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Abstract: If the Einstein-Hilbert action LEH ∝ R is re-expressed in Riemann-Cartan spacetime

using the gauge fields of translations, the vierbein field hαµ, and the gauge field of local Lorentz

transformations, the spin connection Aµα
β , there exists a new gauge symmetry which permits

reshuffling the torsion, partially or totally, into the Cartan curvature term of the Einstein

tensor, and back, via a new multivalued gauge transformation. Torsion can be chosen at will

by an arbitrary gauge fixing functional. There exist many equivalent ways of specifying the

theory, for instance Einstein’s traditional way where LEH is expressed completely in terms of

the metric gµν = hαµhαν , and the torsion is zero, or Einstein’s teleparallel formulation, where

LEH is expressed in terms of the torsion tensor, or an infinity of intermediate ways. As far

as the gravitational field in the far-zone of a celestial object is concerned, matter composed

of spinning particles can be replaced by matter with only orbital angular momentum, without

changing the long-distance forces, no matter which of the various new gauge representations is

used.
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1. In theoretical physics it often happens that a mathematical structure has a sim-

ple extension for which a natural phenomenon is waiting to be discovered. The most

prominent example is the existence of a negative square root of the relativistic mass shell

relation p0 =
√
p2 +m2 which led Dirac to postulate the existence of a positron, discov-

ered in 1932 by Carl Anderson [1]. Sometimes, this rule does not seem to work initially,

only to find out later that nature has chosen an unexpected way to make it work after

all. Here the best example is the existence of a solution of the above energy-momentum
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relation for negative m2, which was interpreted by some theoreticians as the signal for

the existence of a particle faster than light. Such particles were never found. A simple

physical realization appeared, however, with the discovery of the Ginzburg-Landau field

theory of phase transitions and its quantum versions (now referred to as Higgs field the-

ory). Since there are always interactions , a negative parameter m2 destabilizes the field

fluctuations. The fields move to a new ground state, around which they fluctuate with

positive m2. The situation is completely analogous to what happens in any building if ω2

of one of its eigenfrequencies turns negative. The building collapses until the debris set-

tles in a ruin, and that has only positive ω2’s. The collapse of an interacting field system

with negative m2 is observed as a phase transition to a state with stable fluctuations and

positive m2.

2. For many years, theorists have been wondering why Einstein’s theory of gravity

represents such a perfect geometrization of the gravitational forces [2]. Since the work

of Cartan in 1922 it is known that the Riemannian spacetime, in which the celestial

objects move, has a “natural” extension to Riemann-Cartan spacetime. This possesses a

further geometric property called torsion. Why is there no trace of it in the movements

of planets? Einstein himself has asked this question and discussed it in letters with

Cartan [3]. He set up a theory of teleparallelism which explains gravity by a theory in

Riemann-Cartan spacetime, in which the total curvature tensor vanishes identically. The

Einstein-Hilbert action is then equal to a combination of scalars formed from torsion

tensors [4], and torsion forces provide us merely with an alternative way of describing

gravitational forces, as emphasized in Refs. [5, 6].

3. Yet another extension of Einstein’s theory to Riemann-Cartan spacetime was

advanced since 1959 [7, 8, 9]. It has the appealing feature that it can be rewritten as a

gauge theory invariant under local Poincaré transformations, i.e., both local translations

and local Lorentz transformations, thus bringing it to a similar form as the gauge theories

of weak, electromagnetic, and strong interactions. This gauge theory treats torsion as

an independent field which couples only to the intrinsic spin of the elementary particles

in a celestial body. Unfortunately, however, such an approach has several unsatisfactory

features. First, the theory is meant to be classical, but the spin carries a power of ~ which

vanishes in the classical limit. So there is really no classical source of torsion. Indeed,

if torsion couples to spin with the gravitational coupling strength, the factor ~ implies

that it cannot play any sizable role in the forces between celestial bodies. For example,

even if the earth consisted only of polarized atoms, its intrinsic spin would be 10−15 times

smaller than the rotational spin around the axis.

Moreover, there exist severe conceptual problems. One was emphasized in Ref. [10].

As long as we do not know precisely the truly elementary particles , and it is doubtful

that we ever will, many particles are described by effective fields, and it is impossible to

specify whether the spin of those fields is caused by orbital motion or by the intrinsic

spins of more elementary constituents. As an example, the spin-one field of a ρ-meson

contains a wave function of two spinless pions in a p-wave, which do not couple to torsion.

But it also contains two spin- 12 quarks in an s-wave which would couple. Another problem
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is that if torsion couples to all spins, the photon becomes massive. In order to avoid this,

the authors advocating this approach postulate that the photon is is an exception, and

is not coupled to torsion. However, this contradicts the fact that roughly one percent of

a photon is a virtual ρ-meson, which is strongly coupled to baryons. These, in turn, are

supposed to be coupled to torsion (see Fig. 1), so the photon would become massive after

all. Thus the existence of an independent torsion field is highly dubious, and we may

γ γ
baryons
ρ ρ

torsion

Figure 1 Diagram for mass generation of photon. It couples via a ρ-meson to baryonic matter
which would be coupled to torsion if q ̸= 1.

ask ourselves, whether the description of gravity in Riemann-Cartan spacetime proposed

in Refs. [7, 8, 9] has really a chance of being true, or whether nature doesn’t have a

deeper reason for avoiding the above problems. It is the purpose of this note to answer

this question affirmatively. Inspiration comes from a simple model of gravity, a “world

crystal” with defects [11, 9, 12], whose lattice constant is of the order of a Planck length.

Some consequences of such a world crystal were pointed out in a recent study of black

holes in such a scenario [13].

4. We begin by showing that in the absence of matter, a world crystal is a model

for Einstein’s theory with a new type of extra gauge symmetry in which zero torsion is

merely a special gauge. A completely equivalent gauge is the absence of Cartan curvature,

which is found in Einstein’s teleparallel universe. Before presenting the argument, recall

that a crystal can have two different types of topological line-like defects [8, 9], which in

a four-dimensional world crystal are world surfaces (which may be the objects of string

theory).

First, there are translational defects called dislocations (Fig. 2). These are produced

Figure 2 Formation of a dislocation line (of the edge type) by a Volterra process. The Burgers
vector b characterizes the missing layer. There exist two more types where b points in orthogonal
directions.

by a cutting process due to Volterra: a single-atom layer is removed from the crystal,

allowing the remaining atoms to relax to equilibrium under the elastic forces. A second

type of topological defects is of the rotation type, the so-called disclinations (Fig. 3).

They arise by removing an entire wedge from the crystal and re-gluing the free surfaces.

The defects imply a failure of derivatives to commute in front of the displacement field

ui(x). In three dimensions, the dislocation density is given by the tensor

αij(x) = ϵikl∇k∇luj(x). (1)

If ωi ≡ 1
2
ϵijk[∇juk(x)−∇kuj(x)] denotes the local rotation field, the disclination density
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Figure 3 Three different possibilities of constructing disclinations: wedge, splay, and twist
disclinations. They are characterized by the Frank vector Ω.

is defined by

θij(x) = ϵikl∇k∇lωj(x). (2)

The defect densities satisfy the conservation laws

∇iθij = 0, ∇iαij = −ϵjklθkl. (3)

These are fulfilled as Bianchi identities if we express θij(x), αij(x) in terms of plastic gauge

fields βp
kl, ϕ

p
lj, setting θij = ϵikl∇kϕ

p
lj, αil = ϵijk∇jβ

p
kl+δilϕ

p
kk−ϕ

p
li. The defect densities are

invariant under the gauge transformations βp
kl → βp

kl +∇ku
p
l − ϵklrω

p
r , ϕ

p
li → ϕp

li + ∂lω
p
i ,

where ωp
i ≡ 1

2ϵijk∇ju
p
k. Thus hij ≡ βp

ij + ϵijkω
p
k and Aijk ≡ ϕp

ijϵjkl are translational and

rotational defect gauge fields in the crystal [14].

The Volterra processes can be represented mathematically by multivalued transforma-

tions from an Euclidean crystal with coordinates x̄a to a crystal with defects and coordi-

nates xµ, as illustrated in Figs. 4 and 5 for two-dimensional crystals. For an edge dislo-

Figure 4 Multivalued mapping of the perfect crystal to an edge dislocation with a Burgers
vector b pointing in the 2-direction.

Figure 5 Multivalued mapping of the perfect crystal to a wedge disclination of Frank vector Ω
in the third direction.

cation the mapping is x̄1 = x1, x̄2 = x2+(b/2π)ϕ(x), where ϕ(x) ≡ (1/2π) arctan(x2/x1).

Initially, this function has a cut from the origin towards left infinity. In a second step, the

cut is removed and the multivalued version of the arctan is taken. This makes ϕ(x) the

Green function of the commutator [∂1, ∂2]: (∂1∂2 − ∂2∂1)ϕ(x) = 2πδ(2)(x). For a wedge

disclination, the mapping is dx̄i = δiµ [x
µ + (Ω/2π)εµνx

νϕ(x)].

A combination of the two

ηij(x) ≡ θij(x)− 1
2∇m[ϵminαjn(x) + {ij}+ ϵijnαmn] (4)



Electronic Journal of Theoretical Physics 7, No. 24 (2010) 287–298 291

forms the defect tensor

ηij(x) ≡ ϵiklϵjmn∇k∇mu
p
ln(x), upln ≡ 1

2(β
p
ln + βp

nl). (5)

It is a symmetric tensor due to the conservation laws (3), and represents the Einstein

tensor Gij ≡ Rij − 1
2gijRk

k of the geometry of the world crystal.

The expressions can easily be defined on a simple-cubic world lattice if we replace ∇i

by lattice derivatives, as shown in [8, 9]. There it is also shown that, in three spacetime

dimensions, the disclination density θij(x) represents the Einstein tensor GC
ij associated

with the Cartan curvature tensor RC
ijk

l of the Riemann-Cartan geometry of the world

crystal. The relation is

GC
ji(x) = ϵikl∇k∇lωj(x) = θij(x). (6)

The dislocation density αij(x) represents the torsion Slkj = 1
2(Γlkj−Γklj) of the Riemann-

Cartan geometry. Here the relation is

αij = ϵiklSlkj. (7)

5. The standard form of a defect with Burgers vector bl and Frank vector Ωq has a

displacement field

ul(x) = −δ(x, V )[bl + ϵlqrΩq(xr − x̄r)], (8)

where ϵlqr is the antisymmetric unit tensor, x̄r the axis of rotation of the disclination

part, and δ(x;V ) is the delta function on the volume V , i.e., in three dimensions:

δ(x;V ) =

∫
V

d3x′ δ(3)(x− x′). (9)

Its derivative is the delta function on the Volterra surface S of V :

−∇δ(x;V ) = δ(x;S) =

∫
S

dS′ δ(3)(x− x′). (10)

For the new gauge symmetry, the crucial observation is that as a simple consequence of

(8), a dislocation line in the world crystal can either be obtained by a Volterra process of

cutting out a thin slice of material of thickness b, or alternatively by cutting out a wedge

of Frank vector Ω, and reinserting it at distance b from the cut. Thus the dislocation

line is indistinguishable from a pair of disclination lines with opposite Frank vector Ω

whose axes of rotation are separated by a distance b (Fig. 6a). Conversely, a disclination

line is equivalent to a stack of dislocation lines with fixed Burgers vector b (Fig. 6b).

a) b)

Figure 6 Equivalence between a) dislocation and pair of disclination lines, b) disclination and
stack of dislocation lines.

Analytically, this is most easily seen in the two-dimensional version of the relation

(4):
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η33 = θ33 + ϵ3mn∇mα3n. (11)

Each term is invariant under the plastic gauge transformations βp
kl → βp

kl + ∇ku
p
l −

ϵklω
p
3, ϕ

p
l → ϕp

l + ∂lω
p
3. The general defect has a displacement field

ul = −δ(V2)[bl − Ωϵ3lr(xr − x̄r)]. (12)

The first term is a dislocation, the second term a disclination. According to Fig. 6,

the latter can be read as a superposition of dislocations with the same Burgers vector

b̃l = −
∫ x

x̄
dx′rΩϵ3lr. The former may be viewed as a dipole of disclinations:

−∇̄l[− 1
2bmϵ3km]ϵ3kr(xr − x̄r).

6. Let us now derive the emerging gravitational forces in the world crystal. Consider

the partition function, at unit temperature, of the world crystal which we take to be

three-dimensional, for simplicity:

Z =
∑
nij(x)

∏
x,i

[
dui(x)

a

]
e−H . (13)

In linear elasticity, the energy depends quadratically only on the difference between the

elastic and the plastic strain tensors uij = 1
2(∇iuj + ∇jui) and upij, and reads on the

lattice

H = µ
∑
x

∑
i,j

[∇iuj(x)+∇jui(x)−nij(x)]
2. (14)

Here µ is the elastic constant [16], and the integer numbers nij of are the lattice versions of

2upij in Eq. (5). This partition function explains for low temperature the correct classical

specific heat. If the temperature is increased, it reaches a point where the configuration

entropy of the defects wins over the Boltzmann factors of their energy, and the world

crystal melts.

We have shown in [9] that in order to arrive at the proper Newton forces at long

distances we have to insert one more derivative in the lattice action and start out with

what is called the floppy world crystal where

H=µ
∑
x

∑
i,j

{∇k[∇iuj(x)+∇jui(x)−nij(x)]}2 . (15)

The partition function depends on the defect configuration only via the defect tensor

formed from nij, i.e., on ηij. It is a functional of this tensor which can be expanded into

powers of ηi
i, ηijη

ij, ηijη
jkηk

i, ηijη
ijηk

k, . . . . The expansion coefficient are proportional

to powers of the Planck length, for each ηij two powers. Since ηij is the defect represention

of the Einstein tensor Gij, the partition function defines a gravitational action which is

a power series of the Einstein tensor. To leading (second) order in the Planck length is

is proportional to the scalar G = Gi
i = −R.
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Note that the gravitational action arises in this model from the entropy of the fluc-

tuations [12] in the same way as rubber elasticity in polymer physics [17].

The defect tensor ηij=̂Gij can be decomposed into an Cartan part and a torsion part

as in Eq. (4). From the equivalence of defects illustrated in Fig. 6 it is now obvious that

we can re-express the action, which contains only to defect tensor ηij=̂Gij, completely in

terms of the dislocation density αij, i.e., in terms of the torsion tensor Slkj via Eq. (7).

The Cartan curvature tensor is then identically zero, showing that Einstein’s teleparallel

formulation of gravity is completely equivalent to the original Einstein theory. Alter-

natively, we may make the torsion vanish identically, and recover the original Einstein

theory.

In addition, there exists an infinite number of intermediate formulations of the theory

with both Riemann-Cartan curvature and torsion in some well-defined mixture.

7. Generalizing the defect relations (4) and (11) to D ≥ 4 spacetime dimensions and

allowing for large deviations from Euclidean space, we find [18]

Gµν = GC
µν − 1

2D
∗λ (Sµν,λ − Sνλ,µ + Sλµ,ν) (16)

where Gµν is the Einstein tensor and GC
µν its Cartan version, while Sµκ

,τ is the Palatini

tensor related to the torsion field Sµκ
τ by

1
2Sµκ

,τ ≡ Sµκ
τ + δµ

τSκλ
λ − δκ

τSµλ
λ. (17)

The symbol D∗
µ denotes the covariant derivative D∗

µ ≡ DC
µ +2Sµκ

κ where DC
µ vν ≡ ∂µvν −

ΓC
µν

λvλ, DC
µ v

λ ≡ ∂µv
λ + ΓC

µν
λvν . The defect conservation laws (3) read

D∗
µG

C
λ
µ + 2SνλκGC

κν − 1
2S

νκ,µRC
λµνκ = 0 , (18)

D∗µSλκ,µ = GC
λκ −GC

κλ. (19)

They are Bianchi identities ensuring the single-valuedness of observables, connection Γµν
λ

and metric gµν , via the integrability conditions [∂σ, ∂τ ]Γµν
λ = 0 and [∂σ, ∂τ ]gµν = 0.

In a four-dimensional Riemann-Cartan spacetime, the geometry is described by the

direct generalizations of translational and rotational defect gauge fields hij and Aijk,

which are here the vierbein field hαµ, and the spin connection Aµα
β. The square of the

former is the metric gµν = hαµhαν . The latter is defined by the covariant derivative

DC
λ hβ

µ = ∂λhβ
µ −Aλβ

γhγ
µ + ΓC

λν
µhβ

ν ≡ DL
λhβ

µ + ΓC
λν

µhβ
ν . The field strength of Aµα

β ≡
(Aµ)α

β

Fµνβ
γ ≡ {∂µAν − ∂νAν − [Aµ, Aν ]}λκ, (20)

determines the Cartan curvature RC
µνλ

κ ≡ hβλhγ
κFµνβ

γ. The field strength of hγν is the

torsion:

Sαβ
γ ≡ 1

2hα
µhβ

ν [DL
µh

γ
ν − (µ↔ ν)]. (21)

The relations (16), (18), and (19) follow from this.
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8. The theory is gauge invariant under local Lorentz transformations as a direct

consequence of the fact that the metric can alternatively be written as

gµν = hγµΛ
a
γΛa

βhβν , (22)

where Λa
β is an arbitrary local Lorentz transformation, and that the Einstein-Hilbert

Lagrangian LEH = −(1/2κ)R is independent of Λa
α. The extra Λa

β transforms the gauge

field Aµα
β as

Aµα
β → Aµα

β +∆Aµα
β, ∆Aµα

β ≡ Λa
β∂µΛ

a
α. (23)

At this point we are ready to introduce the new gauge invariance announced in the

title: we allow Λa
β in Eq. (22) to be a multivalued Lorentz transformation. This is not

integrable, so that ∆Aµα
β is a nontrivial gauge field. Indeed, the rotational field strength

Fµνα
γ can be expressed as Fµνα

γ ≡ Λa
γ[∂µ, ∂ν ]Λ

a
α ̸= 0 and yields a nonzero Cartan

curvature RC
µνλ

κ ̸= 0. The important observation is that a multivalued Λa
α is able to

change the geometry [19]. The right-hand side of (16) is independent of the vector field

Aµα
β. This allows us to shuffle torsion into Cartan curvature and back, fully or partially,

by complete analogy with the defect transformations in two-dimensional crystals in Fig. 6.

We may choose for Aµα
β any function we like. For example we may choose it to make

the torsion vanish, and Aµα
β reduces to the usual spin connection of Einstein’s gravity,

the well-known combination of the objects of anholonomity

Ωµν
λ = 1

2 [hα
λ∂µh

α
ν − (µ↔ ν)]. (24)

In the opposite extreme Aµα
β = 0, the Cartan curvature is zero, spacetime is teleparallel,

and the Lagrangian is equal to the combination of torsion tensors:

LS=− 1

2κ
(−4DµS

µ + SµνλS
µνλ + 2SµνλS

µλν − 4SµSµ), (25)

where Sµ ≡ Sµν
ν .

In any of the new gauges, the correct gravitational field equations are derived by

extremizing the Einstein-Hilbert action

AEH = − 1

2κ

∫
dx

√
g RC +

∫
dx

√
gLS +AGF, (26)

where AGF is a functional of hαµ and Aµα
β fixing some convenient gauge. For AGF =

δ[Aµα
β] this leads to the teleparallel theory, and for AGF = δ[Sα,β,γ [h

α
µ, Aµα

β]] we re-

obtain Einstein’s original theory.

9. Adding matter fields of masses m to the Einstein Lagrangian, and varying with

respect to hαµ, we find in the zero-torsion gauge the Einstein equation

Gµν = κTµν , (27)
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where Tµν is the sum over the symmetric energy-momentum tensors of all matter fields.

Each contains the canonical energy-momentum tensor
m
Θµν and the spin current densities

m
Σµν

,λ in the combination due to Belinfante [20],

m
Tκν=

m
Θκν − 1

2D
∗µ

(
m
Σκν,µ−

m
Σνµ,κ+

m
Σµκ, ν

)
, (28)

which is the matter analog of the defect relation (16).

The new gauge invariance of (16) has the physical consequence that the external

gravitational field in the far-zone of a celestial body does not care whether angular mo-

mentum comes from rotation of matter or from internal spins. The off-diagonal elements

of the metric in the far-zone, and thus the Lense-Thirring effect measured in [15], depend

only on the total angular momentum Jλµ =
∫
d3x(xλT µ0 − xµT λ0), which by the Belin-

fante relation (28) is the sum of orbital angular momentum Lλµ =
∫
d3x(xλΘµ0−xµΘλ0)

and spin Sλµ =
∫
d3xΣλµ,0. A star consisting of polarized matter has the same exter-

nal gravitational field in the far-zone as a star rotating with the corresponding orbital

angular momentum. This is the universality of orbital momentum and intrinsic angular

momentum in gravitational physics observed in Ref. [10].

Since torsion is merely a new-gauge degree of freedom in describing a gravitational

field, it cannot be detected experimentally, not even by spinning particles. A field with ar-

bitrary spin may be coupled to gravity via the covariant derivative Dµ ≡ ∂µ1+ i
2Aµα

βΣα
β,

where Σα
β are the generators of the Lorentz group, in the Dirac case Σαβ = i

4
[γα, γβ].

But since the torsion is a tensor, we may equally well use an infinity of alternative co-

variant derivatives Dq
µ ≡ ∂µ1 + i

2A
q
µα

βΣα
β, where A

q
µα

β ≡ Aµα
β − qKµα

β, and Kµαβ =

hα
νhβ

λKµνλ ≡ hα
νhβ

λ(Sµνλ−Sνλµ+Sλµν). Any coupling constant q is permitted by covari-

ance. In order to see which q is physically correct we come back to the above-discussed

photon mass problem, and consider the covariant electromagnetic field tensor F q
µν ≡

Dq
µAν−Dq

νAµ. Working out the covariant derivative we find ∂µAν−∂νAµ−2(1−q)Sµν
λAλ,

which shows that Maxwell Lagrangian − 1
4F

q
µνF

q µν acquires a mass term, unless we fix

the coupling strength to the value q = 1.

For this value of q, a little algebra [8, 9] shows that the torsion drops out from the

gauge field Aq
µα

β. This reduces to the good-old Fock-Ivanenko spin connection that has

been used in Einstein gravity without torsion:

A1
µα

β = Āµα
β = hα

νhβλ(Ωµνλ − Ωνλµ + Ωλµν). (29)

Having ensured that the photon does not couple to torsion, we must also prevent all all

other spinning baryonic matter to do so, to avoid giving a mass to the photons via virtual

processes of the type discussed above and illustrated in Fig. 1.

10. How about the motion of a spinless point particle in the infinitely many dif-

ferent descriptions of the same theory? Since the metric gµν = hγµΛ
a
γΛa

βhβν is in-

dependent of the local Lorentz transformations Λa
α, and the action A = −mc

∫
ds =

−mc
∫
(gµνdx

µdxν)1/2 depends only on gµν , the trajectories are geodesics for all Λa
β. The

same result can of course be obtained my integrating the local conservation law of the

total energy-momentum tensor Tµν along a thin world-tube.
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A spinning particle “sees” the gauge field of Lorentz transformations Aq
µα

β, but it

does so only via the q = 1-version (29). This contains only the vierbein fields, not the

torsion, and is invariant under the multivalued version of the gauge transformation (23).

Hence the motion of a spinning particle is blind the torsion field, which can therefore not

be detected by any experiment.

11. What we have done can be understood better by a simple analogy. Instead of

Einstein’s theory, we consider a model of a real field ρ with an Euclidean Lagrangian

L = (∂µρ)
2 − ρ2 + ρ4 and a partition function Z =

∫
Dρ e−

∫
dxL. The field ρ is the

analog of the metric gµν . We may now trivially introduce an extra gauge structure by

re-expressing the Lagrangian in terms of a complex field ψ = eiθρ and a gauge field

Aµ as L̄ = |(∂µ − iAµ)ψ|2 − |ψ|2 + |ψ|4. Now we form the partition function Z̄ =∫
DψDψ∗DAµΦ e

−
∫
dxL̄, where Φ is an arbitrary gauge-fixing functional multiplied by

the associated Faddeev-Popov determinant. The classical physics described by the new

Z̄ is exactly the same as that of the original Z. Obviously there is no way of observing

Aµ. The partition function Z plays the role of Einstein’s theory, whereas Z̄ represents

its reformulation in terms of a gauge field. The decomposition ρ = ψ∗ψ = (ρe−iθ)(eiθρ)

is the analog of the decomposition (22).

12. Higher gradient terms in elastic energy of the world crystal will generate an extra

action AAµ of the gauge field Aµα
β [21]. This would, in general, violate the new symmetry

discussed above and give torsion a life of its own. However, as long as the gravitational

effects of spinning constituents in celestial bodies are suppressed with respect to that

of the orbital angular momenta by many orders of magnitude, there is not much sense

in conjecturing explicit forms of AAµ , unless we want to compete with string theory in

setting up an ultimate theory of everything as a substitute of religion.

13. In summary, we have shown that if the Einstein-Hilbert Lagrangian is expressed in

terms of the translational and rotational gauge fields hαµ and Aµα
β, the Cartan curvature

can be converted to torsion and back, totally or partially, by a new type of multivalued

gauge transformation in Riemann-Cartan spacetime, a hypergauge transformation. In

this general formulation, Einstein’s original theory is obtained by going to the zero-

torsion hypergauge, while his teleparallel theory is in the hypergauge in which the Cartan

curvature tensor vanishes. But any intermediate choice of the field Aµα
β is also allowed.
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