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Landau’s work was crucial for the development of the
modern theory of phase transitions. He showed that such
transitions can be classified by an order parameter, which
in the low-temperature phase becomes nonzero. Together
with Ginzburg he made this order parameter a spacetime-
dependent order field and introduced a local energy functional
whose extrema yield field equations and whose fluctuations
determine the universal critical behavior of second-oder tran-
sitions. In the same spirit, but from a dual point of view, I
have developed in the last twenty years a disorder field theory
that describes phase transitions via the statistical mechanics
of grand-canonical ensembles of vortex lines in superfluids and
superconductors, or of defect lines in crystals. The Feynman
diagrams of the disorder fields are pictures of the vortex or
defect lines. A nonzero ground state expectation value of
the disorder field at high temperature signalizes the prolifer-
ation of line like excitations in the ordered phase. It was this
description of the superconductor that led in 1982 to a first
understanding of the order of the superconducting phase tran-
sition. Recent experimental progress in the critical regime of
high-Tc superconductors will be able to verify the predicted
tricritical point of the Ginzburg parameter κ ≈ 0.8/

√
2 where

the second-order transition becomes first-order.
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1. Introduction

The critical regime of old-fashioned superconductors can
be described extremely well by the Ginzburg-Landau the-
ory [1] in mean-field approximation [2,3]. The reason is
the smallness of the Ginzburg temperature interval ∆TG

around the mean-field critical temperature TMF
c where

fluctuation become important [4]. A first discussions
of the order of the superconductive phase transition by
Halperin, Lubensky, and Ma in 1972 [5] did initially not
seem experimentally relevant.

The situation has changed with the advent of modern
high-Tc superconductors. In these the Ginzburg temper-
ature interval is large enough to observe field fluctuations
and see critical properties beyond mean-field. Several ex-
periments have found a critical point of the XY univer-
sality class [6]. In addition, there seems to be recent evi-
dence for an additional critical behavior associated with
the so-called charged fixed point [7]. In view of future
experiments, it is important to understand precisely the
nature of critical fluctuations.

2. Ginzburg-Landau Theory

The Ginzburg-Landau theory [1] describes a supercon-

ductor with the help of an energy density

H(ψ,∇ψ,A,∇A)=
1

2

{

[(∇ − ieA)ψ]
2
+τ |ψ|2 +

g

2
|ψ|4

}

+
1

2
(∇× A)

2
, (1)

where ψ(x),A(x) are pair field and vector potential, re-
spectively, and e is the charge of the Cooper pairs. The
parameter τ ≡ T/TMF

c − 1 is a reduced temperature
measuring the distance from the characteristic temper-
ature TMF

c at which the |ψ|2-term changes sign. The
theory needs gauge fixing, which is usually done by set-
ting ψ(x) = ρ(x)eıθ(x), rewriting the covariant derivative
of ψ as

Dψ = [i(∇θ − eA)ρ+ ∇ρ]eiθ, (2)

and eliminating the phase variable θ(x) by a local
gauge transformation A → A + ∇θ/e. This brings
H(ψ,∇ψ,A,∇A) to the form

H1 =
1

2
(∇ρ)2+V (ρ)+

1

2
(∇× A)2 +

ρ2e2

2
A2, (3)

where V (ρ) is the potential of the ρ-field:

V (ρ) =
τ

2
ρ2 +

g

4
ρ4. (4)

The last term in (3) is the famous Meissner-Higgs mass
mA = ρe [2,3] of the vector potential A. An analogous
mass in the gauge theory of electroweak interactions ex-
plains why interactions are so much weaker than electro-
magnetic interactions.

At the mean-field level, the energy density (3) de-
scribes a second order phase transition. It takes place if
τ drops below zero where the pair field ψ(x) acquires the

nonzero expectation value 〈ψ(x)〉 = ρ0 =
√

−τ/g, the or-
der parameter of the system. The ρ-fluctuations around
this value have a coherence length ξ = 1/

√
−2τ . The

Meissner-Higgs mass term in (3) gives rise to a finite pen-

etration depth of the magnetic field λ = 1/mA = 1/ρ0e.

The ratio of the two length scales κ ≡ λ/
√

2ξ, which for

historic reasons carries a factor
√

2, is the Ginzburg pa-
rameter whose mean field value is κMF ≡

√

g/e2. Type
I superconductors have small values of κ, type II super-
conductors have large values. At the mean-field level, the
dividing line is lies at κ = 1/

√
2.
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3. Fluctuation Corrections

In high-Tc superconductors, field fluctuations become im-
portant. These can be taken into account by calculating
the partition function and field correlation functions from
the functional integral

Z =

∫

Dρ ρDA e−
∫

d3xH1 (5)

(in natural units with kBT = 1). So far, all analytic
approximations to Z pursued since the initial work [5]
have had notorious difficulties in accounting for the or-
der of the superconductive phase transition. In [5], simple
renormalization group arguments [8] in 4− ǫ dimensions
suggested that the transition should be of first order.
The technical signal for this was the nonexistence of an
infrared-stable fixed point in the renormalization group
flow of the coupling constants e and g as a function of
the renormalization scale. However, due to the smallness
of the Ginzburg interval ∆TG, the first order was never
verified experimentally. Since then, there has been much
work [9] trying to find an infrared-stable fixed point in
higher loop orders or by different resummations of the
divergent perturbations expansions, with little success.

Recall the simplest argument suggesting a first-order
nature of the transition arises at the mean-field level of
the pair field ρ as follows: The fluctuations of the vec-
tor potential are Gaussian and can be integrated out in
(5). Assuming ρ to be smooth, this may be done in the
Thomas-Fermi approximation [10], leading to an addi-
tional cubic term in the potential (4), changing it to

V (ρ) =
τ

2
ρ2 +

g

4
ρ4 − c

3
ρ3, c ≡ e3

2π
. (6)

The cubic term generates, for τ < c2/4g, a second mini-
mum at

ρ̃0 =
c

2g

(

1 +

√

1 − 4τg

c2

)

. (7)

If τ decreases below

τ1 = 2c2/9g. (8)

the new minimum lies lower than the one at the origin
(see Fig. 1), so that the order parameter jumps from zero
to

ρ1 = 2c/3g (9)

in a phase transition. At this point, the coherence length

of the ρ-fluctuations ξ = 1/
√

τ + 3gρ2 − 2cρ has the fi-
nite value (the same as the fluctuations around ρ = 0)

ξ1 =
3

c

√

g

2
. (10)

The phase transition is therefore of first-order [11].

FIG. 1. Potential for the order parameter ρ with cu-
bic term. A new minimum develops around ρ1 causing a
first-order transition for τ = τ1.

4. Vortex Corrections

The above conclusion is reliable only if the jump of ρ0

is sufficiently large. For small jumps, the mean-field dis-
cussion of the energy density (6) cannot be trusted. The
mistake in the above discussion of (1) lies in the neglect
of vortex fluctuations. In fact, the transformation of the
covariant derivative Dψ to the ρ-θ expression in Eq. (2)
is false. Since θ(x) and θ(x) + 2π are physically indistin-
guishable — the complex field ψ(x) is the same for both
— the correct substitution is

Dψ = [i(∇θ − 2πθv − eA)ρ+ ∇ρ]eiθ, (11)

The cyclic nature of the scalar field θ(x) requires the
presence of a vector field θ

v(x) called vortex gauge field .
This field is a sum of δ-functions on Volterra surfaces
across which θ(x) has jumps by 2π. The boundary lines
of the surfaces are vortex lines. They are found from the
vortex gauge field θ

v(x) by forming the curl

∇× θ
v(x) = jv(x), (12)

where jv(x) is the vortex density, a sum over δ-functions
along the vortex lines δ(L;x) ≡

∫

L
dx̄ δ(x − x̄). Vortex

gauge transformations are deformations of the surfaces at
fixed boundary lines which add to θ

v(x) pure gradients
of the form ∇δ(V ;x), where δ(V ;x) ≡

∫

V d
3x̄ δ(x − x̄)

are δ-functions on the volumes V over which the surfaces
have swept. The theory of these fields has been devel-
oped in the textbook [13] and the Cambridge lectures
[14]. Being a gauge field, θ

v(x) may be modified by a
further gradient of a smooth function to make it purely
transverse, ∇ · θvT (x) = 0, as indicated by the subscript
T . Since the vortex gauge field is not a gradient, it cannot
be absorbed into the vector potential by a gauge trans-
formation. Hence it survives in the last term in Eq. (3),
and the correct partition function is

Z ≈
∫

Dθ
v
T

∫

DρρDA exp

[

−1

2
(∇ρ)2 − τ

2
ρ2 − g

4
ρ4

− 1

2
(∇× A)2 − ρ2e2

2
(A − 2πθvT /e)

2

]

. (13)

The symbol
∫

Dθ
v
T does not denote an ordinary func-

tional integral. It is defined as a sum over all numbers
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and shapes of Volterra surfaces S in θ
v
T , across which the

phase jumps by 2π [14].
The important observation is now that the partial par-

tition function of the A-field contained in (13)

Z1[ρ] ≡
∫

Dθ
v
TDA exp

{

−1

2

∫

d3x(∇ × A)2

−ρ
2

2

∫

d3x[eA − 2πθvT ]2
}

(14)

can give rise to a second-order transition of the XY -
model type if the Ginzburg parameter κ is sufficiently
large. To see this we integrate out the A-field and obtain

Z1[ρ] = exp

[
∫

d3x
e3ρ3

6π

]
∫

Dθ
v
T (15)

× exp

[

4π2ρ2

2

∫

d3x

(

1

2
θ
v
T

2 − θ
v
T

ρ2e2

−∇
2 + ρ2e2

θ
v
T

)]

.

The second integral can be simplified to

4π2ρ2

2

∫

d3x

(

θ
v
T

−∇
2

−∇
2 + ρ2e2

θ
v
T

)

. (16)

Integrating this by parts, and replacing ∇iθ
v
T ∇iθ

v
T by

(∇ × θ
v
T )2 = jv 2, since ∇θ̇

v

T = 0, the partition function
(15) without the prefactor takes the form

Z2[ρ]=

∫

Dθ
v
T exp

[

−4π2ρ2

2

∫

d3x

(

jv
1

−∇
2 + ρ2e2

jv
)]

.

(17)

This is the partition function of a grand-canonical en-
semble of closed fluctuating vortex lines. The interaction
between them has a finite range equal to the penetration
depth λ = 1/ρe.

It is well-known how to compute pair and magnetic
fields of the Ginzburg-Landau theory for a single straight
vortex line from the extrema of the energy density [2].
In an external magnetic field, there exist triangular and
various other regular arrays of vortex lattices and vari-
ous phase transitions. In the core of each vortex line, the
pair field ρ goes to zero over a distance ξ. If we want
to sum over grand-canonical ensemble of fluctuating vor-
tex lines of any shape in the partition function (13), the
space dependence of ρ causes complications. These can
be avoided by an approximation, in which the system is
placed on a simple-cubic lattice of spacing a = α ξ, with
α of the order of unity, and a fixed value ρ = ρ̃0 given by
Eq. (7). Thus we replace the partial partition function
(17) approximately by

Z2[ρ̃0]=
∑

{l;∇·l=0}

exp

[

−4π2ρ̃2
0a

2

∑

x

l(x)vρ̃0e(x − x′)l(x′)

]

.

(18)

The sum runs over the discrete versions of the vor-
tex density in (12). These are integer-valued vectors

l(x) = (l1(x), l2(x), l3(x)) which satisfy ∇ · l(x) = 0,
where ∇ denotes the lattice derivative. This condition
restricts the sum over all l(x)-configurations in (18) to
all non-selfbacktracking integer-valued closed loops. The
function

vm(x) =

3
∏

i=1

∫

d3(aki)

(2π)3
ei(k1x1+k2x2+k3x3)

2
∑3

i=1(1 − cos aki) + a2m2

=

∫

dse−(6+m2)sIx1
(2s)Ix2

(2s)Ix3
(2s). (19)

is the lattice Yukawa potential [15].
The lattice partition function (18) is known to have a

second-oder phase transition in the universality class of
the XY -model. This can be seen by a comparison with
the Villain approximation [16] to the XY model, whose
partition function is a lattice version of

ZV [ρ] =

∫

Dθ
∫

Dθ
v
T exp

[

− b

2

∫

d3x (∇θ − θ
v
T )

2

]

.

After integrating out θ(x), this becomes

ZV [ρ] = Det−1/2(−∇
2)

∫

Dθ
v
T exp

(

− b

2

∫

d3xθv
T

2

)

,

(20)

and we can replace θ
v 2
T by (∇×θ

v
T )(−∇

2)−1(∇×θ
v
T ) =

jv(−∇
2)−1jv. By taking this expression to a simple-cubic

lattice we obtain the partition function (18), but with ρ̃2
0a

replaced by βV ≡ ba, and the Yukawa potential vρ̃0e(x)
replaced by the Coulomb potential v0(x).

The partition function (18) has the same transition at
roughly the same place as its local approximation

Z2[ρ̃0] ≈
∑

{l;∇·l=0}

exp

[

−4π2ρ̃2
0a

2
vρ̃0e(0)

∑

x

l2(x)

]

. (21)

A similar approximation holds for the Villain model with
v0(x) instead of vρ̃0e(x), and ρ̃2

0a replaced by βV ≡ ba.
The Villain model is known to undergo a second-order

phase transition of the XY -model type at βV = r/3
with r ≈ 1, where the vortex lines become infinitely
long [16,17]. Thus we conclude that also the partition
function (21) has a second-order phase transition of the
XY -model type at ρ̃2vρ̃0e(0)a ≈ v0(0)/3. The potential
(19) at the origin has the hopping expansion [18]

vm(0) =
∑

n=0,2,4

Hn

(a2m2 + 6)n+1
, H0 = 1, H2 = 6, . . . .(22)

To lowest order, this yields the ratio vm(0)/v0(0) ≡
1/(m2/6+1). A more accurate numerical fit to the ratio
vm(0)/v0(0) which is good up to m2 ≈ 10 (thus com-
prising all interesting κ-values since m2 is of the order
of 3/κ2) is 1/(σm2/6 + 1) with σ ≈ 1.38. Hence the
transition takes place at
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ρ̃2
0a

(σ a2ρ̃2
0e

2/6 + 1)
≈ r

3
or ρ̃0 ≈ 1√

3a

√

r

1 − σrae2/18
.

(23)

The important point is now that this transition can occur
only until ρ̃0 reaches the value ρ1 = 2c/3g of Eq. (9).
From there on, the transition will no longer be of the
XY -model type but occur discontinuously as a first-order
transition.

Replacing in (23) a by αξ1 of Eq. (10), and ρ̃0 by ρ1, we
find the equation for the mean-field Ginzburg parameter
κMF =

√

g/e2:

κ3
MF + α2σ

κMF

3
−

√
2α

πr
= 0. (24)

Inserting σ ≈ 1.38 and choosing α ≈ r ≈ 1, the solution
of this equation yields the tricritical value

κtric
MF ≈ 0.81/

√
2. (25)

The approximation has three uncertainties. First, the
identification of the effective lattice spacing a = αξ with
α ≈ 1; second the associated neglect of the x-dependence
of ρ and its fluctuations, and third the localization of
the critical point of the XY -model type transition in
Eq. (23).

Thus we have shown the existence of a tricritical point
in a superconductor within the fluctuating Ginzburg-
Landau theory [19]. For this is was crucial to take the
vortex fluctuations into account. This became possible
after correcting the covariant derivative (2) of ψ = ρeiθ to

(11). For κ > 0.81/
√

2, vortex fluctuations give rise to an
XY -model type second-order transition before the cubic
term becomes relevant. This happens for κ < 0.81/

√
2

where the cubic term causes a discontinuous transition.

5. Disorder Field Theory

In the spirit of Landau is is suggestive to describe the
second-order phase transition caused by the proliferation
of vortex lines again by a Ginzburg-Landau like field the-
ory of its own. This theory will have the property that
its diagrammatic representation displays directly the pic-
tures of the vortex lines in a grand-canonical ensemble.
Thus it may rightfully be called disorder field theory [13].
Since the vortex lines proliferate in the high-temperature
phase, their disorder field acquires a nonzero expectation
value in that phase, in contrast to the order field in the
original Ginzburg-Landau energy density (1). It can eas-
ily be shown that if ϕ(x) denotes the disorder field, the
partition function (14) can be replaced by a field parti-
tion function

Z2 =

∫

DϕDϕ∗ e−
∫

d3xH2 (26)

with the energy density

H2(ϕ,∇ϕ)=
1

2

{

[∇ϕ]2+τ2|ϕ|2 +
g2
2
|ϕ|4

}

. (27)

The parameter τ2 becomes negative above Tc, where 〈ϕ〉
takes a nonzero expectation value. The disorder theory
can be studied with the usual techniques developed by
Landau. In this way we find once more the result In
spite of the roughness of the approximations, this result
is very close to the value 0.8/

√
2 derived from the dual

theory in [12]. The details are given in Ref. [13].

6. Outlook

The disorder field exhibited here can be used to de-
scribe many different phase transitions as long as they
are caused by the proliferation of line-like excitations.
In some systems, the relevant excitations are surface- or
volume-like. For instance, the transition of a magnetic
system in three dimensions to a nonmagnetic phase may
be viewed as a consequence of a proliferation of boundary
surfaces of Weiss domains. For surfaces or volumes there
exists, unfortunately, no fluctuating field which is capa-
ble of describing their grand-canonical ensembles. This
is why the theory of random surfaces, which is equivalent
to string theory, is always studied in the first-quantized
description, in which a functional integral is performed
explicitly over any number of fluctuating surfaces or vol-
umes. The construction of such a field theory is one of
the major problems of string and brane theory. Once
this will be solved, we shall be able to study also the as-
sociated phase transitions with Landau’s techniques via
a disorder field theory.
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