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Abstract: We show that the recent observation of the time modulation of two-body weak

decays of heavy ions reveals the mass content of the electron neutrinos via interference

patterns in the recoiling ion wave function. From the modulation period we derive the

difference of the square masses Δm2 ≈ 22.5 × 10−5 eV2, which is about 2.8 times larger

than that derived from a combined analysis of KamLAND and solar neutrino oscillation

experiments. It is, however, compatible with a data regime to which the KamLAND

analysis attributes a smaller probability. The experimental results displayed in Fig. 1

imply that the neutrino mixing matrix violates unitarity by about 10%.
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1. Introduction

At the GSI in Darmstadt, the experimental storage ring ESR permits observing com-

pletely ionized heavy atoms I or hydrogen-like heavy ions IH over a long time [1, 2]

and thus to measure the time dependence of their weak two-body decays IH → I+νe
or I → IH + ν̄e. The first is the well-known electron-capture (EC) process. The

virtue of such experiments is that the properties of the neutrino or antineutrino can
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be deduced from measurements of the time dependence of the transition observing

only the initial and final ions. The special efficiency of these experiments becomes

clear in the Dirac sea interpretation of the second process, where the initial ion sim-

ply absorbs a negative-energy antineutrino in the vacuum. Since the vacuum has

all negative-energy states filled, the vacuum is a source of negative-energy neutrinos

of maximally possible current density, i.e., the best possible neutrino source in the

universe. This is why the ESR experiments yield information on neutrino properties

with great precision even if the targets and exposure times are quite small, in par-

ticular much smaller than the 2.44 × 1032 proton-yrs (2881 ton-yrs) in the famous

KamLAND experiments [3], which are only sensitive to the much less abundant

positive-energy neutrinos produced by nuclear reactors.

Apart from the neutrino mass difference, the experiment reveals also another

important property of the presently popular neutrino mixing scheme: the matrix

which expresses the neutrino flavor states into fixed-mass states must be nonunitary

to explain the data. The measurement determines the degree of nonunitarity to be

roughly 10%.

2. Two-Neutrino Mixing

To illustrate this we consider here at first only the two lightest neutrinos. According

to Pontecorvo [4, 5], the Dirac fields of the physical electron and muon-neutrinos

νf = (νe, νμ), the so-called flavor fields , are superpositions of neutrino fields νi =

(ν1, ν2) of masses m1 and m2:

νe(x) = ν1(x) cos θ + ν2(x) sin θ, νμ(x) =−ν1(x) sin θ + ν2(x) cos θ , (1)

where θ is a mixing angle. This is, of course, the neutrino analog of the famous

Cabibbo mixing of up and down quarks. The free Dirac action has the form

A =
∑
f

∫
d4x ν̄f (x) (iγ

μ∂μ −M) νf (x),

where γμ are the Dirac matrices, and M is a mass matrix, whose diagonal and off-

diagonal elements are mf = (me,mμ) and meμ = mμe, respectively. The eigenvalues

mi = (m1,m2) are related to mf by [4, 5, 6, 7],

me = m1 cos
2 θ +m2 sin

2 θ, mμ = m1 sin
2 θ +m2 cos

2 θ,

meμ = mμe = (m2 −m1) sin θ cos θ. (2)

The weak transition between the electron e and its neutrino νe is governed by

the interaction

Aint = g

∫
d4xW−

μ (x)J+μ(x) + h.c. ≡ g

∫
d4xW−

μ (x) ē(x)γμ(1− γ5)νe(x) + h.c.,(3)

where γ5 is the product of Dirac matrices iγ0γ1γ2γ3.
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Since the interaction (3) involve only the flavor fields (1), the states of masses mi

will always be produced as coherent superpositions. The weakness of the interaction

will allow us to calculate the shape of the mixed wave packet from perturbation

theory. Consider the decay I → IH + ν̄e which is a superposition of the states

of masses m1 and m2. The formulas will be applicable for electron capture if we

exchange MH by the mass M of the bare ion and deal with outgoing neutrinos.

In the center-of-mass (CM) frame of the initial bare ion of mass M , the final

H-like ion has the same momentum as the antineutrino ν̄i (i = 1, 2), whose energy

is ωi ≡ ωki,i =
√
k2
i +m2

i determined by

M ≡ MH +Q = ωi +
√

M2
H + k2

i = ωi +
√

M2
H + ω2

i −m2
i , i = 1, 2, (4)

so that

ωi = [(2MH +Q)Q+m2
i ]/2(MH +Q). (5)

Subtracting ω2 and ω1 from each other we find the energy difference

Δω ≡ ω2 − ω1 =
m2

2 −m2
1

2M
≡ Δm2

2M
. (6)

The denominator M is of the order of 100 GeV and much larger than Δm2, so

that Δω is extremely small. It is the difference of the recoil energies transferred to

the outcoming ion by the antineutrinos of masses m1 and m2. Without recoil, we

would have found the four orders of magnitude larger energy difference at the same

momentum Δωk = ωk,2 − ωk,1 = (Δm2 + ω2
k,1)

1/2 − ωk,1 ≈ Δm2/2ωk,1 ≈ Δm2/2Q.

This is the frequency with which the incoming negative-energy neutrino current

of momentum k oscillates in the vacuum. Note that although Δω is small, the

momentum difference Δk ≡ k2 − k1 associated with the energies ω1,2 is as large as

Δωk, but has the opposite sign.

3. Experiments

The best experimental results are available for the EC-processes reported in Ref. [1],

where an electron is captured from the K-shell and converted into an electron-

neutrino which runs off to infinity. On the average, the decay is exponential with a

rate expected from a standard-model calculation. In addition, however, the decay

rate shows modulations with a frequency Δω. The experimental results are [8]

140
59Pr

58+ → 140
58Ce

58+ : Δω ≈ 0.890(11) sec−1 (Q = 3 386 keV), (7)
142
61Pm

60+ → 142
60Nd

60+ : Δω ≈ 0.885(31) sec−1 (Q = 4 470 keV). (8)

In both cases, the period of modulation is roughly 7 sec, and scales with M (see Fig.

1). The decay rate has the form λ(t) = λ(0)(1+a cos(Δωt+Δφ)] with a modulation

amplitude of a = 0.18(3).
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Figure 1 Modulations of decay rate for the processes 140
59Pr

58+ → 140
58Ce

58+ and
142
61Pm

60+ → 142
60Nd

60+. The period is in both cases roughly 7 sec. The inserts show
the frequency analyses. Plots are from Ref. [1]. The decay rate is modulated by a factor
1 + a cos(Δωt+Δφ) with a = 0.18(3).

Figure 2 The upper KamLAND regime of 2006 [10] is compatible with our result Δm2 ≈
22.5× 10−5eV2.

We expect theses modulations to be associated with the frequency Δω of Eq. (6),

and thus to give information on Δm2. Inserting the experimental numbers for Δω

into Eq. (6) and taking into account that the particles in the storage ring run

around with 71% of the light velocity with a Lorentz factor γ ≈ 1.43, we find for

both processes [9]

Δm2 ≈ 22.5× 10−5 eV2. (9)

This is by a factor ≈ 2.8 larger than the result Δm2 ≈ 7.58+0.3
−0.3 × 10−5eV2 favored

by the KamLAND experiment [3, 11], but it lies close to their less favored result

[10], which the authors excluded by 2.2σ in 2005, and now by 6σ [3] (see Fig. 2).

So far we do not yet understand the origin of this discrepancy. One explanation

has been attempted in Ref. [12] where the authors investigate the influence of the

strong Coulomb field around the ion upon the process.
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4. Entangled Wavefunction

For a theoretical explanation of the modulations, we first simplify the situation and

ignore all spins and the finite size of the ions. Then the decay of the initial ion I

into the ion IH plus an electron-antineutrino ν̄e. can be described by an effective

interaction for this process is

Aint = g

∫
d4x I†H(x)νe(x)I(x)

= g

∫
d4x

[
cos θ I†H(x)ν1(x)I(x) + sin θ I†H(x)ν2(x)I(x)

]
, (10)

where I(x), νe(x), and IH(x) are the field operators of the involved particles. In the

CM frame, the initial ion is at rest, the final moves nonrelativistically. The outgoing

wave is spherical. The role of the antineutrino creation operators in ν1 and ν2 is

simply to create a coherent superposition of two such waves with the two different

k- and ω-values calculated above. The combined outgoing wave function will be∫
d3p

(2π)3

∫
d3k

(2π)3
[
cos θe−iEpt+ipx|IH(p)〉e−iωk,1t+ikx|ν̄1(k)〉

+sin θe−iEpt+ipx|IH(p)〉e−iωk,2t+ikx|ν̄2(k)〉
]
. (11)

The states |ν̄1(k)〉, |ν̄2(k)〉, in turn, can be reexpressed in terms of the electron- and

muon-neutrino states as

|ν̄1(k)〉 = cos θ|ν̄e(k)〉 − sin θ|ν̄μ(k)〉, |ν̄2(k)〉 = sin θ|ν̄e(k)〉+ cos θ|ν̄μ(k)〉. (12)
Thus we find for the transition to an electron-neutrino of any momentum the effective

action ∫
d3k

(2π)3
〈ν̄e(−k)|Aint|0〉 = g

∫
d3x IH(x)I(x)vν̄e(x) (13)

with a spacetime-dependent potential

vν̄e(x) =

∫
d3k

(2π)3
[
cos2 θeiωk,1t+ikx + sin2 θeiωk,2t+ikx

]
. (14)

In Born approximation we find from this the scattering state of the recoiling ion IH :

〈x|ψ(+); t〉ν̄e ≡ −g

r

[
cos2 θ ei(k1r−ω1t) + sin2 θ ei(k2r−ω2t)

]
. (15)

This wave carries a radial current density of ions IH

j ν̄er =
g2

MHr2
[
cos4 θ k1 + sin4 θ k2 + sin2 θ cos2 θ (k1 + k2) cos(Δk r −Δω t)

]
. (16)

In order to find the decay rate we integrate this over a sphere of radius R surrounding

the initial ion, choosing for R any size 	 1/Δk ≈ 104m. For this surface we find

the outgoing probability current density

Ṗ = 4πg2
k̄

M

[
1− 1

2 sin
2(2θ) + 1

2 sin
2(2θ) cos(Δω t)

]
, (17)
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where we have approximated k1 and k2 by their average k̄.

This Ṗ can explain directly the observed modulations of the decay rate of the

initial ions. The is only one problem: the amplitude of modulations are predicted

to be a = 1
2 sin

2(2θ)/[1 − 1
2 sin

2(2θ)] ≡ 0.72. Experimentally, however, a is much

smaller. It has the value 0.18(3).

The discrepancy is explained by a missing contribution to the decay rate. So

far we have only included the contribution of the effective action (10). There is,

however, also a second effective action which is generated by the matrix elements∫
d3k

(2π)3
〈ν̄μ(−k)|Aint|0〉 = g

∫
d3x IH(x)I(x)vν̄μ(x) (18)

where

vν̄μ(x) =

∫
d3k

(2π)3
sin θ cos θ

[−eiωk,1t+ikx + eiωk,2t+ikx
]
. (19)

This can be derived directly from Eqs. (12) and (13). Here the Born approximation

yields the scattering state of the recoiling ion IH :

〈x|ψ(+); t〉ν̄μ ≡ g

r
sin θ cos θ

[
ei(k1r−ω1t) − ei(k2r−ω2t)

]
. (20)

Its radial current density is now

j ν̄μr =
g2

MHr2
sin2 θ cos2 θ(k1 + k2) [1− cos(Δk r −Δω t)] . (21)

Now we have another problem: the modulations of this current cancel the modu-

lations of the current (17). We may suspect that this has to do with the fact that

there are three neutrinos which we must take into consideration.

5. Three-Neutrino Mixing

Let us now include all three known neutrinos νe, νμ, ντ . Their fields are denoted by

νσ with σ = e, μ, τ . These fields are combinations of three fields with definite mass

νσ = Uσiνi, σ = (e, μ, τ), (22)

The mixing matrix Uσi is called Maki-Nakagawa-Sakata matrix, or short MNS-

matrix, the neutrino analog of the 3×3 Cabibbo-Kobayashi-Maskawa matrix for the

mixing of the quarks d, s, b, It is commonly assumed to be unitary, i.e., to satisfy

the relation ∑
σ

U∗σjUσl = δjl. (23)

Its standard parametrization is the following product of four simple unitary matrices

U =

⎛
⎜⎜⎜⎜⎝

1 0 0

0 c23 s23

0 −s23 c23

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

c13 0 s13e
−iδ

0 1 0

−s13e
iδ 0 c13

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

c12 s12 0

−s12 c12 0

0 0 1

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

eiα1 0 0

0 eiα2 0

0 0 1

⎞
⎟⎟⎟⎟⎠ (24)
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where sij ≡ sin θij, cij ≡ cos θij. For quarks, the unitarity relation (23) is presently

in the focus of experimental and theoretical studies in many research groups [14].

For leptons, the data have so far been insufficient to test it.

Generalizing (13), (14) and (18), (19), we have from each flavor σ an effective

potential ∫
d3k

(2π)3
〈ν̄σ(−k)|Aint|0〉 = g

∫
d3x IH(x)I(x)vν̄σ(x) (25)

with a potential

vν̄σ(x) =

∫
d3k

(2π)3

3∑
j=0

UejU
∗
σje

iωk,jt+ikx. (26)

This produces an outgoing wave function of the ion IH in the center-of-mass frame

due to the potential vνσ is

〈x|ψ(+); t〉ν̄σ ≡ −g

r

3∑
j=1

UejU
∗
σje

i(kjr−ωjt), (27)

with an ion current density

j ν̄σr =
g2

MHr2

3∑
j,l=1

3∑
σ=1

UejU
∗
σjU

∗
elUσl kje

i[(kj−kl)r−(ωj−ωl)t]. (28)

If we sum over all flavors of the antineutrino and use the unitarity relation (23), we

obtain the total radial current density

jr ≡
∑
σ

j ν̄σr =
g2

MHr2

3∑
j=1

UejU
∗
ej kj. (29)

As previously for two flavors, the modulations in (28) disappear.

However, the GSI experiments did observe modulations with an amplitude a ≈
0.18(3). Thus we must conclude that the unitarity relation (23) must be violated.

Since so far only the lowest possible modulation frequency Δω = ω2 − ω1 between

the two lightest neutrinos has been measured, we may parametrize the right-hand

side of the unitarity violation by∑
σ

U∗σjUσl = u0δjl + u21(δj,2δl,1 + δj,1δl,2) + . . . , (30)

and find

jr =
g2

MHr2
{u0S0δij + 2u21S21 cos[Δkr −Δωt+Δφ]} , (31)

where

S0 ≡
3∑

j=1

UejU
∗
ejkj, S21 ≡ |Ue 2U

∗
e1|(k2 + k1)/2, Δφ ≡ argUe2U

∗
e1. (32)
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Assuming that the violation of unitarity is small, the sums S0 and S1 are close to

unity. Then we deduce from tha experimental result a ≈ 0.18(3) that

u21

u0

≈ 10% . (33)

A possible origin of this unitarity violation could be that there are more than

three families of leptons in nature and that universality of weak interaction is not

valid for all of them. If the symmetry between quarks and leptons of the standard

model persists to higher energies, we do not expect more than eight lepton families

to exist— more than eight quark families would ruin asymptotic freedom and thus

confinement. Thus there is room for more than the three quark and lepton families

observed so far. Indeed, a fourth set of families is under intense discussion [15] in

connection with the new accelerator LHC at CERN. So far, there are only weak

bounds on their masses from different sources [3]:

mt′ ≥ 256GeV, mb′ ≥ 128GeV, mτ ′ ≥ 100.8GeV, mντ ′ ≥ 90.3GeV. (34)

If any of the heavier leptons is coupled with a coupling constant that does not fit

into the CKM scheme, unitarity will certainly be violated. More data will be needed

to decide precisely how.

6. Comments

It is noteworthy that this analysis, in which we extract the properties of the un-

observed antineutrino from the behavior of the ion, corresponds precisely to the

usual entanglement analysis of decay processes such as π0 → γ+ γ. There the mea-

surement of the polarization of one photon tells us immediately the polarization

properties of the other, unobserved photon.

A few comments are in place on several recent publications [16, 17, 18, 19, 20, 21]

which deny the relation between neutrino oscillations and the nonexponential decay

seen in the GSI experiment for various reasons. In Ref. [16], the basic argument is

that the antineutrino oscillations set in after their emission, so that they cannot be

observed in the GSI experiment. The present discussion shows that although the

forst part of this argument is true, the conclusion depends on the unitary assumption

of the mixing matrix.

Finally we should point out that similar oscillation phenomena in the associate

production of particles together with an oscillating partner have been proposed

and controversially discussed before by many authors in the production of muons

together with antineutrinos in the decay π− → μ− + ν̄μ [23], and in the production

of Λ hyperons together with neutral Kaons [24], In the latter case the oscillation

would come from a nonunitarity of the quark mixing matrix, which seems to be

much smaller than that of the neutrino mixing matrix reported here.
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Appendix: Properties of Outgoing Wave

The interaction is time-dependent and we must adapt the scattering theory to this

situation. Recall briefly the theory for a time-independent interaction, where the

scattering amplitude is obtained from the standard limiting formula

〈p′|Ŝ|p〉= lim
t→∞

〈p′|p(+)(t)〉= lim
t→∞

〈p′|ÛI(t, 0)|p(+)〉= lim
t→∞

〈p′|eiĤ0te−i(Ĥ0+V̂ )t|p(+)〉
= lim

t→∞
ei(Ep′−Ep)t〈p′|p(+)〉. (35)

Here |p′〉 denotes an eigenstate of the free Hamiltonian Ĥ0 with momentum p′ and
energy Ep′ = p′2/2M , and |p(+)〉 is an eigenstate of the interacting Hamiltonian Ĥ0+

V̂ with momentum p and energy Ep. It solves the Lippmann-Schwinger equation:

|p(+)〉 = |p〉+ 1

Ep − Ĥ0 + iη
V̂ |p(+)〉, (36)

which is verified by multiplying both sides by E − Ĥ0 from the left. Inserting this

into (35) leads to

〈p′|Ŝ|p〉 = 〈p′|p〉+ lim
t→∞

ei(Ep′−Ep)t

Ep − Ep′ + iη
〈p′|V̂ |p(+)〉, (37)

where η > 0 is an infinitesimally number. The second term contains the T -matrix

Tp′,p ≡ 〈p′|V̂ |p(+)〉 which describes true scattering. In the absence of neutrino

oscillations, |p〉 is simply the initial ion at rest, and 〈p′| the state with the ion IH with

momentum p+k and the antineutrino ν̄e with momentum −k. The limit t → ∞ in

the prefactor can simply be taken after rewriting it as −i
∫ t

−∞ dtei(Ep′−Ep−iη)t, which
obviously tends to −2πiδ(Ep′ −Ep) in the limit t → ∞. The δ-function ensures the

conservation of energy in the process. This is, of course, the standard derivation of

Fermi’s Golden Rule which we repeated here to clarify that it is applicable only to

processes in which the final state is an eigenstate of the free-particle Hamiltonian

operator Ĥ0.

Another way of deriving this result is based on the spatial wave function asso-

ciated with the state |p(+)〉. One multiplies Eq. (36) by the state 〈x| from the left

and obtains the wave funcion

〈x|p(+)〉 = 〈x|p〉+
∫

d3x′G(Ep;x,x
′)V̂ (x′)〈x′|p(+)〉, (38)
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where

G(E;x,x′) ≡ 〈x| 1

E − Ĥ0 + iη
|x′〉 =

∫
d3p′

(2π)3
eip

′(x−x′)

E − p′2/2M + iη
≈ −2M

eip
′
Er

4πr
e−ip

′
E x̂x′

,(39)

with r ≡ |x− x′|, x̂ ≡ x/r and p′E =
√
2ME.

In Born approximation, one inserts on the right-hand side of Eq. (38) a plane

wave 〈x′|p(+)〉 ≈ 〈x′|p〉 = eix
′p, and Eq. (38) becomes

〈x|p(+)〉 = 〈x|p〉 − 2M
e
ip′Ep

r

4πr

∫
d3x′e−i(p

′−p)x′
V (x′), (40)

where p′ is short for the momentum of the outgoing particle of energy Ep in the

direction of x: p′ ≡ p′Ep
x̂. Thus, in Born approximation, the amplitude for the final

particle to emerge with momentum p′ is proportional the Fourier transform of the

potential at the momentum transfer Δp ≡ p′ − p. If the potential is a plane wave

of momentum −k, i.e., if

V (x) =
g

(2π)3
eikx (41)

then the final state has the wave function

〈x|p(+)〉 = 〈x|p〉 − 2Mg
eip

′r

4πr
δ(3)(p′ − p+ k). (42)

Let us adapt this formalism to the oscillating situation. According to Eqs. (13),

(14), the emission of an antineutrino of mass m1 and momentum −k is described

by the time-dependent interaction potential

vn̄ue(x, t) =
eikx

(2π)3
eiωk,1t, ωk,1 =

√
k2 +m2

1, (43)

where we have dropped the factor cos2 θ accompanying the coupling g, for brevity.

As before, the incoming ion I has the momentum p. Its energy is p2/2M . The

outgoing ion IH has the momentum p′ and an energy Ep′ = MH −M + p′2/2MH .

Let us first adapt the Lippmann-Schwinger approach. We introduce the time-

dependent interacting state |p(+)(t)〉, which is an eigenstate of the full Hamiltonian,

and satifies the time-dependent Schrödinger equation

i∂t|p(+)(t)〉 = [Ĥ0 + v̂(x, t)]|p(+)(t)〉, Ĥ0 = p̂2/2M. (44)

The formal solution of this is

|p(+)(t)〉 ≡ Û(t)|p〉, Û(t) ≡ T̂ e−i
∫ t
0 dt′[Ĥ0+V̂ (x,t)], (45)

An implicit exression for this state can be written, by analogy with (36), as

|p(+)(t)〉 = |p〉e−iE0
pt +

1

i∂t − Ĥ0 + iη
V̂ (x, t)|p(+)(t)〉, E0

p = p2/2M. (46)
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This can again be verified by multiplication from the left with i∂t− Ĥ0. Multiplying

(46) by eiE
0
pt, we obtain

eiE
0
pt|p(+)(t)〉 = |p〉+ 1

i∂t + E0
p − Ĥ0 + iη

eiE
0
ptV̂ (x, t)e−iEpt|p(+)(0)〉, (47)

To lowest approximation, we replace |p(+)(0)〉 by |p〉 and insert (43) to find

eiE
0
pt|p(+)(t)〉 = |p〉+ g

∫ ∞

−∞
dt′ Ĝ(t, t′)eikx̂eiωk,1(t

′−t0)|p〉e−i(Ep−E0
p)t

′
, (48)

where Ĝ(t, t′) is the Fourier representation of the operator (i∂t + E0
p − Ĥ0 + iη)−1:

Ĝ(t, t′) ≡
∫ ∞

−∞

dE

2π

e−iE(t−t′)

E + E0
p − Ĥ0 + iη

(49)

Performing the integral over t′ in (48) yields

eiE
0
pt|p(+)(t)〉 = |p〉+ g

e−i(Ep−E0
p−ωk,1)t

Ep − Ĥ0 − ωk,1 + iη
eikx̂|p〉e−iωk,1t0 . (50)

We multiply this equation from the left and insert in front of the right-hand state

|p〉 a completeness relation
∫
d3x|x′〉〈x′| = 1. Approximating the matrix elements

〈x|(Ep − Ĥ0 + iη)−1|x′〉 as usual in the large-x regime by

〈x| 1

Ep − Ĥ0 − ωk,1 + iη
|x′〉 =

∫
d3p′

(2π)3
eip

′(x−x′)

Ep − p′2/2M − ωk,1 + iη
≈ −2M

eip
′
kr

4πr
e−ip

′
kx̂x

′
,(51)

where p′k is the momentum of the ion IH which conserves the energy, i.e., p′k
2/2M =

Ep − ωk,1. With this we obtain

〈x|eiE0
pt|p(+)(t)〉 = 〈x|p〉 − 2M

g

(2π)3
eip

′
kr

4πr

∫
d3x′e−ip

′
kx̂x

′
ei(p+k)x′

e−iωk,1t0 . (52)

We now perform the integral over x′. For this we assume the inital state to have zero

momentum, p+k = 0. The integral over x′ forces the momentum of the outcoming

ion IH to be equal to k. The integral over x′ creates a δ-function (2π)3δ(3)(p′kx̂ −
p− k), so that we obtain

〈x|eiE0
pt|p(+)(t)〉 = 〈x|p〉 − 2M

g

4πr
e−ip

′
kx̂x

′
δ(3)(p′ − p+ k)e−iω1t0 . (53)

Note that since energy and momentum are balanced, then ωk,1 = ω1 of Eq. (5).

Consider now the case of two oscillating mass states and let us study the temporal

behavior of the emerging energy distribution. The experiment does not explore the

limit of very large times but measures the t-dependence starting from small t after

the ion enters the storage ring. Instead of the limiting energy conservation δ-function

−2πiδ(Ep′ − Ep) in (37), it observes an approximation to it valied for short times.
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To find it we insert, instead of (43), the mixed potential (14) into Eq. (47), so that

the time-dependent factor in the resulting equation of type (48) has the form

−i

∫ t

0

dt
[
cos2 θ ei(E1,k′−Ek)t + sin2 θ ei(E2,k′−Ek)t

]
, (54)

where Ei,k′ ≡ √
k′2 +M2

H + ωk′,i and Ek = MH + Q. Since m2
i 	 Q 	 MH , we

can approximate Ei,k′ − Ek ≈ ω′ − ωi where ωi ≈ Q + m2
i /2MH . Let us write

ω1,2 ≡ ω̄ ∓ 1
2Δ̄m2/2MH = ω̄ ∓ 1

2Δ̄ω. Then (54) becomes, with the abbreviations

C ≡ cos2 θ and S ≡ sin2 θ,

−
(
C
ei(ω

′−ω1)t − 1

ω′ − ω1

+ S
ei(ω

′−ω2)t − 1

ω′ − ω2

)

= −i

{
Cei(ω

′−ω1)t/2
sin[(ω′− ω1)t/2]

(ω′− ω1)/2
+ Sei(ω

′−ω2)t/2
[sin(ω′− ω2)t/2]

(ω′− ω2)/2

}
. (55)

The absolute square of (55) mutiplied by some factor |T |2 determines probability

P (t) to find the initial ions in the ring at the time t. The integral over the final

momenta is dominated by the immediate neighborhood of the poles at ω1,2 where

|k| ≡ Q. There we may ignore the k-dependence of |T |2, approximating it by

a constant, and obtain the probability for the ion IH to emerge with an energy

MH +Q− ω′ in the center-of-mass frame

P ω′
(t) ≈ {

C2s21(ω
′)+S2s22(ω

′)+2CS cos(Δ̄ωt/2)s1(ω
′)s2(ω′)

} |T |2, (56)

where si(ω
′) ≡ sin[(ω′ − ωi)t/2]/[(ω

′ − ωi)t/2]. For large t, the limiting relation

sin2 at/a2 → tπδ(a) allows us approximate s2i (ω
′) ≈ 2πtδ(ω′−ωi), and thus the first

two terms in (56) by

P ω′
12 (t) ≈ 2πt[C2δ(ω′ − ω1) + S2δ(ω′ − ω2)]|T |2. (57)

If this is integrated over
∫
d3k′/(2π)3 ≈ Q2

∫
dω′/2π2, the probabilities of ν1- and ν2-

decays simply add, thereby yielding the ordinary β-decay rate I → IH + ν̄e without

mixing. Consider now the third term in (56). Here the integral over all ω′ yields
∫

dω′P ω′
3 (t) ≈ 2CS cos(Δ̄ωt/2) 2π

sin(Δ̄ωt/2)

Δ̄ω/2
|T |2. (58)

Thus we obtain for the total decay rate as a function of time

Ṗ (t) =

∫
dω′

[
Ṗ ω′
12 (t) + Ṗ ω′

3 (t)
]
≈ 2π

[
1 + 2CS cos(Δ̄ωt)

] |T |2. (59)

It would be interesting to observe experimentally the predicted distribution (56) of

antineutrino energies ω′ by measuring the recoil momenta k of the final ions IH . The

distribution consists of two peaks associate with the emission of the antineutrinos

ν̄1 and ν̄2. Centered between them lies the oscillating distribution proportional to

s1(ω
′)s2(ω′) shown in Fig. 1.
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Figure 3 Distribution of the temporally oscillating part of the antineutrino center-of-mass
energies ω′ in the decay I → IH + ν̄e for different times t [the function s1(ω

′)s2(ω′) in
Eq. (56)].

Note that the usual Feynman diagrams in momentum space cannot be used

to describe the observed oscillations as done in Ref. [17], since they imply taking

the limit t → ∞ in which the oscillations disappear. Only diagrams in spacetime

involving a propagator matrix in ν1, ν2 field space with off-diagonal matrix elements

are applicable, and these reproduce the above-calculated oscillations.
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