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3Leung Center for Cosmology and Particle Astrophysics (LeCosPA),
Department of Physics, National Taiwan University, Taipei 106, Taiwan

4Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502, Japan

Abstract still to be written

PACS numbers:

I. INTRODUCTION

The geometry of Einstein and Einstein-Cartan spaces
can be considered as being a manifestation of the defect
structure of a world crystal whose lattice spacing ilon is
of the order of the Planck length ℓp [1–3]. Curvature is
due to rotational defects, torsion to translational defects.
The elastic deformations do not alter the defect structure,
i.e., the geometry is invariant under elastic deformations.
If we assume these to be controlled by a second-gradient
elastic action, the forces between local rotational defects,
i.e., between curvature singularities, are the same as in
Einstein’s theory [4]. Moreover, the elastic fluctuations
of the displacement fields possess logarithmic correlation
functions at long distances, so that the memory of the
crystalline structure is lost over large distances. In other
words, the Bragg peaks of the world crystal are not δ-
function-like, but display the typical behavior of a quasi-
long-range order, similar to the order in a Kosterlitz-
Thousless transition in two-dimensional superfluids [5].

The purpose of this note is to study the generalied un-
certainty principle (GUP) associated with the quantum
field theory on the world crystal and to derive physical
consequences from it. We shall find that the GUP implies
that quantum physics tends to the classical limit at the
scale of the lattice spacing. Our results have interesting
implications for the physics of micro black holes to be
discussed in Section V.

There exists also a close contact with two interesting
mainstreams of contemporary research. One is ’t Hooft’s
approach to deterministic quantum mechanics, the other
deformed (or double) special relativity.
On a more phenomenological side, our version of GUP
provides a nice way out of two long standing puzzling
situations: the final Hawking temperature of a decaying
micro black hole remains finite, in contrast to the infi-
nite temperature of the standard result where the Heisen-
berg’s uncertainty principle operates. On the world crys-
tal, the final mass of the evaporation process is zero, thus
avoiding the problems caused by the existence of massive
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black hole remnants. Such a decay behavior has the ad-
vantage that is is more likely to be observed experimen-
tally in the LHC when it will restarts operations in the
near future.

II. DIFFERENTIAL CALCULUS ON A

LATTICE

On a lattice of spacing ǫ in one dimension, the lattice
sites lie at xn = nǫ where n runs through all integer
numbers. There are two fundamental derivatives of a
function f(x):

(∇f)(x) =
1

ǫ
[f(x+ ǫ) − f(x)] ,

(∇̄f)(x) =
1

ǫ
[f(x) − f(x− ǫ)] . (1)

They obey the generalized Leibnitz rule

(∇fg)(x) = (∇f)(x)g(x) + f(x+ ǫ)(∇g)(x) ,
(∇̄fg)(x) = (∇̄f)(x)g(x) + f(x− ǫ)(∇̄g)(x) . (2)

On a lattice, integration is performed as a summation:

∫

dxf(x) = ǫ
∑

x

f(x), (3)

where x runs over all xn.
For periodic functions on the lattice or for functions

vanishing at the boundary of the world crystal, the lat-
tice derivatives can be subjected to the lattice version of
integration by parts:

∑

x

f(x)∇g(x) = −
∑

x

g(x)∇̄f(x) , (4)

∑

x

f(x)∇̄g(x) = −
∑

x

g(x)∇f(x) . (5)

One can also define the lattice Laplacian as

∇∇̄f(x) = ∇∇̄f(x) =
1

ǫ2
[f(x+ǫ)−2f(x)+f(x−ǫ)] (6)

which reduces in the continuum limit to an ordinary
Laplace operator ∂2. Note that the lattice Laplacian can
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also be expressed in terms of the difference of the two
lattice derivatives:

∇∇̄f(x) =
1

ǫ

[

∇f(x) − ∇̄f(x)
]

. (7)

The calculus can be easily be extended to any number
D of dimensions [6].

III. POSITION AND MOMENTUM

OPERATORS

Consider now the quantum mechanics on a 1D lattice
in a Schrödinger-like picture. Wave function are square-
integrable complex functions on the lattice, where “inte-
gration” means here summation, and scalar products are
defined by

〈ψ1|ψ2〉 = ǫ
∑

x

ψ∗
1(x)ψ2(x). (8)

It follows from Eq. (4) that

〈f |∇g〉 = −〈∇̄f |g〉 , (9)

so that (i∇)† = i∇̄, and neither i∇ nor i∇̄ are hermitian
operators. The lattice Laplacian (6), however, is hermi-
tian.

The position operator X̂ǫ acting on wave functions of
x is defined by simple multipication with x:

(X̂ǫf)(x) = xf(x) . (10)

Similarly we define the lattice momentum operator P̂ǫ.
In order to assure hermiticity we shall relate it to the
symmetric lattice derivative [8–10]. Using (9) we have

(P̂ǫf)(x) =
1

2i
[(∇f)(x) + (∇̄f)(x)]

=
1

2iǫ
[f(x+ ǫ) − f(x− ǫ)] . (11)

For small ǫ, this reduces to the ordinary momentum op-
erator p̂ ≡ −i~∂x:

P̂ǫ = p̂+O(ǫ) . (12)

The “canonical” commutator between X̂ǫ and P̂ǫ on the
lattice reads

(

[X̂ǫ, P̂ǫ]f
)

(x) =
i

2
[f(x+ ǫ) + f(x− ǫ)]

≡ i(Îǫf)(x) . (13)

The last line defines a lattice-version of the unit operator
as the average over the two neighboring sites. All three
operators X̂ǫ, P̂ǫ, and Îǫ are hermitian under the scalar
product (8).

It was noted in [9] that the operators X̂ǫ, P̂ǫ and Îǫ
generate the Euclidean algebra E(2) in 2D. Indeed, set-

ting M̂ = ǫX̂ǫ, P̂1 = ǫP̂ǫ and P̂2 = Îǫ we obtain

[M̂ ; P̂1] = iP̂2 , [M̂ ; P̂2] = −iP̂1 , [P̂1; P̂2] = 0 .

The generator M̂ corresponds to a rotation, while P̂1

and P̂2 represent two translations. In the limit ǫ → 0,
the Lie algebra of E(2) contracts to the standard Weyl–

Heisenberg algebra: X̂ǫ → x̂, P̂ǫ → p̂, Îǫ → 1. Thus
mathematically ordinary QM is obtained from lattice QM
by a contraction of the E(2) algebra via the limit ǫ → 0
of the deformation parameter ǫ.

All functions on the lattice can be Fourier-decomposed
with wave numbers in the Brillouin zone:

f(x) =

∫ π/ǫ

−π/ǫ

dk

2π
f̃(k)eikx , (14)

with the coefficients

f̃(k) = ǫ
∑

x

f(x)e−ikx. (15)

This implies the good-old de Brogllie relation

(p̂f̃)(k) = ~kf̃(k), (16)

and its lattice version

(−i∇f̃)(k) = Kf̃(k), (−i∇̄f̃)(k) = K̄f̃(k) (17)

with the eigenvalues

K ≡ (eikǫ − 1)/iǫ = K̄∗. (18)

From (17) we find the Fourier transforms of the operators

X̂ǫ, P̂ǫ, Îǫ:

(X̂ǫf̃)(k) = i
d

dk
f̃(k) , (19)

(P̂ǫf̃)(k) =
1

ǫ
sin(kǫ)f̃(k) , (20)

(Îǫf̃)(k) = cos(kǫ)f̃(k) , (21)

With the help of (16) and (21) we can rewrite the com-
mutation relation (13) as

(

[X̂ǫ, P̂ǫ]f
)

(x) = i~ cos (ǫp̂/~) f(x) . (22)

IV. UNCERTAINTY RELATIONS ON LATTICE

We are now prepared to derive the generalized uncer-
tainty relation implied by the previous commutators. We
shall define the uncertainty of an observable A in a state
ψ by the standard deviation

(∆A)ψ ≡
√

〈ψ|(Â− 〈ψ|Â|ψ〉)2|ψ〉 . (23)

Following the conventional procedure (see, e.g., Ref. [11–
13]), we derive the inequality

∆Xǫ∆Pǫ ≥ 1

2

∣

∣

∣〈ψ|[X̂ǫ, P̂ǫ]|ψ〉
∣

∣

∣ =
1

2

∣

∣

∣〈ψ|Îǫ|ψ〉
∣

∣

∣

=
~

2
|〈ψ| cos (ǫp̂/~) |ψ〉| . (24)
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Let us study two different extremal regimes, first for long
wavelengths where 〈p̂〉ψ → 0, and second near the bound-
ary of the Brillouin zone where 〈 p̂〉ψ → π~/2ǫ. To this
end we first rewrite 〈cos (ǫp̂/~)〉ψ as

〈cos (ǫp̂/~)〉ψ=

∞
∑

n=0

∫ ∞

0

dp ̺(p) (−1)n
(ǫp/~)

2n

(2n)!
, (25)

where ̺(p) ≡ |ψ(p)|2. In the first case, ̺(p) is peaked
around p ≃ 0, so that the relation (25) becomes approx-
imately

〈cos (ǫp̂/~)〉ψ= 1 − ǫ2p2

2 ~2
+ O(p4) . (26)

where p2 ≡ 〈 p̂2
x〉ψ . If we now apply the identity

〈 Â2〉ψ = (∆A)2 + 〈 Â 〉2ψ , (27)

we obtain from (24)

∆Xǫ∆Pǫ >∼
~

2

∣

∣

∣

∣

1 − ǫ2p2

2~2

∣

∣

∣

∣

=
~

2

∣

∣

∣

∣

1 − ǫ2

2~2

[

(∆p)2 + 〈 p̂〉2ψ
]

∣

∣

∣

∣

. (28)

For mirror-symmetric states where 〈 p̂〉ψ = 0 this implies

∆Xǫ∆Pǫ >∼
~

2

(

1 − ǫ2

2~2
(∆p)2

)

. (29)

Here we have substituted |...| with (...) since we assume
that ǫ ≃ ℓp (Planckian lattice) and that ∆p is close to
zero (this is our original assumption).

For Planckian lattices we can neglect in (29) higher
orders in ǫ and write

∆Xǫ∆Pǫ >∼
~

2

(

1 − ǫ2

2~2
(∆Pǫ)

2

)

. (30)

In the second case, where 〈p̂〉ψ → ~π/2ǫ, we are going
to examine the behavior of (24) at the border of the first
Brillouin zone, where the averaged momentum takes its
maximum value

〈p̂〉ψ =
π~

2ǫ
. (31)

we expand on the right-hand side of (24):

〈cos[π/2 + (ǫp̂/~ − π/2)]〉ψ = 〈sin(π/2 − ǫp̂/~)〉ψ

=
∞
∑

n=0

∫ ∞

0

dp ̺(p) (−1)n
(π/2 − ǫp̂/~)

2n+1

(2n+ 1)!
, (32)

Under the assumption that ̺(p) is centered around p ≃
π~/2ǫ, the first term in the expansion (32) is dominant,
and the uncertainty relation becomes

∆Xǫ∆Pǫ ≥ ~

2

∣

∣

∣

π

2
− ǫ

~
〈p̂〉

∣

∣

∣ . (33)

Since k lies always inside the Brillouin zone, implying
that 〈p̂〉 ≤ π~/2ǫ, see that the long-wavelength GUP (30)
chenges close to the boundary of the Brillouin zone to

∆Xǫ∆Pǫ >∼
~

2

( π

2
− ǫ

~
〈P̂ǫ〉ψ

)

. (34)

As the momentum reaches the boundary of the Brillouin
zone, the right-hand side vanishes so that the lattice
quantum mechanics at short wavelengths shows classical
behavior.

It is worth noting that the uncertainty relation (34)
has the same form of that found, on different grounds, by
Magueijo and Smolin in [17]. In particular the deforming
term is also there linear in the momentum. It results
that in this model the world becomes ”classical” at the
Planck scale, in the sense that no blurred quantities show
up in the measure of fundamental dynamical variables, as
similarly devised by ’t Hooft in models on ”deterministic”
quantum mechanics [18, 19].

V. IMPLICATIONS FOR PHOTONS

The vector potential of a photon in the Lorentz gauge
in 1+1 dimensions satisfies the wave equation

1

c2
∂2
t A

µ(x, t) = ∂2
xA

µ(x, t) (35)

A plane wave solution Aµ(x) = ǫµ exp[i(kx−ω(k)t)] pos-
sesses the well know linear dispersion relation

ω(k) = c k, (36)

where ǫµ is a polarization vector. On a one-dimensional
lattice, the operator ∂2

x is replaced by the lattice Lapla-
cian ∇̄∇, and the spectrum becomes, on account of
Eq. (6) and (17),

ω(k)

c
=

√

KK̄ =

√

[2 − 2 cos(kǫ)]

ǫ
=

2

ǫ
sin

(

kǫ

2

)

, (37)

which reduces to (36) for ǫ→ 0. Denoting the energy on
the lattice ~ω by Eǫ, we obtain the dispersion relation

Eǫ
~ c

=
2

ǫ
sin

( p ǫ

2 ~

)

(38)

For small momenta p, this has the expansion

Eǫ = c p− c
ǫ2p3

24 ~2
+O(ǫ4) . (39)

The correction to the continuum dispersion relation E =
p c+ O(ǫ2), so that we have ∆Pǫc ≈ ∆Eǫ, which allows
us to rephrase (30) as

∆Xǫ∆Eǫ ≥
~c

2

[

1 − ǫ2

2~2c2
(∆Eǫ)

2

]

. (40)
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VI. APPLICATIONS TO MICRO BLACK

HOLES PHYSICS

Let us see which consequences the modified uncertainty
relations (30) and (40) have for black holes. In particu-
lar we want to study how mass-temperature relations is
modified at short distances near the lattice spacing ǫ. For
simplicity, we follow here the treatment of Refs. [20–25].

Small distances can be explored by high-momentum
collisions. The size of the smallest detectable details by
photons of energy E is is δx = ~c/2E. The lattice version
of this is, from Eq. (40):

δXǫ ≃
~c

2Eǫ

(

1 − ǫ2

2 ~2c2
Eǫ

)

(41)

We now suppose that the lattice spacing is not precisely
eqaul to the Planck length, but merely prortional to it
by a factor a > 0 with some nonextreme value of a. Let
us denote the Planck energy by

Ep = ~c/2ℓp . (42)

Then we can write (41) as

δXǫ ≃
~c

2Eǫ
− βℓp

Eǫ
Ep

(43)

where β = a2/8.

We now imagine having found a black hole on the lat-
tice as a Schwarzschild solution. If the Schwarzschild
radius is much larger than the lattcie spacing ǫ, this will
not look much different from the well-known continuum
solution. We must avoid too small black holes, for other-
wise, completely new physics will set in near the center,
due to a pileup of defects. These will cause the melting
of the world crystal at a crtical defect density [26], and
the emerging general relativity on the world crystal will
look completely different from Einstein’s theory.

Consider now, as in Refs.[20–25], a photon of Hawking
radiation just outside the event horizon. The position
uncertainty of such a photon is of the order of the in
the Schwarzschild radius RS , i.e., δXǫ ≃ 2RS . This, in
turn, is equal to 2 ℓpm, where m is the reduced mass
of the black hole, m = M/Mp. According to the above
arguments, this must be assumed to be much larger than
unity, in order to avoid the melting transition. In this
regime we can rephrase (43) as

2m =
Ep
Eǫ

− β
Eǫ
Ep

. (44)

The energy Eǫ, associated with this limiting photon
via (41) sets the scale for the thermal energy, so that we
obtain the temperature T from the relation

Eǫ = πkBT . (45)

Defining the Planck temperature Tp from Ep = 1
2kBTp,

and measuring the temperature in terms of Planck units

as a reduced temperature Θ = T/Tp, we can rewrite Eq.
(44) as

2m =
1

2πΘ
− β 2πΘ . (46)

In the continuum limit ǫ → 0 where β → 0 and (43)
reflects the ordinary uncertainty principle, this reduces
to

m =
1

4πΘ
(47)

which is the dimensionless version of Hawking’s formula
for large black holes:

T =
~c

4πkBRS
. (48)

It is instructive to compare our mass-temperature re-
lation (46) with that suggested by the so-called stringy
version of the GUP : here

refer-
ences2m =

1

2πΘ
+ β 2πΘ . (49)

The physical consequences of our relation (46) are
quite different from rhose of the stringy result (49), due
to the opposite signs of the deformation term. In Fig. 1
we compare the two results, and add also the curve for
the ordinary Hawking relation (47). Considering m and

0.05 0.1 0.15 0.2 0.25 0.3
Q

2

4

6

8

m

FIG. 1: Diagrams for the three Mass - Temperature relations,
ours (red), Hawking’s (green), and stringy UPS result (blue),
with β = 2, as an example. As a consequence of lattice uncer-
tainty principle the evaporation ends at a finite temperature.

Θ as functions of time, we can follow the evolution of
a micro black hole from the curves in Fig. 1. For the
stringy GUP, the blue line predicts a maximum temper-
ature

Θmax =
1

2π
√
β
, (50a)

and a minimum mass

mmin =
√

β . (50b)
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The end of the evaporation process is reached after a
finite time, the final temperature is finite, and there is a
remnant of finite rest mass (see Refs.[20–25]).

From the standard Heisenberg uncertainty principle we
find the green curve, representing the usual Hawking for-
mula. Here the evaporation process ends, after a finite
time, with a zero mass and a worrisome infinite temper-
ature.

In contrast to these results, our lattice GUP predicts
the red curve. This yields a finite end temperature

Θmax =
1

2π
√
β

(51)

with a zero-mass remnant.
In the literature, the undesirable infinite final temper-

ature prediction of Hawking’s formula has so far been
cured only with the help of the stringy GUP, which
brings the final temperature to a finite value. This
result is, however, also questionable since implies the
existence of finite-mass remnants in the universe. Some
people like them as candidates for dark matter [27],
But it has also been pointed out that their existence
would create other difficult problems in context with the
entropy/information problem [cite...], the issue of their
detectability, and their possibly too large abundance in
the early universe [cite...].

Our result (46) coming from the lattice GUP formula
(30) solves all these problems my predicting an end to
the evaporation process at a finite final temperature
with zero-mass remnants, which thus seems to be a
desiderable result.

A comment is useful concerning the relation (34) at
the largest momentum near the boundary of the Brillouin
zone. The relation (45) relating the temperature to the
energy of the emitted photons is deduces from the semi-
classical Hawking argument, which is a long-wavelength
argument. Here we are confronted with the opposite limit
of short wavelengths. In fact, Eq. (38) tell us that in this
limit

E ≃
√

2

ǫ
~c (52)

which for a world lattice of Planckian spacing ǫ = a ℓp is

of the order of the Planck energy, E = (2
√

2/a) Ep .
Considering the associations of the previous paragraph,
∆Xǫ ∼ m, ∆Pǫ ∼ Eǫ ∼ T (where m and T are mass and
temperature of the micro black hole), we see that close to
the border of the Brillouin zone, where 〈Pǫ〉 ≃ π~/(2ǫ),
the energy is Eǫ ≃ Ep, and

m · T ≃ 0 . (53)

Since the temperature in this regime approaches the
Planck temperature, T ≃ Tp,we conclude that the mass
of the micro black hole must go to zero. This is con-
sistent with the previous result (46) deduced from the

long-wavlength relation Eqs. (45). The reason is sim-
ply that for small Θ, the term proportional to β in (46)
becomes irrelevant.

VII. COMPARISON WITH ’T HOOFT’S MODEL

The quantum properties of the model proposed by
’t Hooft’s to derive quantum physics from a determin-
istic system [18, 19] displays quite similar properties to
our lattice quantum mechanics.

Let us first recapitulate the relevant points of ’t Hooft’s
scenario. He starts with the deterministic system consist-
ing of a finite set of states, {(0), (1), ...(N − 1)} equidis-
tantly distributed on a circle. Time evolution is imple-
mented by means of discrete clockwise time jumps of
length τ):

t→ t+ τ : (ν) → (ν + 1modN) (54)

On a basis spanned by the states (ν), the evolution op-
erator introduced by ’t Hooft is

U(∆t = τ)=e−iHτ=e−i
π

N













0 1
0 1

. . .
. . .

0 1
1 0













. (55)

With the hindsight of quantum mechanics, ’t Hooft in-
troduced the phase factor −π/N which provides the 1/2-
contribution to the energy spectrum of H . Indeed, if we
diagonalize the previous matrix we obtain that the di-
agonal entries are ei2πn/N with n = 0, . . . , N − 1. By
denoting the corresponding eigenstates as |n〉 we obtain
the energy spectrum:

H

ω
|n〉 = (n+ 1

2
) |n〉 , ω ≡ 2π

Nτ
. (56)

Because of this spectrum, H seems at first sight equal to
the Hamiltonian of the 1D harmonic oscillator. However,
there are two major differences. First, the eigenvalues of
’t Hooft’s H have an upper bound implied by the finite
value N value. Only in the continuum limit, i.e., for
N → ∞, one can expect a complete correspondence with
the harmonic oscillator. However, even that is not true
since in a the harmonic oscillator, the contribution 1/2 to
the ground state energy is a consequence of a “geometric
phase” (recall that in the semiclassical Bohr–Sommerfeld
quantization it originates directly from the Morse index
[29]) and as such it reflects a nontrivial global structure of
the theory. So the ground state cannot be decided by any
ad hoc choice of a phase factor in an evolution operator.
It is only at the moment when ’t Hooft’s model is able
to predict in the large N limit the same geometric phase
as the usual 1D harmonic oscillator when both theories
match at N → ∞.
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From the group theoretical reasonings ’t Hooft was able
to find an explicit realization for quantum mechanical
analogues of position and momenta operators. His new
operators x̂ and p̂ fulfilled the “deformed” commutation
rules

[x̂, p̂ ] = i
(

1 − τ

π
H
)

, (57)

and the Hamiltonian could be recast into the form

H =
1

2
ω2x̂2 +

1

2
p̂2 +

τ

2π

(

ω2

4
+H2

)

. (58)

In the continuous limit the Hamiltonian goes to the one
of the harmonic oscillator, and the x̂ and p̂ commuta-
tor goes to the canonical one. In that limit the original
state space (finite N) changes becoming the infinite di-
mensional state space.

To show the consistency of ’t Hooft’s model we try to
re-derive it in the framework of the non–commutative
differential calculus with a particular emphasis on the
geometric phase. *****

We now want to investigate what is the geometric
phase (if any) for the above model: we will then have
an unambiguous definition of the ground state energy
for the harmonic oscillator. Let us consider the eigen-
states of the unitary operator Eq. (55). This is easily

obtained by considering that the above matrix (includ-
ing the phase) should satisfy the condition UN = 1I, we
get the eigenstates of the form 〈ql|l〉 = 1√

N
eiπ(2l+1)/N

with l = 0, 1, ..., N .
Applying the definition of geometric phase, we obtain

(the first line is the definition for the continuous case):

Γ = i

∫ T

0

〈φ(t)| d
dt

|φ(t)〉

= i
∑

l

∑

l

ǫ〈l|ql〉
→
∂ 〈ql|l〉

= i
∑

l

∑

l

ǫ
1

N
e−iπ(2l+1)/N

→
∂ e

iπ(2l+1)/N

with x = lǫ

VIII. CONCLUSIONS

*********************
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