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Abstract

With the help of a simple variational procedure it is posstiol convert the partial sums of ordgrof many divergent
series expansiony(g) = Y., a.g" into partial sumsb_“‘r’:‘:0 b,g™", where O< w < 1 is a parameter that parametrizes
the approach to the largglimit. The latter are partial sums of a strong-coupling exgian of f(g) which con-
verge against(g) for g outsidea certain divergence radius. The error decreases expatefeist for largeN, like

e constN™ e present a review of the method and various applications.
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1. Introduction

Variational techniques have a long history in theoretid¢glgics. On the one hand, they serve to find equations of
motion from the extrema of actions. On the other hand they fietling approximate solutions of physical problems
by extremizing energies. In quantum mechanics, the RayRitg variational principle according to which the ground
state energy of a system is bounded above by the inequality

Eo < f Ay (YFY(X) (1)

has yielded many useful results. In many-body physics, #wree-Fock method has helped understanding electrons
in metals and nuclear matter. In quantum field theory tifecéve action approach [1] has contributed greatly to the
theory of phase transitions. In particular the higheeive actions pioneered by Dominicis [2].

A variational method was very useful in solving functionateigrals of complicated quantum statistical systems,
for instance the polaron problem [3]. Here another inequalays an important role, the Jensen-Peierls inequality,
according to which the expectation value of an exponential functional of a functional is at least as large as the
exponential of the expectation value itself:

€9y > e @, ()

This technique was extended in 1986 to find approximate isolsitfor the functional integrals of many other
guantum mechanical systems [4].

An important progress was reached in 1993 by finding a way plyapg the technique to arbitrarily high order
[5]. The technigue was developed furher in the textbookTBls made it possible to perform the approximate calcu-
lation to any desired degree of accuracy. In contrast to ithigeln efective action approach, the treatment converged
exponentially fast also in the strong-coupling limit [7].
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Figure 1: Experimental data of space shuttle experimentipa &t al. [8].

The zero-temperature version of this technique led to a mdutien of an old problem in mathematical physics,
that the results of many calculations can be given only inftmn of divergent weak-coupling expansions. For
instance, the energy eigenvallesf a Schrodinger equation of a point particle of mass

2
-1+ V09 000 = Eut @

moving in a three-dimensional potential
2
V() = %xz +gx 4)

can be given as a seriesgyiw®

E- w[ioan(g)} ©)

The codficientsa, grow exponentially fast witln. The series has a zero radius of convergence. For the groated s
it reads 3 5 2 333 .
1 g 1,9 9
E=0|5+3205- 5 (25) * g (25) * | 6
‘”[2 4203 " 8 \4w?) T 16 \4w? ©
There exist similar divergent expansions for critical exgots which may be calculated from weak-coupling
expansions of quantum field theories and are experimentadlgsurable near second-order phase transitions. One
of these is the exponenéswhich determines the behavior of the specific heat of supérfialium near the phase
transition to the normal fluid. It has been measured withesmé& accuracy in a recent satellite experiment [8]. The
result agrees very well with the value of the seriesdf@s a power series igymin the strong-coupling limitn — 0
[9]
In many more physical examples the properties are found bjuating divergent weak-coupling series in the
strong coupling limit.
In this lecture | shall present the main ideas and sketch afsications oMariational Perturbation Theory

2. Quantum Mechanical Example

In order to illustrate the method let us obtain the strongpting value of the ground state energy (6). We introduce
a dummy variational parameter by the substitution

w— VOZ+ (@ - Q7 = Q2+ gr, @
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wherer is short for

r = (w? - Q%)/g. (8)
This substitution does not change the partial sums of s@@jes
N n
EV=0) a5 55) (9)
n=0

for any ordem. If we, however, re-expand these partial sums in powegsatffixedr up to ordem, and substitute at
the end by (w? — Q?)/g, we obtain new partial sums

wi-0) a2 (10

In contrast toEN, thesedo dependn the variational paramet€. For higher and higher orders, tiedependence
has an increasing valley where the dependence is very weedn be found analytically by setting the first derivative
equal to zero, or, if this equation has no solution, by sgttire second derivative equal to zero. One may view this as
a manifestation of @rinciple of minimal sensitivity10]. The plots are shown in Fig. 2 for oddland ever\.
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Figure 2: TypicalQ-dependence dfith approximationdVy at T = O for increasing orderbl. The coupling constant has the valygl = 0.1. The
dashed horizontal line indicates the exact energy.

Even to lowest order, the result is surprisingly accurate.NF= 1, the energfN we has the linear dependence

1 3 g
1 = —_— ——
E _w(2+16w3). (11)
After the replacement (7) and the reexpansion up to pavedifixedr we find
1 « 3¢
1 _ - - — =
w ‘Q(4+4QJr 1694)' (12)

In the strong-coupling limit, the minimum lies & ~ ¢(g/4)Y3 wherec is some constant and the energy behaves like

1 _(9\3(c 3
Wi~ (4) (4+ 4c2)' (13)
The minimum lies ac = 613 whereW! ~ (g/4)Y/3(3/4)*3~ (g/4)"® x 0.681420. The treatment can easily be
extended to 40 digits [11] starting out lilg= (g/4)*® x 0.667 986 259. . .

The result is shown in fog/4 = 0.1 in Fig. 3. If we plot the minimum as a function gfwe obtain the curve
shown in Fig. 3. The curve has the asymptotic behadp4)/® x 0.68142. This grows with thexactpower ofg
and has a cdicient that dffers only slightly from the accurate valug67 986 259.. found by other approximation
procedures [12].

The convergence of the approximations is exponential assiwawn in Refs. [13, 14, 15] using the technique
of order-dependent mapping [17]. If the asymptotic behawfd=N(g) and its variational approximatioN(g) are
parametrized by

WN@G) = g¥{bo+big+bagie.. ), (14)
the codficientshy andb; converge withN as shown in Fig. 4. The approach is oscillatory (see Fig. 5).
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Figure 3: First-order perturbative energy and the variational-perturbative minimum\. The exact result follows closely the curve nw#.
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Figure 4: Asymptotic caicientsbg andb; of WN as a function of the ordeX.

3. Quantum Field Theory and Critical Behavior

When trying to apply the same procedure to quantum field theébe above procedure needs some important
modification caused by the fact that the scaling dimensidfiglds are no longer equal to the naive dimensions but
anomalous This causes the principle of minimal sensitivity to faib]1 The adaption of the variational procedure
was done in the textbook [18]. Let us briefly summarize it ggin important class of field theories.

The energy is an @f-symmetric coupling functional of acomponent fields in D dimensions

Eldo] = f de{g [0g0(0)]” + ? G007 + [¢o(x)2]2}, (15)

where the parameters depend on the distance of the temigefraton the critical valud.:

m = O((T-TJ'). do =O((T - To)°)
The important critical behavior is seen in the correlatiomdtion which have the limiting form

e XX1/E(T)
(41(x) 6, (X)) ~ X xpzn (16)
. e77A6+9A7N1/3(b0_b8x)
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Figure 5: Oscillations of the strong-coupling édgentbg.
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wheren is the anomalous field dimension, ahid the coherence length which diverges ngglike £(T) ~ (T -T¢)™.

3.1. Critical Behavior in D- € Dimensions

The field fluctuations cause divergencies which can be rethbya renormalization of field, mass and coupling
constant t@, m, andg. This is most elegantly done by assuming the dimension afetprae to beD = 4—¢, in which
case the renormalization factor are

G = Zy(9€)Z(g e kg, (17)
MG = Z(0€) Zs(g ) 117, (18)
¢ = Zy(9.€ 9> (19)

The factors have weak-coupling expansions:

Zo0 = 1+ 0 (O N B, (20)
Zy(9.€) = —%ﬁgﬁ..., (21)
Zn(0.6) = 1+n:;rezg+{(n+29)6(2n+5)_ngez}gz+
The dependence of these on the scale parametefines the renormalization group functions
paa = u ] el gnlzeone e)z]}_l, (22)
me = &Gl =252 5 n[zeaze . (29
w9 - -4 5 -5 L nzee. (22)

At the phase transitiogy goes to the strong-coupling limg — oo. In this limit the renormalized coupling tends
to a constang®, called the fixed point of the theory.

From the renormalization group functions in the stronggtimg limit one finds the physical observables at the
critical point

N = 2y(g*)=2(”n;+28)262+..., (25)
3 1 _1 n+2 (n+2)(n+ 3)(n+ 20)

% —2[1_%“(9*)] _2+4(n+8)6+ 800+ 8)° E+..., (26)

0 = plgg-e-TiNe @7)

The quantitye is the so-callednomalous dimensioof the fieldg(x).

The e-expansions are divergent and are typically evaluatedeapliysical value = 1 whereD = 3 by various
resummation procedures [19].

In variational perturbation theory the procedure ifedent. One rewrites the power series of Eq. (17) as of the
renormalized couplingp:

n+8 , {(n+8)2+9n+42} 3

g(gO) = gO - ? gO + 962 186 gO +.... (28)

For the dependence of the renormalized mass on the bardrogopk finds from Eqg. (18)




1 .
0.5
? e & 08 o e ex
0.4 - .
g'(e) } 0.6 we) -
0.3 T '
0.2 0.4 PR B -
0.1 e 02
0 € €
02 04 06 08 1 02 04 06 08 1
0.65 125 &
ex Z
0.625 g 1.2 P
o’ Vs
v(e) % ¥(€) P ~
0.6 7 115 -
7 : -
0.575 7z - Pre
o g 11 g
0.55 - -
0.525 = 1.05 =
0.5 € €
02 04 06 08 1 1 02 04 06 o8 1

Figure 6: Strong-coupling values of the renormalizatioougrfunctions fon = 1 (the so-called Ising universality class).

and for the anomalous dimension from Eg. (19), (24), and:(25)

n+2 2_(n+2)(n+8)(1_8

— el P
T](gO) - 18 0 216 E) gO + ..., (30)

Due to the anomalous dimensign# 0, the dependence of the approximations on the variatioa@meter
develops no longer a horizontal flat valley (see AppendixiAgtead, the valley turns out to have a slope which can
only be removed by introducing another parametér to substitution rule (7). We rewrite the seriegjias a series

in g/«9, and replace by
k= VK2 + (k2 - K2) = /K2 +gr, (31)

r =& -K?/g. (32)

As before we re-expand the partial sums of the series in poofeyat fixedr up to poweg" to obtainWN. After
this we setk — 1 and plotwWN as a function oK. By varyingq we can make the valley of minim#l-dependence
horizontal [16].

The asymptotic behavior of the variational paramétégo) and the critical exponent as a functionggf called
genericallyf(go), is now in general

by

K@) = g"%{co+cigy”+cogy®+.. ]
f(go) 9”9 {bo + by gt + oo gy Y+ ) (33)

In the proof of the exponentially fast convergence in Refs3, [L4, 15]. it was shown that the approach of the
correct result proceeds as a function of the highest dragrthe partial sum ag e,
In this way we find from (28) the strong-coupling behavior][20

9(g) = g +bigy +..., (34)
The exponend is the famous Wegner exponent [21]. Further we find from (29)
ALICO . (35)

m
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where the parameter andy;, are found from the strong-coupling limits

Y- 1-g [M] v w} ) (36)
9'(90) Jgy—seo 2 dingo | ..
This parameter determines also the divergence of the cobetength in the critical behavig(T) ~ (T — T¢)™:
v=1/(2- vy (37)
The results are 5
w € V= L 2Zhe8) (38)

= ’ 3 30+2)3+14) o]
21+ a1 2[1- oy e - iy e

They are plotted in Fig. 6 as a functionof
Instead of an expansion ID = 4 — e dimensions on may also treat expansions obtained by Ni2R¢Hdirectly in
D = 3 dimensions.

3.2. Three-Dimensional Treatment

If one plots the strong-coupling limits of the series obéairirom the partial sums of ordéras a function of
x(L) = e to account for the theoretical approach to the asymptatiit,lione finds for various [23]:

0.5887 (0.5864)C =4.6491 0.6309 (0.627) C=4.3216
X X
0.5875 0.003 0.63 0.005
0.585 0.625
0.5825 0.62
0.58 0.615 v
0.5775
. v 0.61
0.575
0.5725 0.605
n=0 n=1
0.57 0.6
0.6712 (0.6652)C=4.31536 0.7083 (0.7004)C=4.32018
X X
0.67 0.004 0.004
0.70
0.66
0.69
0.65 0.68 v
14
0.64 0.67
. 0.66
0.63 ne2 no3

Figure 7: Strong-coupling values for the critical exponeri(x) as a function ofk(L) = gt

For the critical exponent characterizing the behavior of the specific h€at |T — T¢|™ of superfluid helium
near the critical temperatufig, the strong-coupling limit is [15].

a~2-3x06712~ —0.0136 (39)

If we extrapolate the asymptotic behavior expansiorfiogients ofy up to the 9th order according using the theoret-
ically known large-order behavior this result can be imgatoa ~ —0.0129 [24] (see Fig. 8). This value agrees

perfectly with the space shuttle value [8F —0.01285+ 0.00038. The experimental result extracted from Fig. 1 and
the various theoretical numbers obtained from the divengeriurbation series far are summarized in Fig. 9.
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a = -0.01359 c=4.31536 a = -0.01294 c=4.30352
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Figure 8: Strong-coupling limits af as a function ok = e for 7th and 9th order in perturbation theory. The latter fimi —0.0129 agrees
well with the satellite experiment [8].
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Figure 9: Survey of experimental and theoretical valuesafoiThe latter come from resummed perturbation expansions*-dheory in 4— ¢
dimensions, in three dimensions, and from high-tempegatypansions of XY-models on a lattice. The sources areatetichelow.
4. Shift of the Critical Temperature in Bose-Einstein Condasate by Repulsive Interaction
A free Bose gas condenses at a critical temperature
on 5
n
o -2 m| (40)
M [£(3/2)

wheren is the particle density. A small relative shift & with respect taT> can be calculated from the general
formula

AT. 2 An

7O = 7300 (41)
wheren© is the particle density in the free condensate Andts change afl. caused by a small repulsive point
interaction parametrized by awave scattering length. For smalla, this behaves like [25, 26]

TO

cian'’® + [ In(@an'’®) + cz]a’n®’® + O(a’n). (42)

[l

wherec, = —-64r£(1/2)/3/(3/2)*® ~ 197518 can be calculated perturbatively, whereasnd c, require non-
perturbative techniques since infrared divergencég aake them basically strong-coupling results. The standard
technique to reach this regime is based on a resummationtofrpation expansions using the renormalization group
[27, 18], first applied in this context by Ref. [28].



Using quantum field theory, the temperature shift can beddtom the formula

AT | 2MTE oy A (MTEO?, AP\ drp o 1, A8\ s
173 (Ap?) = s M) a= 5@ [5(3/2)]4/34. ' an'/3, (43)
corresponding in Eq. (42) to
Ag?

A calculation of the Feynman diagrams in Fig. 10 yields theofang five-loop perturbation expansion for the
expectation valuégs?/u) [29, 30]

¢ Nm N@+N)u _ N(16+10N+N?) 2
—) = Fuyzs-——-a - — +ag - (_)
u 4mu " 18(4r)°* M 108 (41) m

N(2 + N)2 N (40+ 32N +8N2+ N?) N (44+ 32N+ 5N?)

B 648 (4n)' TR0 ()

N2+ N)? N (44+ 32N +5N?) u*] 43

4 - +aus 5 (—)+.... (45)

324 (4r) 3243 (47) m

wherea, = log(4/3)/2 ~ 0.143841 and the other constants are only known numerically [3
ag = 0.642144 a4 = -0.115069 a4y = 3.128107 ay3 = 1.63, ass = —0.624638 ays = 2.39. (46)

Writing the above expansion up to thtéh term ad=_(u) = Z,L}lfl (u/4rm)', the expansion cdicients for the relevant
number of componenty = 2 are [31]:

f1=-126651x 104, fy=0, f; =-4.04837x10%, f,=239701x 107, f3=-1.80%x 107 (47)

We need the value of the seriEg(u) in the critical limitm — 0, which is obviously equivalent to the strong-coupling
limit of F_(u). As mentioned above, this limit should be most accuratayfl with the help of variational perturbation
theory [32, 33, 18].

If the series were of quantum mechanical origin, we coulcetfaund this limit by applying the square-root trick
(7) of Ref. [6]. In the present situation where we are onlgiiasted in the extreme strong-coupling limit, we would
form the sequence of truncated expansibp@i) for 1, 2, 3 and replace each term

(u/m) — K'[1 - 1] (48)
where the symbol [% 1], is defined as the binomial expansion of{(1)" truncated after thith term

k

w-1g= ) (7w = o) (@9)

i=0

Q-89
-0-8-8-%

Figure 10: Diagrams contributing to the expectation valtfs.
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Table 1: Trial functions for the naive quantum-mechanicalational perturbation expansion
W2V = ~0.059683K ! - 0.000032215K,

WV = ~0.049735K ! - 0.000048323%K + 1.51792 10° K2,

WYV = ~0.043518% ! — 0.000060404% + 3.03584 10° K2 - .908 107 K.

The resulting expressions must be optimized in the vanatiparameteK. They are listed in Table 1. The approxi-
mantsW2, have extremaV>)'* ~ —0.00277 +0.00405 —0.0029 corresponding, via (44), @ ~ 3.059 -4.46, 3.01.
These values have prewously been obtained in Ref. [29] imehrmore complicated way via a so-calledxpansion.
Note the negative sign of the second approximation arigimg the fact that an extremum exists only at negakive
According to our rules of variational perturbation theonecshould, in this case, use the saddle point at podtive
which would yieIde'\’I = —0.00153 corresponding to, ~ 1.69 rather than -4.46, leading to the more reasonable

approximation sequenag ~ 3.059, 1.69, 3.01, which shows no sign of convergenceW&M, there is also a pair of

complex extrema from which the authors of Ref. [29] extraetrteal part Rélv??c'\f)m lex~ —0.00134 corresponding to
c1 ~ 1.48, which they state as their final result. There is, howaweiacceptable theoretlcal justification for such a
choice [16].

This lack of convergence is not astonishing since we arerdgalith field theory, where the dimensions are
anomalous and the naive principle of minimal sensitivitgaks down (contrary to ubiquitous statements in the liter-
ature [34]). The valley in the dependence on the variatipagameter is no longer horizontal [16].

The correct procedure goes as follows: We form the logaiititterivative of the expansion (45):

ﬁ(“)z%gﬂj)— 1+ 2:71(—)2 3%(—)3 (4:73—2:—22)(—) . (50)

In order forF(u) to go to a constant in the critical limih — 0, this function must go to zero in the strong-coupling
limit u — co. Writing the expansion g8 (u) = -1+ ZIL:Z b(u/4rm)', the codficients are

b, = 0.0639293 bz = -0.056778 by = 0.0548799 (51)

The sumsB, (u) have to be evaluated far —» oo allowing for the universal anomalous dimensiorby which the
physical observables gf'-theories approach the scaling limit[27, 18]. The apprdache critical pointA+ B(m/u)*’
wherew’ = w/(1-1n/2) [35]. The exponent is the small anomalous dimension of the field whilagain the Wegner
exponent [21] of renormalization group theaky= wv. Here it appears in the variational expression for the gtron
coupling limit which is found [32, 33] by replacingi(m)' by K'[1 — 1]Lq'/2 whereq = 2/«’. Thus we obtain the
variational expressions

- (22, S
2f 3f q f]_q 3f2 9f2q 2f12 4f3
W= (S22 k24 (22 K3 + ~ 3 k4
f T - + . + L + . + — 71, 2 + . (53)

The first has a vanishing extremumt = 0.592, the second has neither an extremum nor a saddle poine\o,
a complex pair of extrema lies reasonably close to the reésladx) = 0.635+ 0.116, whose real part is not far from

the true exponent of approaali, ~ 0.81 [27, 18], to whichw] will converge for ordel. — oo [32]. Given these
ql/2

w’-values, we now form the variational expressidsfrom F_ by the replacement(m)’ — K'[1 - 1] %%, which
are
W, = f, (1 - §q + lq2) K™+ f;K, (54)
W = f_l( ——q+ q —48q)K‘1+f1(1+g)K+fZK2, (55)
_ 25 > 3 2 3
W, = f_l(l 24q+96q 96q 384q)K +f1(1+ -g+ q)K+f2(1+q)K + f3K*. (56)
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The lowest function, is optimized with the naive growth parametgr= 1 since to this order no anomalous
value can be determined from the zero of the beta functioh (B@e optimal result iSI\/;”’t = —/log[4/3]/6/87° ~
—0.00277 corresponding o = 3.06. The next functioWs is optimized with the above determinggl = 2/« and
yields\/\/;’pt ~ —0.000976 corresponding @ = 1.078. Althoughwy, is not real we shall insert its real part infd, and
find \/\/fl”’t = —0.000957 corresponding @ = 1.057. The three values @f forL = L — 1 = 1, 2, 3 can well be fitted
by a functionc, ~ 1.053+ 2/L® (see Fig. 11). Such a fit is suggested by the general lafgehaviora + be-c-"
which was derived in Refs. [6]. Due to the smallness efd’ ~ 0.2, this can be replaced bya’ + b’/LS.

Alternatively, we may optimize the functioW; , 3 using the known precise value gf = 2/w/, ~ 2/0.81. Then
W, turns out to have no optimum, whereas the others )Wgﬁ] ~ —0.000554 -0.000735 corresponding via Eq. (44)
toc; = 0.58Q, 0.773. If these two values are fitted by the same inverse poweywe findc; ~ 0.83 - 14/L°. From
the extrapolations to infinite order we estimate, ~ 0.92+ 0.13.

c1 ~ 1.053+ 2/L8

-------------------- T

.- —
"¢y ~ 0.830- 14/L°

1 15 2 25 3 35 L

Figure 11: The three approximants for plotted against the order of variational approximatiors L — 1 = 1,2,3, and extrapolation to the
infinite-order limit.

This result is to be compared with latest Monte Carlo datechvieistimatec; ~ 1.32 + 0.02 [36, 37]. Previous
theoretical estimates acg ~ 2.90 [38], 233 from a ¥N-expansion [39]), 1 from a next-to-leading order in gM-
expansion [40], D59 from an inapplicablé-expansion [41] to three loops, andl& from the samé-expansion to five
loops, with a questionable evaluation at a complex extreff@@hand some wrong expansion d¢beients (see [31]).
Remarkably, our result lies close to the average betweelatirst and the first Monte Carlo resajt~ 0.34+ 0.03 in
Ref. [42].

As a cross check of the reliability of our theory consider tbgult in the limitN — co. Here we must drop the
first term in the expansion (45) which vanishes at the ctipicént (but would diverge foN — oo at finitem). The
remaining expansion céiecients of<¢2/u> /N in powers ofNu/4rmare

fi = —6.3591710%, f, = 4.731510%, f;=-3.8414610% (57)

Using theN — oo limit of w’ which is equal to 1 implying) = 2 in Egs. (55) and (56), we obtain the two variational
approximations

W5 = -0.0012718%K + 0.0004731%? W5 = —-0.0019077% + 0.0014194%K? - 0.00038414&3, (58)

whose optima yield the approximatioos ~ 1.886 and 217, converging rapidly towards the exact latgeesult
2.33 of Ref. [39], with a 10% error.

Numerically, the first two AN-corrections found from a fit to largi-results obtained by using the known lariye-
expression foww’ = 1-8(8/372N) + 2(104/3-972/2)(8/37°N)? [43] produce a finiteN correction factor (+ 3.1/N+
30.3/N? +...), to be compared with ( 0.527/N + ...) obtained in Ref. [40].

Since the largeN results can only be obtained so well without the use of thetérsn we repeat the evaluations
of the series at the physical valte= 2 without the first term, where the variational expressiamd fare

W, = f1(1+g)K+f2K2,
W, = f; (1+ §q+ %qz) K+ fo(1+g) K2 + f3K3, (59)
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The lowest order optimum lies now 5™ = —2(2 + q)%/16f2, yieldingc; = 0.942 for the exact = 2/0.81. To
next order, an optimal turning point ¥; yieldsc; ~ 1.038.

At this order, we can derive a variational expression fordérmination of” using the analog of Eq. (50) which
reads

dlog F(u) f, u fy f2 (u 2
=22 1222 2=
AW dlogu " f1 m’ f.  f2 m) * (60)
After the replacement (48) we find
f2
W= 1+MK+(2E——§]K2+... (61)
f i

whose vanishing extremum determings= 2/q as being

-1
W = (2 J2M /(2 -1 1) ~ 0.675 (62)

leading toc; ~ 1.238 from an optimal turning point ai;. There are now too few points to perform an extrapolation
to infinite order. From the average of the two highest-ordsults we obtain our final estimatg: ~ 1.14+0.11, such

that the critical temperature shift is
AT,

o (1.14+0.11)an'3, (63)
[

This lies reasonably close to the Monte Carlo nuntdae 1.32+ 0.02.

5. Membrane Between Walls

As another example consider a tension-free membrane oftxpsiifnessc between hard walls [44] (see Fig. 12).

Figure 12: Membrane fluctuating between walls with distashce

Its thermal fluctuations are described by a functional irgbgver a Boltzmann factor

d/2
z-= DhetlhT, (64)
U -d/2

whereh(x) is the height function of the membrane dads the bending energy

E- g f dx[Ph(x)] . (65)

This functional integral has not been solved exactly, itespf its simplicity. It can, however, be approximated by the
functional integral

z=[] f " DhelEVT, (66)
X —00
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Figure 13: Softened hard-wall potential which becomes itefiyn hard in the limitm — 0

in which the height fluctuates between andeo in a potential (see Fig. 13)
V(X) = nf d— tarf (”h) (67)

This problem can be solved perturbatively yieldihg e*f, whereA is the area of the membrane ahtias, to order

N, the series "
m 1 1 n®
N — |1+ + ===+ +|—== -
2 [ "8t mPde6a " +(mZdZ) o (68)
The hard-wall limitm — 0 amounts to the strong-coupling limit of this series.
We expand the potential (4) into a power series
h2 n? (1 17 n? 31 7 691 n® 10922 8
! 4T |14 6 T8 12 T 16
V) =miZ ' 5 {3 0@ "3 T 1asdE " T aerrsd } (69)
If we denote the interaction terms by
int _ KmA (7_1’ )2k
vt = — ng ) - (70)

k=1
and calculate the Feynman diagrams shown in Fig. 14, Theiturat integral (64) can be expressed as an exponential

1 1
_l ” 1 - ) A
F zio +300 +15 4, + (72000 +2O)

05 ¥ +i( 40 500 + 360 08 )

1
+5 (17280 +3456 § + 1728 £ + 2592 oooo}

Figure 14: Feynman diagrams in the perturbative expanditiredree energy of the Membrane between walls up to the dvder.

Z = e At whereA is the area of the membrane and

rﬂz 1 7T2 1 7'[2 N
N 14+ =+ -
2[ "8 meeea " +(mZdZ) o (71)
Using the Bender-Wu recursion relations [46], we can exgites cofficients in terms oéx as
r’n2 37T a*
N _
= =+ Jpea — gor (216 — 150) + 6d6 (3336 360426+ 105¢5)

8

~To8F (30885:4 4488076 +6990:3 + 151 2485+ 378C10)+. .. -
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The hard-wall result is obtained in the linmit — O, which is the strong-coupling limit of the series (71).

6. Variational Perturbation Theory of Tunneling

None of the presently known resummation schemes [19, 18]ésta deal with non-Borel-summable series. Such
series arise in the theoretical description of many impuntdnysical phenomena, in particular tunneling processes.
In the path integral, these are dominated by non-pertwdatintributions coming from nontrivial classical solutso
calledcritical bubbles[45, 6] orbounceg$47], and fluctuations around these.

A non-Borel-summable series can become Borel-summableiekpansion parameter, usually some coupling
constany, is continued to negative values. In this way, non-Boralusiable series can be evaluated with any desired
accuracy by an analytic continuation of variational pdyation theory [6, 18] in the complexplane. This implies
that variational perturbation theory can give us informatn non-perturbative properties of the theory.

6.1. Test of Variational Perturbation Theory for Simple Mbdf Non-Borel-summable Expansions
The partition functiorZ(g) of the anharmonic oscillator in zero space-time dimersien

1
Z(g) = = i exp(x2/2—gxXt/4)dx = K1/4(1/89) , (72)

oo

exp (1/89)
A

wherekK, (2) is the modified Bessel function. For smgllithe functionZ(g) has a divergent Taylor series expansion, to
be calledweak-coupling expansion

S _ r(2+1/2
200 =3 ads wih 2= () o 73)
Forg < 0, this is non-Borel-summable. For larggthere exists a convergesttong-coupling expansion
Zond = g7 Z b g2 with b = (-1) F('/2|2|7+\;/4> (74)
As is obvious from the integral representation (Z{p) obeys the second-orderfidirential equation
169°Z"(g) + 4(1+89)Z'(g) + 3Z(g) = O, (75)

which has two independent solutions. One of ther#&(ig), which is finite forg > 0 with Z(0) = a. The weak-
coupling codicientsa in (73) can be obtained by inserting into (75) the Tayloresgand comparing cicients.
The result is the recursion relation

16(+1)+3

40+1) (76)

A1 = —
A similar recursion relation can be derived for the stroogqaling codficientsb, in Eq. (74). We observe that
the two independent solutioZXg) of (75) behave likeZ(g) o« g* for g — oo with the powersyr = —1/4 and-3/4.
The function (72) hag = —-1/4. It is convenient to remove the leading power frdfg) and define a functiori(x)
such thaf(g) = g~ V/* 2(g~Y/?). The Taylor coéicients ofZ(x) are the strong-coupling cficientsb in Eq. (74). The
functionZ(x) satisfies the dierential equation and initial conditions:

47(X) — 2% (X) — £(X) = 0, with £(0) = by and /(0) = b;. (77)
The Taylor coéficientsb; of £(x) satisfy the recursion relation

20+1
b2 = mbl . (78)
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Analytic continuation oZ(g) aroundg = o to the left-hand cut gives:

Z(-g) = (-9) (-9 ™7 (79)
e _ in
= (~g) 1/4; by(~g)™"/2 exp[—Z(ZI + 1)] forg> 0, (80)

so that we find an imaginary part

Im Z(~g) = —(4g)~¥* ; by (—g)"/zsin[—lzﬂ(ZI + 1)] (81)
= (49 Y -9, (82)
1=0
where
21+1
Bo=bo, B1=b1, Biz2= —mﬁl . (83)
Itis easy to show that
D BX = L) exp XP/4), (84)
1=0
so that
1 - _
ImZ(-g) = -~ Y4 exp (-1/4g) % b g'2. (85)

From this we may re-obtain the weak-coupling fméentsa, by means of the dispersion relation

1 M~ ImZ(-2
Z(g)——ﬂf0 = (86)
o0 o0 - i/j2-1/4
L Sy, [Toptumeii, @)
71'\/2 =0 0 Z+g

Indeed, replacing Az + g) by fooo exp x(z+ g)) dx, and expanding exp- g) into a power series, all integrals can
be evaluated to yield:

1 (o9 . (s8]
Z(q) == 2ib; —g)'T( + j/2+1/4).
(g)ﬂ; by 2 (9T + 12+ 1/4) (88)
Thus we find for the weak-coupling ciheientsa; an expansion in terms of the strong-couplingftceents
1) <0 :
a=—> ) 2IbjI(l+j/2+1/4). (89)
™o

Insertingb; from Eq. (74), this becomes

) i 2 /24 yaya + jj2+ 1/4) = (-1 [EFL2) (90)

- 271_3/2 = JI |' \/7_1'

coinciding with (73).
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Let us now apply variational perturbation theory to the wealipling expansion (73). We have seen in Eq. (79),
that the strong-coupling expansion can easily be contianed/tically to negativg. This continuation can, however,
be used for an evaluation only forfSgiently largelg| where the strong-coupling expansion converges. In theslimm
regime near the tip of the left-hand cut, the expansion ge®r Let us show that an evaluation of the weak-coupling
expansion according to the rules of variational pertudwatiheory continued into the complex plane gives extremely
good results on the entire left-hand cut with a fast convecgeven near the tip gt= 0

TheLth variational approximation té(g) is given by (see [15, 32, 33, 18])

L _
2800 =0° )3(&) a0 (o1)
=

with

o =0%70% - 1)/g, (92)
whereq = 2/w =4,p=-1and
j —_ .
SCEDY a((p j o 2)(—0)’-' . (93)
1=0

In order to find a valley of minimal sensitivity, the zeros bétderivative 01‘ZV +(0, Q) with respect td are needed.
They are given by the zeros of the polynomialsrin

<L>(o—)—Za(p a+2-20( P TV cor o (94)
since it can be shown [13, 15] that the derivative dependsamér:
dZ dZ0a(9.9) _ p1( 9\ b0
s (@) PO(). (95)

Consider in more detail the lowest non-trivial order witk 1. From Eg. (94) we obtain

2(g) / / 29
_2 __-'.y' . 4

.

= my 0 g 5 0 5 K]

Figure 15: Plot of the 1st- and 2nd-order calculation forrtba-Borel-summable region gf< 0, where the function has a cut with non-vanishing
imaginary part: imaginary (left) and real parts (right)Zét),(g) (dashed curve) anﬂ\(,g)r(g) (solid curve) are plotted againgtand compared with
the exact values of the partition function (dotted curveje Toot of (92) giving the optimal variational paramefehas been chosen to reproduce
the weak-coupling result negr= 0.

o =g, corresponding to Q = %(1 + 1+ 109) . (96)

In order to ensure that our method reproduces the weak-oguglsult for smalg we have to take the positive sign in
front of the square root. In Fig. 15 we have plotﬂé&(g) (dashed curve) anZé +(9) (solid curve) and compared these
with the exact result (doted curve) in the tunneling regifitee agreement is quite good even at these low orders [51].
Next we study the behavior &&5)(g) to higher orders.. For selected coupling values in the non-Borel-summable
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region,g = -.01 -.1, -1, —10, we want to see the error as a function of the order. We wedimid from this model
system the rule for selecting systematically the best zeRS®¥(c) solving Eq. (94), which leads to the optimal value
of the variational paramet€). For this purpose we plot the variational results of all zefbhis is shown in Fig. 16,
where the logarithm of the deviations from the exact valuglasted against the ordér. The outcome of dferent
zeros cluster strongly near the best value. Therefore,sthg@ny zero out of the middle of the cluster is reasonable,
in particular, because it does not depend on the knowledtieadxact solution, so that this rule may be taken over to
realistic cases.

:
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Figure 16: Logarithm of deviation of the variational resitom exact values |O|@\(,|5)r — Zexacl plotted against the ordérfor differentg < 0 in the
non-Borel-summable region. All complex optimk have been used.
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Figure 17: Logarithm of deviation of variational resulterfr exactly known valué(L) = log |Z\(,';), — Zexaci, plotted against the ordérfor g = 10
in Borel-summable region. The real positive optirfiahave been used. There is only one real zero of the first desvist every odd ordet and
none for even orders. There is excellent converget{tg ~ 0.02 exp (0.73L) for L — .

We wish to emphasize, that for the Borel-summable domaih gvit 0, variational perturbation theory has the
usual fast convergence in this model. In fact, §o= 10, probing deeply into the strong-coupling domain, we find
rapid convergence lika(L) ~ 0.02 exp £0.73L) for L — oo, whereA(L) = 10g1Z%5) — Zexad is the logarithmic error
as a function of the orddr. This is shown in Fig. 17. Furthermore, the strong-couptingdficientsb, of Eq. (74)
are reproduced quite satisfactorily. Having solg¥d (o) = 0 for o, we obtainQ()(g) by solving Eq. (92). Inserting
this and (93) into (91), we bring’* Z{{(g) into a form suitable for expansion in powers@f/2. The expansion
codficients are the strong-coupling (fﬁeientsbl(” to orderL. In Fig. 18 we have plotted the logarithms of their
absolute and relative errors over the ortdeand find very good convergence, showing that variationglipgeation
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Figure 18: Relative logarithmic erray; = log|1 - bl(")/bl(exacq on the left, and the absolute logarithmic erfgr = log |b|(") - bl(exacq on the right,
plotted for some strong-coupling diieientshy with | = 0,4, 8,12 16, 20 against the orddr.

theory works well for our test-mode(g).

A better selection of the optim& values comes from the following observation. The imagiraayts of the
approximations near the singularity@t 0 show tiny oscillations. The exact imaginary part is knowmécrease
extremely fast, like exp (#g), for g — 0-, practically without oscillations. We can make the tinyitlations more
visible by taking this exponential factor out of the imaginaart. This is done in Fig. 19. The oscillationgfdr
strongly for diferent choices of2() from the central region of the cluster. To each ordave see that one of them
is smoothest in the sense that the approximation appro#itheingularity most closely before oscillations begin. If
this Q) is chosen as the optimal one, we obtain excellent resultéoentire non-Borel-summable regigrk 0.

As an example, we pick the best zero for the 16th order. Fig. 19 shows the normalized imaginary partutated

-.014 -.012 -.01 -.008 g

Figure 19: Normalized imaginary part IZ{E?)(Q) exp (1/4g)] as a function ofj based on six diierent complex zeros (thin curves). The fat curve
represents the exact value, whictZisa(g) ~ —0.7071+ .524g — 1.78g%. Oscillations of varying strength can be observed mpar0. Curves

A and C carry most smoothly near up to the origin. Evaluatiasddl on either of them yields equally good results. We haeeted the zero
belonging to curve C as our best choice to this otder16.

to this order, but based onftérent zeros from the central cluster. Curve C appears optitharefore we select the
underlying zero as our best choice at orter 16 and calculate with it real and imaginary part for the nares-
summable regior2 < g < —.008, to be compared with the exact values. Both are showrgin2li, where we have
again renormalized the imaginary part by the exponentibfaexp ¢1/4g). The agreement with the exact result
(solid curve) is excellent as was to be expected becauseedh#it convergence observed in Fig. 16. It is indeed
much better than the strong-coupling expansion to the sader,cshown as a dashed curve. This is the essential
improvement of our present theory as compared to previduglywn methods probing into the tunneling regime [51].
This non-Borel-summable regime will now be investigatedtfi® quantum-mechanical anharmonic oscillator.
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Figure 20: Normalized imaginary part Iﬁfé?)(g) exp (-1/4g)] to the left and the real part Ra%?)(g)] to the right, based on the best zero C from
Fig. 19, are plotted against l¢gj as dots. The solid curve represents the exact function. @bleedi curve is the 16th order of the strong-coupling

expansiorzgt‘r)onég) of equation (74).

6.2. Tunneling Regime of Quantum-Mechanical Anharmonaill@sor

The divergent weak-coupling perturbation expansion ferglound state energy of the anharmonic oscillator in
the potentiaV(x) = x?/2 + g X* to orderL

L
Eg,_\?veak(g) = Z a gl B (97)
1=0

wherea, = (1/2, 3/4, —21/8, 333/16, —30885128 ...), is non-Borel-summable fa < 0. It may be treated in the
same way aZ(g) of the previous model, making use as before of Egs. (91)+(®dvided we sep = 1 andw = 2/3,
so thatq = 3, accounting for the correct power behavigy(g) « g% for g — co. According to the principle of
minimal dependence and oscillations, we pick a best zerthéordelL = 64 from the cluster of zeros &f (o), and
use it to calculate the logarithm of the normalized imagjirgrt:

f(g) = log| v=rg/2 ES(9)| - 1/39. (98)
This quantity is plotted in Fig. 21 against legl) close to the tip of the left-hand cut fet2 < g < —.006. Comparing

el .
e

- /

-2 -3 -4 -5 log (—g)

Figure 21: Logarithm of the imaginary part of the groundesetergy of the anharmonic oscillator with the essentiajudarity factored out for

better visualization|(g) = log [ \-7g/2 Eée\fgr(g)] — 1/3g, plotted against small negative values of the coupling ons-0.2 < g < —.006 where
the series is non-Borel-summable. The thin curve represbatdivergent expansion around a critical bubble of R&f. [Bhe fat curve is the 22nd
order approximation of the strong-coupling expansionydically continued to negative in the sliding regime calculated in Chapter 17 of the
textbook [6].

our result to older values from semi-classical calculatifE®]
f(0) = big — bog? + bsg® — bag® + ..., (99)
with
b; =3.95833 b, =19.344 b =17421 b, =2177, (100)
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Figure 22: Logarithm of the normalized imaginary part of giieund state energy log,(~7g/2 E('g’)var(g))— 1/3g, plotted against log{g) for orders

L =4, 8, 16, 32 (curves). Itis compared with the corresponding resalts = 64 (points). This is shown for small negative values of theptiog
constant-0.2 < g < —.006, i.e. in the non-Borel-summable critical-bubble regi&ast convergence is easily recognized. Lower orderdiaisci
more heavily. Increasing orders allow closer approachecsthgularity ag = 0-.

shown in Fig. 21 as a thin curve, we find very good agreemenis &kpansion contains the information on the
fluctuations around the critical bubble. It is divergent aoah-Borel-summable fog < 0. In Appendix B we have
rederived it in a novel way which allowed us to extend and iwprit considerably.

Remarkably, our theory allows us to retrieve the first theems of this expansion from the perturbation expansion.
Since our result provides us with a regular approximatiothtoessential singularity, the fitting procedure depends
somewhat on the interval over which we fit our curve by a poweies. A compromise between afi$ciently long
interval and the runaway of the divergent critical-bubbdpansion is obtained for a lower limit > —.0229+ .0003
and an upper limig = —0.006. Fitting a polynomial to the data, we extract the follog/first three coficients:

b; = 3.9586+.0003 b, =194+.12 b3 =135+18. (101)

The agreement of these numbers with those in (99) demoestitazat our method is capable of probing deeply into
the critical-bubble region of the coupling constant.

Further evidence for the quality of our theory comes from mnparison with the analytically continued strong-
coupling result plotted to orddr = 22 as a fat curve in Fig. 21. This expansion was derived by aeghare of
summing non-Borel-summable series developed in Chaptef the textbook [6]. It was based on a two-step process:
the derivation of a strong-coupling expansion of the typ®) ffom the divergent weak-coupling expansion, and an
analytic continuation of the strong-coupling expansiomégativeg. This method was applicable only for large
enough coupling strength where the strong-coupling eXpart®nverges, the so-calletiding regime It could not
invade into the tunneling regime at smagllgoverned by critical bubbles, which was treated in [6] by pasate
variational procedure. The present work fills the missing bg extending variational perturbation theoryatb g
arbitrarily close to zero, without the need for a separaatment of the tunneling regime.

It is interesting to see, how the correct limit is approachsdhe ordet increases. This is shown in Fig. 22,
based on the optimal zero in each order. For large negateren the small orders give excellent results. Close to the
singularity the scaling factor exp 1/3g) will always win over the perturbation results. It is sugimnig, however, how
fantastically close to the singularity we can go.

6.3. Dynamic Approach to the Critical-Bubble Regime

Regarding the computational challenges connected witleritieal-bubble regime of small < 0, it is worth to
develop an independent method to calculate imaginary patitee tunneling regime. For a quantum-mechanical sys-
tem with an interaction potentiglV(x), such as a the harmonic oscillator, we may study ffeceof an infinitesimal
increase irg upon the system. Itinduces an infinitesimal unitary tramsfdion of the Hilbert space. The new Hilbert
space can be made the starting point for the next infinitdsimagease irg. In this way we derive an infinite set of first
order ordinary dierential equations for the change of the energy levels atdnedements (for details see Appendix
C):
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Figure 23: inary part of the ground state energy of the anbaitroscillator as solution of the coupled set dfeliential equations (102), truncated
at the energy level ofi = 64 (points), compared with the corresponding quantity ftbeL = 64th order of non-Borel-summable variational
perturbation theory (curve), both shown as functions ofcthgpling constang.

En(9) =Vmn(9), (102)
, V(@) Vin(9) V(@) Vin(9)
Virl® = )L E (0~ Eu(@) * 2 Er(0) - Ex(0)’ (103)

k#n k+m

This system of equations holds for any one-dimensional&satinger problem. Individual ffierences come from the
initial conditions, which are the energy levélg(0) of the unperturbed system and the matrix elem¥gpt$0) of the
interactionV(x) in the unperturbed basis. For a numerical integration efsysstem a truncation is necessary. The
obvious way is to restrict the Hilbert space to the manif@drsed by the lowedt eigenvectors of the unperturbed
system. For cases like the anharmonic oscillator, whicteaes, with even perturbation and with only an even state
to be investigated, we may span the Hilbert space by eves bastors only. Our initial conditions are thus for
n=0,1, 2 ..., N/2:

En(0) =2n+ 1/2 (104)
Vonom=0 ifm<0orm> N/2 (105)
Vanon(0) =3(8n% + 4n + 1)/4 (106)
Vanons2(0) =(4n + 3)y/(2n + 1)(2n + 2)/2 (107)
Vonzn:a(0) = /(20 + 1)(2n + 2)(2n + 3)(2n + 4)/4 (108)
(109)

For the anharmonic oscillator with\&(x) = x* potential, all sums in equation (102) are finite with at mostriterms
due to the near-diagonal structure of the perturbation.
In order to find a solution for somg < 0, we first integrate the system from 0|t then around a semi-circle

= |glexp (¢) from ¢ = 0 top = 7. The imaginary part oEq(g) obtained from a calculation witN = 64 is shown
in Fig. 23, where it is compared with the variational resaltlf = 64. The agreement is excellent. It must be noted,
however, that the necessary truncation of the systemftdrdntial equations introduces an error, which cannot be
made arbitrarily small by increasing the truncation lildit The approximations are asymptotic sharing this property
with the original weak-coupling series. Its divergencénmyever, reduced considerably, which is the reason why we
obtain accurate results for the critical-bubble regimeereithe weak-coupling series fails completely to reproduce
the imaginary part.

7. Hydrogen Atom in Strong Magnetic Field

A point particle inD dimensions with a potenti&(x) and a vector potentiad(x) is described by a Hamiltonian

Hp.) = s [P -~ AW - 1= (110)

4nix|’
21



The quantum statistical partition function is given by tlielelean phase space path integral

Z= 9§ D'PxpP p e PR (111)
with an action "
ﬂmmk=o dr [-ip(7) - X(7) + H(p(7). X(7))]. (112)
and the path measure
N+1
. dPx,dPp
/D D _ n n
9§2) xD°p = lim g [ o ] . (113)

The parameteg = 1/kgT denotes the usual inverse thermal energy at tempera@tunenerekg is the Boltzmann
constant. FronZ we obtain the free energy of the system:

F= —éln z (114)

Applying variational perturbation theory to the path imag(111) leads to a variational binding energy [54]
defined bys(B) = B/2 — E(B) in atomic natural with, = 1, M = 1, e = 1, energies in units of 2 Ryde*M? /1.

B? nQ
=3 -3(1+3)- 2~ V30 (H9)

with
1

In
vi-n

Here we have introduced variational parameters

h(n) =

- i
et (116)

20
n= Q—” <1, Q=Qp,. (117)
12

Extremizing the energy with respect to these yields the itioms

el

El
1 B? 1 1 1= V1o
2 . '7 L0 (118)

8 a2 " —n 1+«/1

Expanding the variational parameters into perturbatioies®f the square magnetic fieRf,

{O

n(B)=) mB"  QB)=) QB (119)
n=0 n=0

and inserting these expansions into the self-consisteangditons (118) and (118) we obtain order by order the
codficients given in Table 2. Inserting these values into theesgion for the binding energy (115) and expand with
respect td3?, we obtain the perturbation series

00

B
(1) _ = 2n
£M(B) = 5 n§=0 £nB?". (120)

The first codicients are also given in Table 2. We find thus the importanilrébat the first-order variational
perturbation solution possesses a perturbative behavibrrespect to the square magnetic field strer@gthin the
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Table 2: Perturbation cdiécients up to ordeB® for the weak-field expansions of the variational parametarsthe binding energy in comparison
to the exact ones of Ref. [55].

n | 0 1 2 3
T 1.0 _405 . 05576 1682896 . 13023 3885999332078 . 42260
Q, 32 11318 9 13885  -L2897E . 503082  S243IETIET . 58077
&n | —&~-04244 2 ~02209 — B0 ~ 01355 256449808 ~ 0.2435
&n [59] -0.5 025 -2~ -0.2760 2581 ~ 1.2112

weak-field limit thus yielding the correct asymptotic. Theeicients diter in higher order from the exact ones but
are improved by variational perturbation theory [6].
In a strong magnetic field one has
QL > ZQH, QH < B (121)

and the variational expression simplifies to

B Q B2 Q Q Q

o _ B i ot I
0.0 T 2 ( 2, TN ZQL)’ (122)

which is minimal at
2
Q” = _ﬁ (InQH —InQL +2-1In 2), (123)
Q = 2 %+B 1+4& (124)
T bis B2’

Expanding the second conditions as

2
Q8 Q

Ql=B+2 74‘2”—8— 2B° ey (125)
and inserting only the first two terms into the first condit{@23), we neglect terms of ordefR, and find
2 1
Quzﬁ(lnB—anﬁ)HnZ—Z). (126)

To obtain a tractable approximation f@yj, we perform some iterations starting from

2
1) _ —2
‘/QH = —\/7_rln 2Be (127)

Reinserting this on the right-hand side of Eq. (126), onaioistthe second iteratio QI(IZ). We stop this procedure
after an additional reinsertion which yields

@ = % (In 2Be? - 2In [\% {In 2Be? - 2In (%In ZBe‘Z)}

The reader may convince himself that this iteration procedudeed converges. For a subsequent systematical ex-
traction of terms essentially contributing to the bindintery, the expression (128) is not satisfactory. Therefore
it is better to separate the leading term in the curly bracked expand the logarithm of the remainder. Then this
procedure is applied to the expression in the square bisaaketso on. Neglecting terms of ordetiB, we obtain

) . (128)

2
Jo ~ - (In oBe? + In:—: — 2Inin 2Be-2). (129)
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Table 3: Example for the competing leading six terms in E§4jatB = 10°By ~ 2.35x 10 G.
(1/7)In*B  —(4/m)nBIninB  (4/7)In?inB  —(4b/x)InnB  [2(b+2)/x]InB  P/x
421912 -35.8181 76019 48173 33098 07632

The double-logarithmic term can be expanded in a similar asagiescribed above:

Inin2Be? = In

In2-2 IN2-2 1(In2-2)%? 3
InB{1+ ———||=InInB - = In™°B). 1
n ( * B )] ninB+ ——= R +O0(In"°B) (130)

Thus the expression (129) may be rewritten as

2 2a a?
[6® _ 3
Q” = % (ln B-2IninB + m + ﬁ +b]+ O(ln B) (131)
with abbreviations x
a=2-In2~1307 b= -2~-1548 (132)

The first observation is that the variational paramelgis always much smaller tha®, in the highB-field limit.
Thus we can further simplify the approximation (125) by esjihg

Q
QLzB(1+§ —”]—>B (133)

e

without dfecting the following expression for the binding energy. eli;ig the solutions (131) and (133) into the
equation for the binding energy (122) and expanding therltgaic term once more as described, we find up to the
order InB:

sM(B) = 1 (InZB —4InBINNB+41IninB—4bIninB+ 2(b+ 2)InB+ b? - % [8In°InB - 8bInin B + 2b2])
T
+0(In"2B) (134)

Note that the prefactor/f of the leading IAB-term difers from a value A2 obtained by Landau and Lifschitz [56].
Our different value is a consequence of using a harmonic trial systemcalculation of higher orders in variational
perturbation theory would improve the value of the prefacto

At a magnetic field strengtB = 10°Bg, which corresponds to.25x 10'°T = 2.35x 104G, the contribution from
the first six terms is 287 [2 Ryd]. The next three terms suppressed by a factdBloontribute—2.29 [2 Ryd)], while
an estimate for the I¥B-terms yields nearly-0.3[2 Ryd]. Thus we find

eD(10°) = 2058+ 0.3[2 Ryd] (135)

This is in very good agreement with the value@®D[2 Ryd] obtained from an accurate numerical treatmerit [58

Table 3 lists the values of the first six terms of Eq. (134).sBfiows in particular the significance of the second-
leading term-(4/x)In B Inin B, which is of the same order of the leading terniIn?B but with an opposite sign. In
Fig. 24, we have plotted the expression

e(B) = %InZB (136)

from Landau and Lifschitz [56] to illustrate that it gives t@o large binding energies even at very large magnetic
fields, e.g. at 200By « 102 G.

This strength of magnetic field appears on surfaces of newstiars (1€° — 10'2G). A recently discovered new
type of neutron star is the so-called magnetar. In thesegelgarticles such as protons and electrons produced by
decaying neutrons give rise to the giant magnetic field 3f ® Magnetic fields of white dwarfs reach only up to
10° - 10° G. All these magnetic field strengths are far from realizatioexperiments. The strongest magnetic fields
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ever produced in a laboratory were only of the ordet@pan order of magnitude larger than the fields in sun spots
which reach about.@ x 10* G. Recall, for comparison, that the earth’s magnetic fiekitha small value of 6 G.

The nonleading terms in Eq. (134) give important contrifasi to the asymptotic behavior even at such large
magnetic fields, as we can see in Fig. 24. It is an unusual propéthe asymptotic behavior that the absolute
value of the diference between the Landau-expression (136) and our appatan (134) diverges with increasing
magnetic field strengthB, only the relative dterence decreases.
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Figure 24: Ground state ener@{B) of hydrogen in a strong magnetic field The dotted figure orldftés Landau’s old upper limit. On the right-
hand side our curve is compared with the accurate values [8&t 58]). It also shows various lower-order approximagievithin our procedure.
The quantitye(B) is the binding energy defined layB) = B/2 — E(B). All quantities are in atomic natural units= 1, M = 1, e = 1, energies in

units of 2 Rye:= e*M?2/h3.

8. Appendix A: Modification of Principle of Minimal Sensitiv ity

The naive quantum mechanical variational perturbationrhdéas been used by many authors under the name
d-expansion. This name stems from the fact that one may viétéfamiltonian of an anharmonic oscillator

P Mo, d
H_2M+2a)x+4x4 (137)
alternatively as
H='°—2+|\/|Q—2x2+5[M (w2—92)+9X4] (138)
2M 2 2 471

and expand the eigenvalues systematically in poweis dtach partial sum of orddr is evaluated af = 1 and
extremized im. It is obvious that this procedure is equivalent the re-espgan method in Section 2.

As mentioned in the text and pointed out in [16], such an aislg inapplicable in quantum field theory, where the
Wegner exponentb is anomalous and must be determined dynamically. Most thetre false treatment was given to
the shift of the critical temperature in a Bose-Einsteindmmsate caused by a small interaction [50, 29, 41]. We have
seen in Section 4 that the perturbation expansion for thastity is a function ofy/u whereu is the chemical potential
which goes to zero at the critical point, we are faced withpadgl strong-coupling problem of critical phenomena. In
order to justify the application of th&expansion to this problem, BR [50] studied the converggmoperties of the
method by applying it to a certain amplitudég) of anO(N)-symmetriap?*-field theory in the limit of largeN, where
the model is exactly solvable.

Their procedure must be criticized in two ways. First, thehtunde A(g) they considered is not a good candidate
for a resummation by &-expansion since it does not possess the characterisifmgstoupling power structure [15]
of quantum mechanics and field theory, which the final resudex@ression will always have by construction. The
power structure is disturbed by additional logarithmiaener Second, thé-expansion is, in the example, equivalent
to choosing, on dimensional grounds, the exponrent 2 in [15], which is far from the correct value 0.843 to
be derived below. Thus thi&expansion is inapplicable, and this explains the problerwswhich BR run in their

25



resummation attempt. Most importantly, they do not find disieaped plateau of the variational expressidityg, 2)

as a function o which would be necessary for invoking the principle of minimensitivity. Instead, they observe
that the zeros of the first derivativésA(D (g, 2) run away far into the complex plain. Choosing the compldutsans

to determine their final resummed value misses the correcbgt3% up to the 35th order.

One may improve the situation by trying out variouffelientw-values and choosing the best of them yielding an
acceptable plateau ifn(g, z). This happens fow ~ 0.843. However, even for this optimal value, the resummation
result never converges to the correct limit. Adg) the error happens to be numerically small, only 0.1%, bwillt
be uncontrolled in physical problems where the result isomn.

Let us explain these points in more detail. BR consider thakamupling series with the reexpansion parameter

0.
N dg ~ |
A(6,Q) = — - a, Whereaszxfxdx, 139
6.9) ;( 1_6) KO (139)
with
4x? 2 X
K(x) = PRI f(x) = ” arctané. (140)

The geometric series in (139) can be summed exactly, andethdtrmay formally be reexpanded into a strong-
coupling series ith = V1 -6/(6Q):

3 69f(x) s Cm _ (T m
A(&,g)_f K( )—\/_+6gf(x) x_mzzobm( h™, where bmy, fo K() f~™(x) dx. (141)

The strong-coupling limitis found fdr — 0 whereA — by = fom dx K(x) = 1. The approach to this limitis, however,
not given by a strong-coupling expansion of the form (141). Madsild only happen if all the integrals;, were to
exist which, unfortunately, is not the case since all irtéyforb,, with m > 0 diverge at the upper limit, where

T
f(x) = - arctané ~ (142)

The exact behavior o in the strong-coupling limih — 0 is found by studying theffect of the asymptotia/x-
contribution off (x) to the integral in (141). Fof(X) = n/x we obtain

dx = (143)

f‘” ) 1 a* + 2rnh - 7Th+2h+47rhlogh/7r
0 1+h/f(X) (m+h)

The logarithm ofh shows a mismatch with the general asymptotic form of thelr§sb], which and prevents the
expansion (139) to be a candidate for variational pertishaheory.

We now explain the second criticism. Suppose we ignore tstedamonstrated fundamental obstacle and follow
the rules of thé-expansion, defining thieth order approximani(s, «) by expanding (139) in powers 6fup to order
st settings = 1, and defining = g. Then we obtain th&th variational expression fdm:

sz=i A=), (144)

=1

with w = 2, to be optimized irz. This w-value would only be adequate if the approach to the strangpling limit
behaved likeA + B/h? + ..., rather than (143). This is the reason why BR find no real regifrminimal sensitivity
onz

Let us attempt to improve the situation by determininglynamically by making the plateau in the plots of
A®(w, h) versush horizontal for several dierentw-values. The result i& ~ 0.843, quite far from the naive value
2. This value can also be estimated by inspecting plots'ofw, h) versush for several dferentw-values in Fig. 25,
and selecting the one producing minimal sensitivity. Itqurces reasonable results also in higher orders, as is seen in
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0.5 1 15 2.5

Figure 25: Plot of - b(()l‘)(cu, 2) versusz for L = 10 andw = 0.6, 0.843 1, 2. The curve witho = 0.6 shows oscillations. They decrease with
increasingw and becomes flat at about= 0.843. Further increase aof tilts the plateau and shows no regime of minimal sensitiitythe same
time, the minimum of the curve rises rapidly above the cavatue of 1- by = 0, as can be seen from the upper two curvesdJer 1 andw = 2,
respectively.
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1 -1

0 0.5 1 1.5 0 1 2
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-0.0009

0.2 -0.0012
-0.0015
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Figure 26: Left-hand column shows plots oﬂth)(w, 2)forL =10, 17, 24, 31 38, 45withw = 2 of §-expansion of BR, right-hand column with
optimalw = 0.843. The lower row enlarges the interesting plateau regibiise plots above. Only the right-hand side shows minimatgiwity,
and the associated plateau lies closer to the correct valubgl= 0 than the minima in the left column by two orders of magnitu&ill the
right-hand curves do not approach the exact limitlfer oo due to the wrong strong-coupling behavior of the initialdtion.

-0.00125

-0.00126

-0.00127 o

Figure 27: Deviation of + béLglatealIw = 0.843) from zero as a function of the order Asymptotically the value-.001136 is reached, missing the

correct number by about D%.
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Fig. 26. The approximations appear to converge rapidly.tBaifimit does not coincide with the known exact value,
although it happens to lie numerically quite close. Extiafiog the successive approximations by an extremely
accurate fit to the analytically known large-order behajd®] with a functionb&%latealgw =0843)=A+BL* we
find convergence té = 1 — 0.001136, which misses the correct lindit= 1. The other two parameters are fitted best
by B = —0.002495 and = 0.922347 (see Fig. 27).

We may easily convince ourselves by numerical analysisttieaerror in the limiting value is indeed linked to
the failure of the strong-coupling behavior (143) to have plower structure of [15]. For this purpose we change
the functionf(x) in equation (140) slightly intd(x) — f(x) = f(X) + 1, which makes the integrals fo, in (141)
convergent. The exact limiting value 1 afremaines unchanged, tﬁﬁ) acquires now the correct strong-coupling
power structure of [15]. For this reason, we can easily yehifit the application of variational theory with a dynanhica
determination ofv yields the correct strong-coupling limit 1 with the expotialty fast convergence of the successive
approximations fot. — co like b{” ~ 1 — exp (-1.909- 1.168L).

It is worthwhile emphasizing that an escape to complex zettish BR propose to remedy the problems of the
d-expansion is really of no help. It has been claimed [53] ambatedly cited [49], that the study of the anharmonic
oscillator in quantum mechanics suggests the use of conegleema to optimize thé&-expansion. In particular, the
use of so-calledamiliesof optimal candidates for the variational parametbas been suggested. We are now going
to show, that following these suggestions one obtains badmenation results for the anharmonic oscillator. Thus we
expect such procedures to lead to even worse results intfietaretic applications.

In quantum mechanical applications there are no anomaliousndions in the strong-coupling behavior of the
energy eigenvalues. The growth parameteasdw can be directly readfbfrom the Schrodinger equation; they are
a = 1/3 andw = 2/3 for the anharmonic oscillator (see Appendix A). The véoizl perturbation theory is applicable
for all couplings strengthg as long aﬁ)f)L) (2) becomes stationary for a certain valuezofor higher orders it must

exhibit a well-developed plateau. Within the range of theggru, various derivatives bg)(z) with respect ta will
vanish. In addition there will be complex zeros with smalagimary parts clustering around the plateau. They are,
however, of limited use for designing an automatized computogram for localizing the position of the plateau. The
study of several examples shows that plotlﬁrgd(z) for various values of andw and judging visually the plateau is
by far the safest method, showing immediately which valdesandw lead to a well-shaped plateau.

Let us review briefly the properties of the results obtaimedifreal and complex zeros G{bgL) (2) for the anhar-

monic oscillator. In Fig. 28, the logarithmic error bgL) is plotted versus the ordér At each order, all zeros of the
first derivative are exploited. To test the rule suggestg83h only the real parts of the complex roots have been used
to evaluatebgL). The fat points represent the results of real zeros, thegtbiimts stem from the real parts of complex
zeros. Itis readily seen that the real zeros give the betteit: Only by chance may a complex zero yield a smaller
error. Unfortunately, there is no rule to detect these autti events. Most complex zeros produce large errors.

20 SR

-30

-40

0 20

Figure 28: Logarithmic error of the leading strong-couglimefﬁcientbg‘) of the ground state energy of the anharmonic oscillator wthotential.
The errors are plotted over the ordeof the variational perturbation expansion. At each ordégesios of the first derivative have been exploited.
Only the real parts of the complex roots have been used tumg‘). The fat points show results from real zeros, the smallentpaghose from
complex zeros, size is decreasing with distance from raal ax

We observe the existence of families described in detalléntéxtbook [6] and rediscovered in Ref. [53]. These
families start at abou¥l = 6, 15, 30, 53, respectively. But each family fails to converge to therect result. Only
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Figure 29: Deviation of the cdicient bg‘) from the exact value is shown as a function of perturbatieedr on a linear scale. As before, fat dots
represent real zeros. In addition to Fig. 28, the resultsinétl from zeros of the second derivativebﬁf are shown. They give rise to own families

with smaller errors by about 30%. At = 6, the upper left plot shows the start of two families beloggto the first and second derivative bgf),
respectively. The deviations of both families are negat®a the upper right-hand figure, an enlargement visualizesi¢xt two families starting
atN = 15. Their deviations are positive. The bottom row shows tvaserenlargements of families startinghit= 30 andN = 53, respectively.
The deviations alternate again in sign.

a sequence of selected members in each family leads to amexj@ convergence. Consecutive families alternate
around the correct result, as can be seen more clearly int@fibe deviations obgL) from theirL — oo -limit in

Fig. 29, where values derived from the zeros of the secondadise of bf)L) have been included. These give rise to
accompanying families of similar behavior, deviating vilte same sign pattern from the exact result, but lying closer
to the correct result by about 30%.

9. Appendix B: Ground-State Energy from Imaginary Part

We determine the ground state energy functig(g) for the anharmonic oscillator on the cut, i.e. &« 0 in the
bubble region, from the weak coupling dbeientsa, of equation (97). The behavior of tlaefor largel can be cast
into the form

L
ajaa=-) Bl (145)

i=
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Thep; can be determined by a high precision fit to the data in thelarggion of 250< | < 300 to be

3 95 113 391691 40783 1915121357 10158832895 70884236139235
ﬁ‘l"’*l'"':{‘g’ T2°24 6 3456° 48 ° 248832 ' 124416 ° 71663616 (146)
60128283463321286443690892 144343264152266351954117229 2627843837757582
4478976 1423 43743 6 : 2339 ’
2306193875978631212218697797042541831507430222441029
10 : 24 ’ 3550 : } ’

where the rational numbers up fe= 6 are found to be exact, whereas the higher ones are appitixirs.a
Equation (145) can be read as recurrence relation for thificeatsa.. Now we construct an ordinary féérential
equation forE(g) := EV [9) from this recurrence relation and find:

O,weal
d L L+1 d j
{(gd—g) OYEIC22)

All coefficients being real, real and imaginary partki(fy) each have to satisfy this equation separately. The point
g = 0, however, is not a regular point. We are looking for a solutiwhich is finite when approaching it along the
negative real axis. Asymptoticallg(g) has to satisfyE(g) ~ exp (1/g8-1) = exp (1/3g). Therefore we solve (147)
with the ansatz

E(g)=0. (147)

E@) = o exuo[3—1g = bk(—g)k] (148)
k=1

to obtaine = -1/2 and

24 32 ° 1152° 1024 ° 3072 ° 12288 ° 688128 ° 524288  °
(149)
1248602386820060039145318083994027041603166312579836720279641736960567921

139886592 ’ 54391637278720 ’ 1435939224158208 ’
109051824717547897884794645746723574017678173074497482074500364087}

348951880031797248 ’ 3780312033677803520

b {95 619 200689 2229541 104587909 7776055955 9339313153349172713593813181
1,23,... =

This is in agreement with equation (100) and an improvemempared to the WKB results of [52]. Again, the first
six rational numbers are exact, followed by approximatesone

10. Appendix C: First-Order Di fferential Equations for E,(Q)
Given a one-dimensional quantum system

(Ho + g V)In,g) = Ex(9)In, @) (150)

with HamiltonianH = Hp + g V, eigenvalue&,(g) and eigenstatgs, g) we consider an infinitesimal increadg in
the coupling constarg. The eigenvectors will undergo a small change:

In.g+dg) =1In,g)+dg > unlk g (151)
k#n
so that

d
g9 =D, undk 9. (152)

k#n
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Given this, we take the derivative of (150) with respeaj gind multiply by{m, g| from the left to obtain:

(M gV - E@IN, 8 = > tnkm giHo + g V - En(g)Ik, 0) . (153)

k#n

Setting nowm = nandm # nin turn, we find:

En(9) =Vm(9) (154)
an(g) =Unm (Em(g) - En(g)) B (155)

whereVmg(g) = (m, glVin, g).

Equation (154) governs the behavior of the eigenvaluesradtifins of the coupling constagt In order to have a
complete system of fferential equations, we must also determine howth¢g) change, wheg changes. With the
help of equations (152) and (155), we obtain:

Vin = > Uk gVIN, ) + > unm. gIVIK. @) (156)
k#m k#n
Vr,nn — mGan n mGan (157)

Em — Ex e En— Ex '

k#m

Equations (154) and (157) together describe a completd séfferential equations for the energy eigenvalbg)
and the matrix-element,n(g). The latter determine via (155) the expansionfiiontsumn(g). Initial conditions
are given by the eigenvalu&s(0) and the matrix element4,(0) of the unperturbed system.
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