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Abstract – The energy bands of a semiconductor are lowered by an external magnetic field. When
a field is switched on, the straight-line trajectories near the top of the occupied valence band
are curved into Landau orbits and Bremsstrahlung is emitted until the electrons have settled in
their final Fermi distribution. We calculate the radiated energy, which should be experimentally
detectable, and suggest that a semiconductor can be cooled by an oscillating magnetic field.
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Introduction. – Valence and conduction electrons
near the Fermi sphere of a semiconductor have many
similarities with the Dirac electrons in the vacuum. In
fact, the hole state as a missing state in the valence band
is completely analogous to a positron in Dirac’s sea of
occupied negative-energy electrons. The band width ∆ of
a superconductor, which is typically of the order of 0.1 eV,
corresponds to the energy gap ∆= 2mec

2 ≃ 1.04MeV
in Dirac’s vacuum, above which electron-positron pairs
can be produced. As a consequence, the electromagnetic
behavior of a semiconductor at and below room temper-
ature with kBT ≃ 0.024eV (kB =Boltzmann constant)
can be studied by the same field-theoretic techniques as
a Dirac vacuum for kBT ≪ 2mc2. In particular, one can
transfer the results found by Heisenberg and Euler [1,2]
for electrons and positron to electrons and holes. A strong
electric field larger than Ec =m

2
ec
3/e�≃ 1.3 · 1018V/m

leads to electron-hole pair production.
A magnetic fieldH lowers the energy of the ground state

since the electrons are curved into Landau orbits [3]. This
should produce synchrotron radiation. For the magnetic
field switched on in the vacuum, this was pointed out in
ref. [4] as a consequence of the Euler-Heisenberg calcu-
lation [1,2]. However, this effect could become observ-
able only for extremely large magnetic fields which cannot
be attained in present-day laboratories. It will play a role
mainly in astrophysical events, such as supernova explo-
sions, and during the formation of neutron stars, where
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magnetic fields reach Hc =m
2
ec
3/e�= 4.3× 1013 gauss. It

may also account for the emission of an anomalous X-ray
pulsar [5].
The purpose of this note is to suggest observing this

type of synchrotron radiation at presently available
magnetic fields of 105 gauss by placing a semiconductor
in a magnetic field. Moreover, we point out that this may
give rise to a novel cooling technique for semiconductors.

Electron and hole states. – The electrons in
the highest valence band of a semiconductor occupy
Bloch states which look like free-particle states
ψk(r, t) = e

ikx−iξktψk(r), where k is the Bloch momen-
tum and ξk the energy measured from the Fermi surface
between the bands. Near the top of the band, the energy
can be expanded as [6]

ξk ≃∆v +
∑

i

k2i
2m∗i
, (i= x, y, z), (1)

where ∆v is the distance of the top of the valence band
from the Fermi level, which is usually close to ∆/2, and
mi are the effective masses in the three space directions.
The constant-energy surface ξk = const is in general an
ellipsoid. For simplicity, we shall assume axial symmetry
with m∗x =m

∗
y ≡m∗⊥, and shall switch on the magnetic

field in the z-direction. Then, the energies (1) are replaced
by the Landau energies

ξ(n, kz) =∆v +

[

k2z
2m∗z

+(n+λ)ω∗
]

, ω∗ =
eH

m∗
⊥

, (2)
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where the constant λ is independent of n, kz and H [6].
The area of the Landau orbits A(ξk, kz) is quantized,

A(n, kz) = (n+λ)∆A, ∆A≡ 2πeH, (3)

where n= 0, 1, 2, . . . . Equations (2), (3) are Onsager’s
famous result.
Given a semiconductor sample of volume V =LxLyLz,

the electrons of a fixed quantum number n occupy a phase
space LxLy∆A. Dividing this by the volume (2π)

2 per
quantum state, we obtains the degeneracy of the states of
fixed n:

D= 2LxLy∆A
(2π)2

= 2
LxLyeH

2π
, (4)

where the factor 2 accounts for the spin degeneracy and
D is independent of n. This is of course the same as for
free electrons.

2e

2π�
≃ 4.84 · 106 1

cm2 gauss
, (5)

the degeneracy for a 1× 1 cm2 sample in a field of one
kilogauss is about 1010.

Energy difference. – Summing the energy spec-
trum (2) over all states in phase space, we obtain the
energy of the semiconductor sample,

EHtot = 2
V∆A

(2π)2

∑

n

∫

dkz
2π
ξ(n, kz). (6)

From this we have to subtract the energy at H = 0:

Etot = 2V

∫

dkxdkydkz
(2π)3

[

∆v +

(

k2
⊥

2m∗
⊥

+
k2z
2m∗z

)]

, (7)

where k2
⊥
= k2x+ k

2
y. To subtract this from (6), we express

k2
⊥
with the help of a continuous number n= k2

⊥
/2m∗

⊥
ω∗

as
∫

dkxdky =∆A
∫

∞

0
dn, and rewrite (7) as

Etot = 2
V∆A

(2π)2

∫

∞

0

dn

∫

dkz
(2π)

ξ(n, kz). (8)

The energies have ultraviolet divergencies at large kz,
which we regularize with a smooth cutoff function f(kz)
equal to unity for small |kz| ≪Λz and vanishing for large
|kz| ≫Λz. The cutoff Λz is roughly equal to π/a where a
is the lattice spacing. In this way, we obtain convergent
kz-integrals

F (n)≡
∫

∞

0

dkz
2π
f(kz)ξ(n, kz), (9)

and a finite difference between the energies (6) and (8)

∆E ≡EHtot−Etot = 4
V∆A

(2π)2

[

∑

n

F (n)−
∫

∞

0

dnF (n)

]

.

We can now use the Euler-MacLaurin formula and the
Bernoulli numbers B2 = 1/6, B4 =−1/30, . . . to obtain

∆E = 4
V∆A

(2π)2

[

− 1
2!
B2F

′(0)− 1
4!
B4F

′′′

(0)+ · · ·
]

, (10)

where

F ′(0) = ω∗
∫

∞

0

dkz
2π
f(kz), F

′′′

(0) = 0, . . . , (11)

so that

∆E =−V αH2 2
3m∗
⊥

∫

∞

0

dkz
2π
f(kz). (12)

Choosing f(z) = exp(−k2z/Λ2z), we find

∆E =−V αH2 Λz
m∗
⊥

1

6π1/2
. (13)

In principle, we must sum over all different energy bands
in eq. (12), but only the bands above and below the Fermi
surface will contribute.
The energy difference (12) is negative. This has several

consequences:

i) The semiconductor acts as a paramagnetic medium
with permeability

µ= 1− α
6π

Λz
m∗
⊥

≈ 1− α
6π

π

am∗
⊥

. (14)

This should be checked by experiment.

ii) When turning on the magnetic field, the energy
difference should be released by the semiconductor.
This can proceed by phonon and photon production.
The first will heat the system, the second could in
principle be detected if there is enough surface. In
the following section, we compute rate and spectrum
of spontaneous photon emission.

Spontaneous photon emission. – Let us turn the
magnetic field H(t) adiabatically on over a long time
interval ∆t= t+− t−:

H(t) =

{

0, t= t−→−∞,
H, t= t+→+∞, (15)

so that the time variation of H(t) is much slower than the
time scale of Bloch electron states in the semiconductor,
which is characterized by the period τ⊥ = 2π/ω

∗ of
the motion in the xy-plane, and by the time scale
τz = �/(m

∗
zc
2) in the ẑ-direction. The normalized initial

and final Bloch states are

ψi=
1

V 1/2
exp{i[kxx+ kyyk̄zz− ξkt]},

ψf=
χ(y)

(LxLz)1/2
exp{i[k′xx+ k̄′zz− ξn(k′z)t]},

(16)

where the normalized function χ(y) are [3],

χ(y) =N
1/2
χ e−ξ

2/2Hn(ξ), Nχ =
(eH)1/2

2nn!π1/2
,

ξ = (eH)
1/2

[

y− k
′
x

eH

]

,

(17)
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and Hn(ξ) is the Hermite polynomial. The energies of
these states are (1) and (2), respectively. Due to axial
symmetry w.r.t. z-direction, we start from an initial
state with ky = 0, which will remain zero, as seen most
easily form the semiclassical equation of motion: dk/dt=
(e/m)k×H.
The probability amplitude for spontaneous photon

emission is [7]

Jfi(q) =−ie
∫

dtd3xψ∗fψi

(

1

2ωqV

)1/2

exp{i(ωqt−q ·x)},
(18)

where (ωq = |q|,q) is the photon energy-momentum, and
the photon field is normalized to one photon energy ωq
crossing a unit area per unit time. The integral over t, x, z
gives rise to δ-functions for energy and x, z momentum
conservations. The integral over y is done using the
formula (eq. (7.376) in [8])

∫

dye−iqyye−ξ
2/2Hn(ξ) = (−i)n

(

2π

eH

)1/2

A

×Hn(βqy), (19)

where β2 ≡ 1/eH and A≡ exp{−iqy(k′x/eH)−β2q2y/2}.
As a result, eq. (18) becomes

Jfi(q) = (−i)n+1e
(

Nχ
2ωqV LyL2x

)1/2(
2π

eH

)1/2

×AHn(βqy)
×(2π)2δ[ξn(k′z)− ξk+ωq]δ(kx− k′x− qx), (20)

where qz = 0 and ωq = (q
2
x+ q

2
y)
1/2 for kz = k

′
z. The

photons are emitted perpendicular to the ẑ-direction,
as in synchrotron radiation. The squared transition
amplitude is

|Jfi(q)|2 = e2
(

Nχ
2ωqV LyLx

)

2π

eH

×H2n(βqy)∆t exp(−β2q2y)
×(2π)2δ[ξn(k′z)− ξk+ωq]δ(kx− k′x− qx).

(21)

This has to be summed over all final states to yield
summing n with degeneracy D (4), and obtain,
∑

f

|Jfi(q)|2=e2
(

1

ωqV

)

(|e|H)1/2∆t exp(−β2q2y)

×
∞
∑

n=0

1

2nπ1/2n!
H2n(βqy)(2π)δ[ξn(kz)− ξk+ωq]. (22)

The δ-function for the total energy conservation can be
rewritten as

(2π)δ[ξn(kz)− ξk+ωq] =

(2π)δ

[

(n+σ∗)ω∗− k2x
2m∗
⊥

−ωq
]

= (ω∗)−1δn,nkx , (23)

where nkx � 1 is the integer closest to (ω
∗)−1(k2x/2m

∗

⊥
+

ωq)−σ∗. From (22) we obtain the probability of sponta-
neous photon emission from the semiconductor per unit
time

dNγ
dt
=

e2

2nkxπ1/2nkx !

(

eH

ω2q

)1/2

H2nkx (βqy) exp(−β
2q2y),

(24)

where we can replace qy by ωq since qx = 0. Multiply-
ing (24) by ωq yields the emitted energy flux.
Note that the emitted photon energies ωq are mostly

smaller than the magnetic energy scale (eH)1/2. For large
nkx -values, the rate (24) has the power-like suppression
[ωq/(eH)

1/2]2nkx /nkx !≪ 1. The leading contribution to
energy production comes from the electrons with nkx= 1
which yield (recalling that H1(x) = 2x),

dEγ
dt
≃ 2e2

π1/2

(

eH

ω2q

)
1

2

exp

(

−
ω2q
eH

)

ω3q
eH
, (25)

showing a power behavior ∝ ω2q in the low energy and an
exponential falloff exp[−ω2q/(eH)] at high photon ener-
gies. The spectrum is maximum at ωq = ω

max
q = (eH)1/2.

Today’s laboratories reach H = 105 gauss for which√
eH ≃ 0.244 eV 1. Thus, in present magnetic fields, most
photons are infrared.
Integrating (25) over all photon energies,

∫

dωq/(2πc),
we obtain the total energy flux

dEγ
dt
≃ α eH. (26)

There are two degenerate valence band maxima, both
located at k= 0, in silicon as well as germanium. In
the quadratic approximation (1), these are spherically
symmetric, i.e. m∗

⊥
is assumed to be close to m∗z. The

effective masses m∗
⊥
are 0.49me and 0.1me in silicon,

and 0.28me and 0.044me in germanium [6]. For a rough

estimate, we take m∗
⊥
= 0.1mec

2 and
√
eH�c≃ 0.244 eV

for H = 105 gauss. The characteristic time scales are
t∗ = 2π/ω∗ ≃ 3.3 · 10−7 s and �/(m∗

⊥
c2) = 1.3 · 10−20 s, so

that rate (26) is of the order of

dEγ
dt
≃ 6.6 · 1011 eV s−1. (27)

This should be observable by infrared light detectors
placed around the sample orthogonal to the direction of
the magnetic field H ≈ 105 gauss.
Remarks. – In general, the rate and spectrum of

spontaneous photon emission will depend on the time
dependence of the magnetic field H(t). Our calculation
yields only a first estimate based on the adiabatic condi-
tion ∆t≫ t∗ = 2π/ω∗ = 3.3 · 10−7 s, which is fulfilled in
most experiments. On these time scales, one need not

1See the webpage of the National High Magnetic Field Laboratory

at http://www.magnet.fsu.edu.

57001-p3



H. Kleinert and S. S. Xue

worry about photons generated by induction. These have
a typical energy �/∆τ , which is much smaller than the

typical energy
√
eH�c of the photons in (27). Of course,

the experiments should be performed at low temperature
to reduce the background of thermal photons, which is
about 108/cm3 at room temperature.

For a periodically oscillating magnetic field H(t) =
H0 cos(ωHt) with a period tH = 2π/ωH≫ t∗, we can still
apply the adiabatic approximation. In the phase that
the magnetic field increases from 0 to maximum H0, the
spontaneous photon emission occurs as discussed. If these
photons are not kept inside the sample by either a large
opacity or reflection on the walls of a cavity, they will
stream away and carry off energy. In the phase where
the magnetic field decreases from the maximum H0 to 0,
the semiconductor may absorb heat from the environment.
As a consequence, a periodically oscillating magnetic field
H(t) should be able to cool a semiconductor. If the sample
is sufficiently thin the electron phonon coupling should
not produce enough phonons to destroy the effect by re-
heating. Hence there is a good chance that this process
may have technical applications.
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