Key Project of the Natural Science Foundation of the Ministry of Education of China
(Grant No 00-09).
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