
Optical phonon lineshapes and transport in metallic carbon nanotubes under high bias voltage

Jürgen Dietel
Institut für Theoretische Physik, Freie Universität Berlin, Arnimallee 14, D-14195 Berlin, Germany

Hagen Kleinert
Institut für Theoretische Physik, Freie Universität Berlin, Arnimallee 14, D-14195 Berlin, Germany

and ICRANeT, Piazzale della Repubblica 1, 10-65122 Pescara, Italy
�Received 13 July 2010; revised manuscript received 4 October 2010; published 19 November 2010�

We calculate the current-voltage characteristic of metallic nanotubes lying on a substrate at high bias voltage
showing that a bottleneck exists for short nanotubes in contrast to large ones. We attribute this to a redistri-
bution of lower-lying acoustic phonons caused by phonon-phonon scattering with hot optical phonons. The
current-voltage characteristic and the electron and phonon distribution functions are derived analytically, and
serve to obtain in a self-contained way the frequency shift and line broadening of the zone-center optical
phonons due to the electron-phonon coupling at high bias. We obtain a positive offset on the zero bias shift and
no broadening of the optical phonon mode at very high voltages, in agreement with recent experiments.
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I. INTRODUCTION

Carbon nanotubes are one of the strongest and stiffest
materials which can sustain very high currents before break-
ing. This electric property makes metallic nanotubes an in-
teresting alternative to nanometer-sized metallic wires. Since
nanotubes can behave like semiconductors, their possible use
in logic electronic circuits is promising. This has recently led
to a number of experiments evaluating their current vs volt-
age characteristic at high bias voltage,1–9 with related theo-
retical work in Refs. 10–15.

At low voltage, the current-voltage characteristic is
mainly influenced by acoustic phonons and by impurity scat-
tering. At higher voltage, optical phonons become important.
For metallic nanotubes on a substrate, the current vs voltage
curve is increasing, in contrast to suspended nanotubes
where the characteristic shows a negative differential con-
ductivity at high bias.5

We shall review in Sec. II the current-voltage characteris-
tic of metallic nanotubes lying on a substrate. Following
Refs. 11 and 12 we use a Boltzmann approach for the elec-
trons coupled to zone-center and zone-boundary optical
phonons. We take into account explicitly the dynamics of the
phonons by a Boltzmann equation containing an inelastic
term to describe the decay of optical phonons into underlying
acoustic phonons.11,12 We use first the so-called single-mode
relaxation time approximation for the scattering term.16 This
is characterized by a thermal phonon relaxation time �op. For
the electron-phonon relaxation time �ep we use a numerically
determined value,10,17 which reproduce very well the experi-
mentally determined lifetimes of optical phonons. This pro-
ceeding agrees with the numerical work of Refs. 11 and 12 in
which the current-voltage characteristic of short nanotubes
with lengths smaller than 1 �m is calculated. In contrast to
this, Sundqvist et al.13 have in their calculation �ep values
which are around three times smaller than the experimental
values. They determine the current-voltage characteristic of
nanotubes larger than 1 �m using the one-valley approxima-
tion for the electrons. This implies that the electrons are scat-
tered only by one type of phonons, i.e., zone-center phonons,

between the bands within this valley. By using the experi-
mentally determined thermal phonon relaxation lifetime of
�op�1.1�0.2 ps,18,19 we reach a good agreement with the
experimentally determined current-voltage characteristics of
large nanotubes. This is in contrast with what happens in
short nanotubes, which one has to use at least a five times
larger thermal phonon relaxation time to find a reasonable
agreement with experiment.

Due to the low dimensionality of a carbon nanotube sys-
tem in which a fast initial decay of optical phonons is fol-
lowed by a slow decay of only a small amount of secondary
acoustic phonons,20 we expect a bottleneck in the relaxation
path for the hot optical phonons generated by charge-carrier
scattering. This idea was used in Ref. 20 to explain the large
discrepancy between the radial breathing mode lifetimes
measured by Raman-scattering experiments, and by tunnel-
ing experiments. Such a bottleneck leads of course to larger
effective thermal relaxation times for the optical phonons. In
Sec. III we shall describe this fact effectively by taking into
account in the phonon Boltzmann description the secondary
acoustic phonons in a simple model. By using suitable sec-
ondary phonon relaxation times, we were able to reproduce
the experimentally determined current-voltage curve also for
short tubes. Our result shows that for long tubes the system
does not exhibit a phonon bottleneck, in contrast to short
nanotubes. We explain this by the fact that at tube length
smaller than 1 �m, the thermal scattering lengths of many
acoustic phonons reaches the systems size which then dy-
namically closes relaxation paths for the optical phonons.

We find a similar effect in the interaction of phonons with
the electron system under bias voltage. It was shown in Refs.
11 and 12 for short nanotubes that one finds a large increase
in the phonon distribution function at the boundaries of the
tube. We observe an even worse situation, that we do not find
any numerical solution for the Boltzmann equation when set-
ting the optical phonon velocities to zero. In contrast to this,
we see for long tubes a phonon distribution function which is
peaked in the center of the nanotube, in agreement with ex-
periments for large suspended tubes.21 In order to understand
this effect better, we solve in Sec. IV the system of Boltz-
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mann equations for the charge carriers and the phonons ana-
lytically within certain approximations. We succeeded in re-
producing especially well the large-voltage small-length
regime of the numerical determined current-voltage curves.
Our calculation shows that the reason for the increase in the
temperature at the boundary of tube is again based on the
fact that using the phonon relaxation path for small tubes, the
electron phonon coupling part in the phonon Boltzmann
equation creates effectively an additional phonon relaxation
term with a negative sign. This leads to the increase in the
phonon temperatures at the boundaries of small tubes.

In the analytical calculations of Sec. IV we determine the
electron distribution function under high bias voltages. The
appearance of this distribution function is of course much
different from the Fermi distribution function in thermody-
namical equilibrium. The knowledge of this function opens
up a number of possible applications. For example, in Sec. V,
we calculate the level broadening and frequency shift of the
zone-center optical phonons mediated by the electron-
phonon interaction under high bias voltage. We find a posi-
tive frequency offset on the zero-bias shift for very large bias
voltages, in contrast to the frequency shift mediated by the
phonon-phonon scattering with phonons in thermal equilib-
rium. For very large nanotubes we obtain also a negative
frequency offset due to the electron-phonon interaction. The
electron-phonon mediated zero-bias broadening of the zone-
center optical mode vanishes at high voltages. The results for
very high voltages are in agreement with a recent experiment
measuring the influence of the high bias on the phonon
modes of carbon nanotubes lying on a substrate.6

Summarizing, in Sec. II we discuss the results of the
coupled electron-phonon Boltzmann system in the
relaxation-time approximation numerically. In Sec. III the
secondary acoustic phonons in the Boltzmann equation are
taken into account. We shall carry out in Sec. IV an analyti-
cal calculation of the current-voltage characteristic, the elec-
tron and the phonon distribution functions. These functions
are used in Sec. V to calculate the level broadening and
frequency shift of the optical zone-center phonons mediated
by the electron-phonon interaction under high bias voltage.

II. CURRENT-VOLTAGE CHARACTERISTICS
OF CARBON NANOTUBES

The method we use here to calculate the current-voltage
characteristic of metallic nanotubes is based on the semiclas-
sical Boltzmann equation. Within this method quantum inter-
ference corrections to the conductivity are not taken into
account.22 It was shown just recently through numerical cal-
culations that these corrections to the conductivity are negli-
gible above room temperature for single-walled carbon nano-
tubes without structural defects due to phonon scattering
decoherence mechanisms.23 Other works using the semiclas-
sical Boltzmann equation for electron or phonon transport
not mentioned yet are found in Refs. 24 and 25.

The energy levels of electrons in a nanotube consists of
one-dimensional bands positioned in the graphene Brillouin
zone around the K and K� points. For metallic nanotubes
two energy bands corresponding to right �R� and left �L�

moving electrons cross at these points. In the following, we
assume here that the diameter D of the nanotube and the
applied bias voltage U is so small that we can neglect elec-
tron excitations to higher bands. For example, this is valid
for a nanotube with diameter D�2 nm when we apply a
bias voltage of less similar to U�2 V. The electron distri-
bution functions for a nanotube under bias voltage around
the K and K� points are equal which we denote by
fL/R�k ,x , t�. At larger voltages only the optical phonons are
relevant as a source of electron-hopping between the bands.
The hopping between one band at K and the other at the K�
point are mediated by zone-boundary optical phonons where
only Kekulé type of lattice distortions couple to the elec-
tronic system.26 We denote in the following the correspond-
ing phonon distribution function by nK�k ,x , t�. The hopping
between bands at the same K or K� points are mediated by
longitudinal zone-center optical phonons with phonon distri-
bution n��k ,x , t�.10 The time evolution of the electrons are
governed by the semiclassical Boltzmann equation

��t � vF�x +
eE

�
�k� fL/R = ��t fL/R�c, �1�

where the collision term ��t fL/R�c���t fL/R�e+ ��t fL/R�fs
+ ��t fL/R�bs consists of an elastic scattering term ��t fL�e
=vF / le�fR�k�− fL�k�� due to acoustic-phonon scattering �in
the quasielastic limit� and impurity scattering. le is the elastic
scattering mean-free path. We assume here le=1600 nm.3,11

The electron velocity vF is given by vF=8.4�107 cm /s and
e�e	0� is the electronic charge.

��t fL/R�fs is a forward scattering term which should have a
minor effect especially for higher applied voltages since it
does not change the propagation direction. The time evolu-
tion of optical phonons is given by

��t + vop

 �k��x�n
 = ��tn


�c + ��tn

�osc, �2�

where 
=� ,K denotes zone-center or zone-boundary
phonons. We use here vop

� =sgn�k�2.9�105 cm /s and vop
K

=sgn�k�7.2�105 cm /s.11,17 The term ��tn

�c is due to

phonon-electron scattering while the term ��tn

�osc represents

thermal phonon relaxation. Note that the coupled electron-
phonon system is not heated up by applying large voltages
on the nanotube due to this term, which accounts effectively
for the scattering of optical phonons into underlying �acous-
tical� phonons.

Scattering of phonons with electrons leads to two scatter-
ing contributions in the electronic Boltzmann Eq. �1� as well
as in the phononic Boltzmann Eq. �2�. When restricting on
the backward scattering contributions we obtain for the elec-
tronic scattering term

��t fL�bs = �



1

�ep

 	�n
�k+,x� + 1�fR�kR��+��	1 − fL�kL����


− n
�k+,x�	1 − fR�kR��+��
fL�kL����

+ n
�− k−,x�fR�kR��−��	1 − fL�kL����


− �1 + n
�− k−,x��	1 − fR�kR��−��
fL�kL����
 �3�
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with k�=kR����−kL��� and ��=����
. The corresponding
phononic scattering term results in

��tn

�c = �




s


�ep

 ��n
�k,x� + 1�	fR�kR

+��1 − fL�kL
−��

+ fL�− kL
−��1 − fR�− kR

+��
 − n
�k,x�

�	fL�kL
−��1 − fR�kR

+�� + fR�− kR
+��1 − fL�− kL

−��
� ,

�4�

where kR/L
� =kR/L���k /2����
 /2�. The number s
 is given by

sK=1 for zone-boundary phonons and s�=2 for zone-center
ones.11 In order to derive these numbers one has to take into
account that momentum phase space of the phonons is twice
as large as the phase space of the electrons. Further one has
to consider the fact that the electron jumps from the K to the
K� band are mediated by K phonons but the reverse jumps
by K� phonons. On the other hand jumps of electrons within
the same valley are mediated by the same � phonons. Fi-
nally, we mention here that we used the boundary
conditions11

fL�kL���,L� = fR�kR���,0� = nF��� , �5�

n
�k 	 0,0� = n
�k  0,L� = nB
op, �6�

where nF��� is the Fermi function for a metallic nanotube
with zero gate voltage at room temperature, i.e., nF���
=1 / �1+e�/kBT�, and nB

op is the Boltzmann factor for optical
phonons at room temperature given by nB

op�0.0014. We use
optical phonon frequencies ��K=161 meV and ���

=196 meV. The electron-phonon scattering times for zone-
center and zone-boundary optical phonons are given by �ep

�

=538 fs and �ep
K =219 fs �Ref. 10� where we assume tube

diameters of around 2.0 nm typical in existing current-
voltage experiments in the literature.

Our method to solve Eqs. �1� and �2� is based on the
numerical time integration by the standard splitting
method.27 We discretize the differential equations in momen-
tum and position space.28 To integrate the collisionless free
electron and phonon equations in some time step, we use the
exact solution of the equations in the case of the electron
motion. This means that the time step values are fixed by the
space grid. The free phonon motion in one time step is given
by the up integration of the collisionless discrete version of
Eq. �2� on the space grid.

In this section, we use a standard single-mode relaxation-
time approximation for the optical phonon scattering term
��tn


�osc given by

��tn

�osc = −

1

�op
�n
 − nB

op� . �7�

Note that this approximation is only valid for the system
lying on a substrate. For the suspended nanotube system one
has to take into account explicitly the heat transfer by acous-
tic phonons to the leads.5 We assume in our calculation that
the thermal relaxation time �op is similar for zone-center and
zone-boundary optical phonons. This approximation is justi-
fied for graphene in Ref. 29 where it is shown that the relax-

ation times of both phonon types are almost equal for acous-
tic phonon temperatures a little higher than the room
temperature. We do not expect a difference for carbon nano-
tubes. These temperatures are immediately reached at the
high-voltage experiments we are interested in.6,7,9,21

First we calculate the current-voltage characteristic for
nanotubes of length larger than 1 �m in the vicinity of �op
=1.1 ps. This value is chosen since Song et al.18 determined
experimentally �op=1.1�0.2 ps in agreement to the experi-
ment of Kang et al. in Ref. 19.

In the upper panel in Fig. 1 the current-voltage character-
istic determined with help of Eqs. �1�–�7� is shown for nano-
tubes at bias voltage U=EL=1 V as a function of their
length for various relaxation times �op in the vicinity of the
experimentally determined relaxation time. The solid curve
in the figure is given by the experiment carried out by Sun-
dqvist et al. in Ref. 8. In this experiment the nanotube length
was effectively varied by changing the distance between the
electrodes where the bias voltage is applied.

We get the best agreement within the experimental uncer-
tainties for the quantity �op=1.1�0.2 ps at value �op
=0.9 ps. In the lower panel in Fig. 1, we calculate the
current-voltage characteristic of nanotubes for �op=0.9 ps as
a function of the tube length for various bias voltages. Figure
2 shows the average phonon density for a nanotube at length
L=3000 nm, U=1 V and �op=0.9. This density is deter-
mined by

n̄
�x� =
1

2eEL
�

eE�x−L�

eEx

d�	n
�2kL���,x� + n
�2kR���,x�
 . �8�

The factor 2 in the denominator is necessary due to the fact
that we average over the right- and left-moving electron
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FIG. 1. �Color online� Upper panel shows the current-voltage
characteristic of long nanotubes with diameter D=2.0 nm for bias
voltage U=1 V calculated by the help of Eqs. �1�–�7� for various
thermal relaxation times �op �solid curves� and le=1600 nm. The
dotted curve shows the current-voltage characteristic of a D
=2.8 nm nanotube, i.e., it uses �2�ep


 as the electron-phonon scat-
tering times, and �op=0.9 ps. The �black� circles are given by the
experiment �Ref. 8�. The lower panel shows the current-voltage
characteristic of long nanotubes with diameter D=2.0 nm for vari-
ous bias voltages, �op=0.9 ps and le=1600 nm.
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bands. We obtain phonon densities which are peaked in the
center of the nanotubes. This behavior is in accordance to
experiments21 for suspended nanotubes. We show also in this
figure the space averaged phonon densities n̄
=dxn̄
�x� /L
as a function of the tube length for various bias voltages.

One reason for the small difference in the current-voltage
characteristic between experiment and theory in the upper
panel of Fig. 1 at large nanotube lengths is due to the fact
that the diameter D of the tube in the experiment Ref. 8 is in
fact a little larger than 2 nm. Although the diameter was not
measured explicitly in Ref. 8 one can estimate it by the fact
that Sundqvist et al. measured approximately half of the dif-
ferential resistivity for short distances between the electrodes
in comparison to the value in Refs. 3 and 4. In these experi-
ments the current-voltage characteristic of short nanotubes
with a measured diameter D�2 nm was recorded. By using
an analytical theory for the current-voltage characteristic
which will be derived in Sec. IV and further that the
electron-phonon scattering time �ep


 is proportional to the di-
ameter D of the nanotube10 we obtain that D��2�2 nm
�2.8 nm. We show in the upper panel in Fig. 1 by the
dotted curve the theoretically calculated current-voltage
characteristic for a 2.8 nm nanotube, i.e., �ep


 is now a factor
�2 larger than for the 2.0 nm nanotube already used before,
and �op=0.9 ps.

In contrast to the small undershooting of the theoretically
determined current-voltage curve in comparison to the ex-
perimental curve for large lengths in Fig. 1, we obtain for
small nanotube lengths an overshooting of the curve. The
reason for this different behavior between large and small
nanotube lengths will be discussed in the following.

Next, we determine the current-voltage characteristic of
short nanotubes. In Fig. 3 we show the current-voltage char-

acteristic for a nanotube of length L=300 nm as a function
of the bias voltage U for various phonon relaxation times
�op. The solid curve is given by the experiment.4 We obtain
the best agreement between experiment and theory for the
differential conductivity dU /dI�220 k� at �op�9.1 ps. It
is astonishing that this optical phonon relaxation time is
much larger than the experimentally determined optical pho-
non relaxation time �op=1.1�0.2 ps. The reason for this
discrepancy will be discussed in the next section. Note that
we obtain in Fig. 3 in the low-voltage regime a better agree-
ment between the theoretically and experimentally deter-
mined curves by using smaller elastic scattering lengths
le1600 nm.

III. SECOND-GENERATION PHONONS

From Fig. 3 we see that a satisfactory agreement between
the experimentally and numerically determined current-
voltage characteristic is only reached for �op�1.1 ps. On
the other hand, recent phonon lifetime experiments on
carbon nanotubes show that �op�1.1 ps for zone-center
phonons.18,19 These measured phonon lifetimes are governed
by the decay of zone-center phonons to two lower energetic
second-generation phonons where the number of these decay
channels should be rather small for one-dimensional nano-
tube systems in contrast to higher dimensional systems such
as graphene or graphite.20 The second-generation phonons
are typically acoustic ones which then again scatter in two
acoustic phonons with even lower energy and longer wave-
length where this lifetime is much longer than of the primary
optical phonons. The reason for the longer lifetime comes
from the fact that the three phonon matrix element vanishes
in the long-wavelength limit and further that the phase space
for phonon decay is smaller for lower phonon energies due to
energy conservation. The long lifetime of secondary phonons
and the small amount of possible decay channels could lead
to a bottleneck in the decay process. This means that a sig-
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FIG. 2. �Color online� Left panel shows the phonon-density dis-
tribution functions n̄K�x� �solid curves� and n̄��x� �dashed curves�
defined in Eq. �8� for U=1 V, �op=0.9 ps and L=3000 nm. The
black curve is calculated by using the former defined vop

�

=sgn�k�2.9�105 cm /s and vop
K =sgn�k�7.2�105 cm /s �Refs. 11

and 17�. The red curves uses vop
� /5 and vop

K /5 as phonon velocities.
The curves lie practical on top of each other. The right panel shows
position-averaged phonon distribution functions n̄K �solid curves�
and n̄� �dashed curves� for U=0.4 V �lower red curves� and
U=1 V �upper black curves� for �op=0.9 ps.
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FIG. 3. �Color online� Current-voltage characteristic of a L
=300 nm nanotube calculated by the help of Eqs. �1�–�7� for vari-
ous thermal relaxation times �op �dashed curves� and le=1600 nm.
The �black� solid curve is given by the experiment �Ref. 4�. The
�red� dotted curves are calculated for �op=9.1 ps, le=800 nm
�upper curve�, and le=400 nm �lower curve�.

JÜRGEN DIETEL AND HAGEN KLEINERT PHYSICAL REVIEW B 82, 195437 �2010�

195437-4



nificant amount of secondary phonons are assembled in the
decay of hot phonons generated by charge carriers through
the electron-phonon interaction. When this nonequilibrium
amount of secondary phonons is similar to the number of
equilibrium phonons following the Bose-Einstein distribu-
tion the single-mode relaxation time method leading to the
appearance of the scattering expression �7� is no longer valid.
In Ref. 20 it was argued that this fact is responsible for the
considerable difference in the lifetime measurements of the
radial breathing mode by using either Raman-scattering ex-
periments or electron tunnel experiments. The decay channel
can then be described by the following Boltzmann
equations30 when neglecting the phonon velocities vop


 �0 on
the left-hand side of Eq. �2�,

�tn

 =

1

�op
�− n
�1 + nac�2 + �1 + n
�nac

2 � + ��tn

�c, �9�

�tnac =
1

p�op
�n
�1 + nac�2 − �1 + n
�nac

2 � −
1

�ac
�nac − nB

ac� .

�10�

Here the first term in the brackets in Eq. �9� describes the
scattering of the optical phonons with distribution function
n
 into two secondary phonons with distribution function nac.
For simplicity we assumed that the secondary phonons fol-
low all the same distribution function.

The second term in the brackets in Eq. �9� describes the
reverse process. The second Eq. �10� describes the dynamics
of the secondary phonons. Here p denotes the number of
decay channels. For one-dimensional solids this number is
generally small.20 For simplicity we further assumed in Eq.
�10� that the secondary phonons are coupled to a heat bath
where the relaxation with this bath happens in time �ac
��op. The quantity nB

ac is the Bose factor for the secondary
phonons which we assume to be half of the frequency of the
optical primary phonons, leading to nB

ac�0.03 at room tem-
perature. Note that this choice is consistent with the fact that
we choose uniform secondary phonon distributions.

In the stationary case we have �tnac=0. Then we can solve
the second Eq. �10� for nac and insert the result into the first
equation which leads to an effective optical phonon scatter-
ing term

��tn

�osc = −

1

�op
��n
 − nB

ac�
p�op

�ac
−

1

2
� p�op

�ac
�2

+
1

2

p�op

�ac

�� p�op

�ac
− 2n
�2

+ 4�n
 +
p�op

�ac
nB

ac��
�11�

with limits

lim
p�op/�ac→�

��tn

�osc → −

1

�op
�n
�1 + 2nB

ac� − �nB
ac�2� , �12�

lim
p�op/�ac→0

��tn

�osc → −

1

�op

p�op

�ac
��1 +�1 +

1

n
�n
 − nB
ac� .

�13�

As is seen from Eq. �12� in the case of no existent bottle-
neck, i.e., large p�op /�ac and small Boltzmann factors nB

op, nB
ac

valid in our case, we obtain the standard single-mode
relaxation-time approximation �7� for the optical phonon
scattering term.

In the following, we carry out the numerical calculation
by using Eqs. �1�–�4� with the optical phonon scattering term
�11� substituting Eq. �7�. From Eq. �11� we obtain that the
optical scattering term depends via �ac / p�op on the acoustic
scattering length. We show in the upper panel of Fig. 4 the
current voltage characteristic for various parameters
�ac / p�op, �op=1.1 ps and nanotubes of length L�300 nm.
This figure should be compared to Fig. 3 in the case of the
single-mode relaxation time approximation which uses Eq.
�7� for the optical phonon scattering term. We obtain a simi-
lar behavior of the current-voltage characteristic curves in
both approximations. The reason is seen from expression
�13�. We obtain from this expression and the fact that at
room temperature nB

ac , nB
op�1 as well as n
�1 for high bias

voltages, that for small p�op /�ac the effective optical phonon
scattering term ��tn


�osc has still the standard single-mode
relaxation form �7�. The effective relaxation time �op is then
changed to �op→�ac /2p which respects the fact that the re-
laxation of the optical phonons are effectively relaxed on 2p
channels of relaxation time �ac.

In the lower panel of Fig. 4 we show the current-voltage
characteristic for various nanotube lengths by using Eq. �11�
as the optical phonon scattering term with �ac / p�op=20 and
�op=1.1 ps. Figure 5 shows the energy-averaged phonon dis-
tribution function �8� n̄
�x� �left panel� and the energy and
position-averaged phonon distribution function n̄
 �right
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FIG. 4. �Color online� Upper panel shows the current-voltage
characteristic of a L=300 nm nanotube calculated by the help of
Eqs. �1�–�4� and �11� for various parameters �ac / p�op �dashed
curves� and �op=1.1 ps, le=1600 nm. The �black� solid curve is
given by the experiment �Ref. 4�. The lower panel shows the
current-voltage characteristic of various nanotubes with different
lengths for �op=1.1 ps and �ac / p�op=20, le=1600 nm.
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panel� for various nanotube lengths. We obtain that in con-
trast to the case of large nanotubes in Fig. 2, the short nano-
tubes show an increasing phonon density at the boundary of
the nanotube.11,12 We obtain from the left panel in Fig. 5 the
even worse fact of a diverging current-voltage characteristic
for phonon velocities vop


 →0. We shall understand this un-
usual behavior better in the next section where we show an
analytic solution of the Boltzmann system �Eqs. �1�–�7��.

Summarizing, by taking into account a possible bottle-
neck in the optical phonon relaxation path we obtain for an
optical phonon relaxation time �op=1.1 ps for large nano-
tubes an effective scattering parameter �ac / p�op=0 as the
best-fitting parameter to the experimental curves, i.e., no
phonon bottleneck is seen in this case. On the other hand for
small nanotubes and �op=1.1 ps we obtain an effective scat-
tering parameter of �ac / p�op=20. The reason for this discrep-
ancy between large and small nanotubes lies in the fact that
we have neglected the velocities of the secondary phonons in
the Boltzmann Eq. �10�. This leads in the case of the decay
of zone-center optical phonons to additional terms of the
form �vac�xnac

� in the left hand side of Eq. �10� where nac
�

stands for the left- and right-moving phonon in a scattering
pair. This means that we remove the restriction in the right-
hand sides of Eqs. �9� and �10� that the scattering pairs have
all the same distribution function. To see when the �vac�xnac

�

term becomes relevant in the Boltzmann equation we further
have to take into account the number of decay channels p for
nanotubes. In the following we restrict ourselves to the re-
laxation of the zone-center phonons. The argument for the
zone-boundary phonons works similar.

It was shown in Refs. 20 and 29 that in the case of
graphene the zone-center optical phonons scatter into three
sorts of different pairs of phonons lying on rings in the Bril-
louin zone around the � points where scattering into the

longitudinal acoustic sector is in fact the most dominant. In
order to estimate from this fact the number of pairs for a
nanotube with diameter of around 2 nm we use in the fol-
lowing the zone-folding approximation method. By using as
an approximation that in the case of graphene the decay rings
lie in the mids between the � and K point �best fulfilled for
the longitudinal mode20,29� we obtain as an estimate for the
number of decay pairs p�20 in a 2 nm nanotube. In order to
see no bottleneck in the relaxation process for large nano-
tubes we have �ac� p�op meaning that �ac�22 ps. On the
other hand for a nanotube of diameter 2 nm one obtains for
the lowest lying phonon modes in a simple model relaxation
times which are larger than around �ac�20 ps.31 This leads
us to the estimate �ac�20 ps for the effective acoustic re-
laxation time. With vac�21 km /s �we choose the maximum
velocity value for acoustic phonons in graphite32–34� we ob-
tain that the acoustic phonon velocity terms �vac�xnac

�

� �vacnac
� /L in the phonon Boltzmann equation becomes

relevant for L�420 nm. This is only a very rough approxi-
mation for this length.

At this length we find that for one participant of the scat-
tered acoustic phonon pairs this additional relaxation term is
not relevant since the relaxation path is already open. For the
other participant this term leads to a closing of the relaxation
path which we saw in our numerics as an increase in the
effective relaxation parameter �ac / p�op.

IV. ANALYTIC CALCULATION

Due to the similarity of the phonon frequency of zone-
boundary phonons �K and zone-center phonons �� and since
the electron-phonon coupling constants sK /�ep

K and s� /�ep
� are

similar we use in the following the simplification that the
nanotube system interacts with only one sort of phonons with
frequencies �. The effective electron-phonon scattering pa-
rameter �ep in the electronic sector, the electron-phonon scat-
tering parameter sp /�ep in the phononic sector and phonon
velocities vph are chosen in the following way:

�� = ���K

�ep
K +

��

�ep
� ��� 1

�ep
K +

1

�ep
� � = 170 meV,

1

�ep
= � 1

�ep
K +

1

�op
� � =

1

155 fs
,

sp

�ep
= � sK

��ep
K �2 +

s�

��op
� �2��� 1

�ep
K +

1

�ep
� � =

1

231 fs
,

vph =
vph

K

�ep
K +

vph
�

�ep
� �� 1

�ep
K +

1

�ep
� � = sgn�k�5.95 � 105cm

s
.

�14�

In the following discussion, we use the abbreviation lsc
r

�vF�ep / �2n̄+1� for the reduced effective scattering length
and lsc�L / �1+L / lsc

r � for the total scattering length.
Below, we solve the Boltzmann Eqs. �1� and �2� for large

voltages eU��� and lengths L� lsc
r analytically by the help
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FIG. 5. �Color online� Left panel shows the phonon-density dis-
tribution functions n̄K�x� �solid curves� and n̄��x� �dashed curves�
defined in Eq. �8� for U=1 V and �ac / p�op=20, �op=1.1 ps, and
L=300 nm. The black curve is calculated by using the former de-
fined phonon velocities vop

� =sgn�k�2.9�105 cm /s and vop
K

=sgn�k�7.2�105 cm /s �Refs. 11 and 17�. The upper �red� curves
use vop

� /5 and vop
K /5 as phonon velocities. The right panel shows

position-averaged phonon distribution functions n̄� �dashed curves�
and n̄K �solid curves� for U=1 V, �ac / p�op=20 and L=100 nm
�blue curves�, 300 nm �black curves� and 500 nm �red curves�.

JÜRGEN DIETEL AND HAGEN KLEINERT PHYSICAL REVIEW B 82, 195437 �2010�

195437-6



of two approximations. In the first approximation we use in
the electronic Boltzmann Eq. �1� positional and momentum-
independent phonon distribution functions n�k ,x�� n̄. We
shall determine n̄ then similarly to Eq. �8� where the energy
average is taken over those energies where n�k ,x� or fL�k ,x�,
fR�k ,x� are nonzero, respectively. Thus we neglect large �in-
finite� energy regions where the electron and phonon distri-
bution functions are zero since they do not contribute to the
current.

In the calculation below, we find for the energy-averaged
phonon distribution functions

n̄�x� =
1

2��u − �d���d

�u

d�n�2kL���,x� + n�2kR���,x� , �15�

where

�u = �eEx for �
eUlsc

L
� �� ,

�L

�lsc
for �

eUlsc

L
� ��� �16�

and

�d = �eE�x − L� for �
eUlsc

L
� �� ,

0 for �
eUlsc

L
� �� .� �17�

n̄ is then determined by the average

n̄ =
1

L
�

0

L

dxn̄�x� . �18�

The second approximation is given by a linearization of
the nonlinear scattering terms in Eq. �3� which can be iden-
tified by extracting the brackets in Eq. �3�. These terms are
equal to the terms followed by setting in Eq. �3� n
 equal to
zero. To linearize these terms we should take care on the

expansion points f̄ L where fL= f̄ L+�fL and similar for fR. In
a first crude approximation we use in the following as the

expansion point f̄ L= f̄R=1 which are the boundary values
�Eq. �5�� for fL and fR on the nonzero momentum support of
the electronic distribution function. Then we obtain

fR�kR�� + ��
��	1 − fL�kL����
 − fL�kL����

�	1 − fR�kR�� − ��
��
 � fR�kR�� − ��
�� − fL�kL���� .

�19�

A. Current-voltage characteristic and electron
distribution function

With the help of the approximations �18� and �19� one can
solve Eq. �1� with Eq. �3� using Fourier methods. After a
lengthy calculation carried out in Appendix we obtain for the
electron distribution function fL�x ,kL���� Eq. �A5� with Eqs.
�A6� and �A11�. The distribution function fR�x ,kR���� is then
given by fL�x ,kL���� with the help of the substitution �A4�.

The current-voltage characteristic is given by Eq. �A12�

I = 4
e

h
���B1�1 + L/lsc

r

�n̄
� +

eU

�1 + L/lsc
r �� , �20�

where B1�x� is defined in Eq. �A13� and plotted in Fig. 6. By
taking into account the regime n̄�1, vF�ep�130 we obtain
for L=300 nm that B1�0.5. By using lsc�10.4 nm �this
will be shown below by using Fig. 7� we obtain excellent
agreement with the numerically determined current-voltage
characteristic at high voltages shown in Fig. 3 and with
experiments3,4 measuring lsc�10–11 nm. Note that the first
term in Eq. �20� corresponds to the y-axis value obtained by
extending the high-voltage curves to this axis. For this we
further note that 4�e /h����26.6 �A.

Next, we discuss the current-voltage characteristic for
large lengths, i.e., lsc /L��ep /�op and low voltages �eU
���L / lsc. Here, we obtain n̄�1.2 �see the discussion in
Sec. IV B 2� leading with Fig. 6 to B1�1.3 for nanotube
lengths L�3000 nm. This leads to currents which are ap-
proximately two times the current values shown in Fig. 1.
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B1

FIG. 6. We show the function B1�x� defined in Eq. �A13�.
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FIG. 7. �Color online� The �black� solid curve is given by the
phonon distribution function n̄ as a function of the nanotube length
L calculated with the help of Eq. �A26� with Eqs. �A27�–�A29�. The

�red� dashed curve shows K̃1 �Eq. �A21�� as a function the nanotube
length L in the parameter regime R2 �Eq. �A17�� using n̄.
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Although this value is too large, the overall behavior of an
approximately length independent current for fixed bias volt-
age shown in the numerical calculation in Fig. 1, is also seen
in the analytic calculation.

Summarizing, from Eq. �20� we obtain a different behav-
ior of the current-voltage characteristic in the regime �eU
���L / lsc where the second term in Eq. �20� is the leading
contribution to the current and the regime �eU���L / lsc
where the first term is most relevant. The reason for this can
be seen in Eqs. �1� and �3�. At low optical phonon scattering
rates, i.e., �eU���L / lsc, electron scattering takes primarily
place from the upper part of the filled right-moving band to
the empty part of left-moving band. For higher scattering
rates �eU���L / lsc a large amount of electrons are also
able to be scattered from the upper part of the filled right-
moving band to the filled part of the left-moving band within
many scattering processes where now Pauli blocking prohib-
its this scattering. This Pauli blocking is only roughly de-
scribed by the linearized phonon scattering approximation
�19�. This is the reason that in the large length regime we
obtain less agreement between our numerical and analytical
results in contrast to nanotubes of smaller lengths.

B. Phonon distribution functions

Next, we determine the phonon distribution function
n�k ,x� by solving Eq. �2� with Eqs. �4� and �7�. We use here
in our analytical calculation for simplicity the standard
relaxation-time approximation �7� for the optical scattering
term instead of the more complicated scattering term �11�
which takes into account also the second-generation
phonons. As was discussed in Sec. III the differences in the
current-voltage characteristic are only minor when taking the
effective optical phonon relaxation times �op=0.9 ps for
long nanotubes and �op�9.1 ps for short ones. We shall de-
termine first the phonon distribution function n�k ,x� in the
regime �eU���L / lsc.

1. Phonon distribution function for �eUš��L Õ lsc

We obtain in Appendix for n�k ,x� Eqs. �A18�–�A20� for
k	0 in the different parameter regimes �Eq. �A15��. For
k0, n�k ,x� is given by n�−k ,−x� Eq. �A14� where the K1s
are defined in Eq. �A17�. From these equations we can cal-
culate the energy-averaged phonon distribution function
n̄�x�. This function is given by Eq. �A22� with Eqs.
�A23�–�A25�. From this function we obtain for the position-
averaged phonon distribution function n̄ Eq. �A26� with Eqs.
�A27�–�A29�. This function determines effectively the aver-
aged phonon distribution function by using the definition for

K̃1 �Eq. �A21�� in the regime R2 �Eq. �A15��. We solved this
equation analytically below Eq. �A30� in various nanotube
length regimes. In Fig. 7 we show the numerical solutions

for n̄ and K̃1 in the regime R2 as a function of the nanotube
length L. For a nanotube of length L=300 nm we obtain

lsc�10.4 and K̃1�0. For these values we obtain Eq. �A31�
for n̄�x� showing in fact a phonon distribution function which
increases at the boundary of the nanotube. From Eq. �A25�
we obtain that this behavior is even more pronounced for K̃1
values larger than zero.

2. Phonon distribution function for �eU™��L Õ lsc

In the following, we restrict ourselves to the regime where
lsc /L��ep /�op which is good fulfilled in the large length re-
gime considered in Sec. II. By taking into account Eqs. �A4�,
�A6�, and �A11� we obtain that n�k ,x��nB

ac only in the re-
gime ����vF�k� /2��L / lsc��1 where we take into account
that n̄�1 as will be shown immediately below.

This leads to Eq. �A34� for n�k ,x� and Eq. �A35� for n̄�x�,
n̄ in this regime. By taking into account sp�op /�ep�4.76 we
obtain n̄�1.2. Note this value is much larger than the nu-
merical determined values shown in Fig. 2.

V. ELECTRON-PHONON COUPLING INDUCED
FREQUENCY SHIFT AND LIFETIMES

OF OPTICAL PHONONS AT HIGH BIAS

By using the electron distribution functions fL Eq. �A5�
with Eqs. �A6� and �A11� and fR Eq. �A4� we are now able to
calculate the effect of a large bias voltage on the frequency
shift and lifetimes of optical phonons. We restrict our calcu-
lation to the Raman-active zone center � phonons. In this
section, we shall carry out a similar calculation as was done
in Ref. 35 for the frequency shift and lifetimes of optical
phonons at zero-bias voltage and temperature T=0. There,
the electron distribution functions fL and fR are Fermi func-
tions. The retarded phonon self-energy at zero momentum is
given by

�L,T��� = �
n
�

−1/2

1/2

dt��L,T�n,�� − �L,T�n + t,0�� , �21�

where �L,T�n ,�� is the self-energy contribution of the nth
electron band. Its value is given by35

�L,T�n,�� = − 4�
s,s�

�
k

dt���

b2 �2 �

NM��

�
1

2
�1 �

ss���2�n� − k2�
�2�n� + k2 �

�
f��s�n,k�� − f��s��n,k��

�� − �s�n,k� + �s��n,k� + i0
, �22�

where the electron bands for metallic nanotubes are given by

�s�n,k� = s�vF
���n�2 + k2 �23�

with ��n�=2�n /L. s=+1 for the energy levels in the conduc-
tion band �	0 and s=−1 for the energy levels in the valence
band �0. N is given by the number of unit cells and M is
the mass of a carbon atom. The subtraction of the last term in
Eq. �21� is due to the fact that in order to calculate the fre-
quency shift for nanotubes, we insert in the calculated ex-
pressions the known optical frequencies of graphene which
then results in a double counting when we only use the first
term in Eq. �21� as self-energy.35 The valley degeneracy is
here considered by a factor 2 in correspondence to similar
expressions in Ref. 35. The upper sign corresponds to the
self-energy of longitudinal phonons �L, the lower sign to the
transversal ones �T
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In the case of the frequency shift of the longitudinal and
transversal optical � mode Ishikawa et al. use the zero-
temperature Fermi function for f��s�n ,k��. The frequency
shift �� and broadening � is given by35

�� = Re�������, � = − Im������� . �24�

In Ref. 35 it is then shown that this leads to a good agree-
ment of the theoretically calculated frequency shifts and
broadenings by using Eqs. �21�–�24� and the experimentally
determined ones using Raman spectroscopic methods. In the
following, we carry out a similar calculation for the case of
the electron system under high bias voltage. For this we use
for f��s�n ,k�� in Eq. �22� for the lowest energy band, i.e.,
n=0, the distribution functions fL and fR calculated in the
last section. For the higher bands n�0 we shall use the
Fermi function since we did not take into account higher
band excitations in Sec. IV being negligible in the considered
voltage regime.

f��s�n,k�� = � fL�k� for n = 0 and k · s  0

fR�k� for n = 0 and k · s 	 0

nF��s�n,k�� for n � 0
� .

�25�

Expression �22� for the phonon self-energy corresponds to
a current-current Green’s-function loop being the lowest-
order approximation for the phonon self-energy. When using
dressed Green’s functions by taking into account the
electron-phonon interaction and also the external electric
field one has to use nonequilibrium Green’s-function tech-
niques in order to get the corresponding loop expression36

for the retarded phonon self-energy. The relevant Green’s
functions in the loop are given by lesser G and greater
Green’s functions G	. We now express these Green’s func-
tions by the spectral function and use the quasiparticle
approximation36 established for deriving the Boltzmann
equation. This leads to Eqs. �21� and �22� with Eq. �25�.

It is well known that, by using the free Green’s function in
loops as was done by Ishikawa et al.,35 this approximation is
conserved37 which means that the charge-current response
functions corresponding to the loop fulfill the continuity
equation.37 By using a more general dressed Green’s func-
tion in the loop one needs also vertex corrections in order to
fulfill the continuity equation. It is straightforward to show
that the current-density correlation functions corresponding
to Eqs. �21� and �22� with Eq. �25� which consist of dressed
Green’s function in loops with the additional quasiparticle
approximation does indeed fulfill the continuity equation.
This justifies approximations �21� and �22� with Eq. �25� for
the phonon self-energy at zero momentum to calculate the
phonon self-energy under high bias voltage.

In the following, we use the abbreviations

�̃ = �
�D

2�vF
, �26�

��D� =
27

�
�2�2��vF�

�3
� �2

2Ma3� 1

����2 a

�D
. �27�

Here a is �3 times the equilibrium bond length. With the
knowledge of the parameter �ep

� =538 fs determined by den-
sity functional methods for a nanotube of diameter 2 nm
�Ref. 11� we are able to determine � and thus ��D�. By using
that �ep

� is more generally proportional to the diameter of the
nanotube10 we obtain from Eq. �27� that

��D� � 0.1a/�D . �28�

With the help of Eqs. �21�, �22�, and �25� by using the
abbreviation �L���=�U=0

L ���+�U	0
L ��� we obtain

�T��� = ��D����2 −
�2

9
�̃2� , �29�

�U=0
L ��� = ��D����2 ln

2��̃

e
−

�2

18
�̃2 − i�� . �30�

�U	0
L is a correction factor to the zero-bias self-energy �U=0

L

�Eq. �30��. By taking into account that �T�n=0,��=0 �Eq.
�22�� we obtain that this factor is of similar order as the
zero-bias self-energy only in the longitudinal sector for eU
��vF2 /D. Note that we restrict here ourselves also to the
regime eU��vF2 /D as was done in the last sections by
taking into account that excitations to higher bands are neg-
ligible. We obtain for the self-energy �U	0

L

�U	0
L ��,x� = �1

L��,x� + �2
L��,x� �31�

with

�1
L��,x� = ��D����2C�x̃� + 2 ln�2eU

��
� + i�� , �32�

�2
L��,x� � − ��D���

1

2
��1 − x̃�ln��x̃ +

��

eU�

L

lsc
�

x̃
�

+ x̃ ln��1 − x̃ −
��

eU�

L

lsc
�

1 − x̃
��

+ � ��

eU�

L

lsc
→ −

��

eU
n̄� , �33�

where

C�x� � x ln�1 − x� + �1 − x�ln�x� �34�

and x̃�x /L. The last line in Eq. �33� means that we have to
add the foregoing expressions with the substitution
�� /��L / lsc→−�n̄. Here �1

L is the self-energy part calculated
by the help of f t=0 �Eq. �A6�� in Eq. �22�. �2

L is the result for
f t�0 �Eq. �A11��. In Eq. �33� we carry out for the logarithmic
term in the electron distribution function �A9� the appro-
ximation that we set this term constant over the range
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���−eEx1�lsc /��L1 with its value at ��−eEx1�=0 and zero
elsewhere. This approximation leads to the logarithmic sin-
gularities in Eq. �33�. They are softened when using the exact
functions fL

t�0 �Eq. �A11�� without approximation but this
treatment has the disadvantage that we would not obtain ana-
lytical results. We should additionally mention that we ne-
glect those imaginary terms in Eqs. �32� and �33� which exist
only in small regions in position space of length �x
=L�� /eU. These correspond to regions where the ln terms
in Eqs. �32� and �33� gets singular.

By taking into account the results in Eqs. �30�–�33� we
obtain the surprising result that the imaginary part of the
longitudinal phonon self-energy and thus the level broaden-
ing vanishes

Im��L��,x�� = 0 �35�

in the high voltage-bias regime eU��� in contrast to the
case of no bias �Eq. �30��. The reason for this vanishing is
seen in Eq. �22�. We only obtain an imaginary part for the
phonon self-energy when there is a substantial changing of
the electron distribution function in the energy range �2��
��. In the high bias regime the electron distribution func-
tion �25� becomes constant in this range which is not the case
for the Fermi function in the zero-bias system.

A. Position-averaged self-energy

Finally we calculate the position averaged self-energy

�̄i
L=dx�i

L�� ,x� /L. We obtain

�̄1
L��� = ��D����− 3 + 2 ln�2eU

��
� + i�� , �36�

�̄2
L��� � ��D����F1� ��

�eU

L

lsc
� + F1���

eU
n̄�� �37�

with

F1�x� =
1

4
�x + 1�2�ln��x�� − ln��1 + x��� −

1

4
ln��x�� + �x → − x� .

�38�

We show in Fig. 8 the function F1�x�. In the regime of very

high voltages eUlsc /L��� /� we obtain that �̄2
L��� is neg-

ligible in comparison to �̄1
L���. For nanotubes of diameter 2

nm we have �̃0�0.35. Thus we obtain that Re��U=0
L �����

�−0.46��D��� leading to the result that Re��L�����
���D����−3.48+2 ln�2eU /�����. This means that we ob-
tain in the high-voltage regime for eU /����1.8 a positive
frequency shift for the longitudinal optical phonon frequency
at the � point. On the other hand, by taking into account that
limx→� F1�x�=−1 /2 ln�x� we obtain that for fixed eU /���

and in the large length limit L / lsc→� where n̄�1, that the
frequency shift is negative.

B. Lineshape of Raman signal

From the considerations above it is not clear how the
actual lineshape of the Stokes or anti-Stokes signal looks like
in an actual Raman-scattering experiment. From above we
obtain first that the Raman signal corresponding to the re-
sponse on transversal phonon mode excitations denoted by
G+ is not changed from the zero-bias result. This is not true
for the G− Raman mode corresponding to the response on
longitudinal optical phonons. In order to get a better insight
into the actual Raman lineshape we assume that the incident
laser light illuminates the nanotube continuously over the
whole width. In typical Raman experiments the scattering of
the electron system with the incident light is dominated by
the resonant scattering of a valence band and conduction
band of fixed index n	0 �Eq. �23��.38 A further enhancement
of the signal is reached when electrons from the band edges
are scattered. This is due to the Van Hove singularities of the
density of states at this region leading not until then to the
opportunity of measuring phonon and electronic properties
of single nanotubes. Further let us assume in a first approxi-
mation that the phonon distribution function n��x� �Eq. �8��
is homogeneous over the nanotube width which was also
assumed in our analytical calculations in Sec. IV. This leads
us to the conclusion by taking into account that only the
electron distribution function of the lowest electronic energy
band n=0 is changed due to the large bias voltage that we
can determine at least approximately the lineshape of an ac-
tual Raman signal by the position average over the individual
Raman signals.

In the following, we use the abbreviation

F2�x� = �
0

1

dy��C�y� − x� �39�

in order to calculate the lineshape of the Raman signal. We
restrict ourselves in the following to the most important high
bias regimes �eUlsc /L���� and to the large length regime
where �eUlsc /L����, but eU����n̄ where we obtain
simple expression for the Raman signal. By taking into ac-
count that Im��L�=0 we obtain for the lineshape of Stokes
and anti-Stokes signal Iep by using Eqs. �32�, �33�, and �39�
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FIG. 8. The left panel shows the function F1�x� �Eq. �38��. On
the right hand side we show the Raman lineshape function F2�x�
defined in Eq. �39�.
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Iep��� � �
1

2
F2�� − �� − Re��U=0

L �����
2��D��� − ln�2eU

����� for
eU

��� �
L

�lsc

2

5
F2�� − �� − Re��U=0

L �����
�5/2���D��� −

4

5
ln�2eU

���� +
1

5
ln� ���

�eU

L

lsc
�� for n̄ �

eU

��� �
L

�lsc
.� �40�

We show on the right-hand side in Fig. 8 the function
F2. Due to the maximum of C�x� at x=1 /2 with C�1 /2�
=−ln�2� we obtain that F2�x� is singular at x=−ln 2. This
singularity leads to a sharp edge of the Raman spectrum at
the corresponding frequency according to Eq. �40�.

By taking into account also the broadening of the phonon
modes due to the phonon-phonon scattering we obtain that
the signal of the actual Raman mode is a convolution of
Iep��� �Eq. �40�� with a Lorentzian which has a negative
frequency shift and broadening corresponding to the phonon-
phonon interaction contribution to the phonon self-energy.

C. Discussion

Next we compare our findings with recent experiments. In
Refs. 9 and 21 the optical phonon lifetimes and frequency
shifts are measured for suspended metallic carbon nanotubes
at high bias voltage using Raman spectroscopy. These inves-
tigations did not find a response of the G− and G+ modes
corresponding to the longitudinal and transversal optical �
modes for all measured nanotubes where only the former
mode couples to the electron system at high bias. In fact, it is
not well understood which mode response to the bias for a
certain nanotube. The nanotube phonon temperature was
then measured by two different methods either by the Stokes/
anti-Stokes intensity ratio being a function of the phonon
Boltzmann factor of the corresponding mode or by mode
softening where one compares the softened mode with the
known temperature softening which is caused by phonon-
phonon scattering. Astonishing, that both methods find pho-
non temperatures which are in good accordance. They did
not provide any hint for a different behavior which we found
theoretically above.

Such a different behavior was in fact seen by Oron-Carl et
al.6 for metallic nanotubes on a SiO2 substrate. They found a
mode hardening and a reduction in the linewidth at high bias
voltage in comparison to the zero-bias voltage values. A real
quantitative comparison of our results with the experimental
finding is difficult here since the overall broadening and
hardening is the additive effect of phonon-phonon scattering
leading to softening and broadening of the mode and the
hardening effect and a linewidth reduction due to the
electron-phonon coupling. That this nonthermal effect was
not seen in free-standing nanotubes could be explained by
the fact that the heating of many of the crystal modes are
much easier for phonons in a suspended crystal in compari-
son to phonons on a substrate since these phonons could
travel especially in long nanotubes substantially until they

diffuse out of the system. This is the reason for the experi-
mental finding that large nanotubes show a bias response for
the G+ mode and the G− mode in general.21 During this trav-
eling the electron-scattered optical phonons are then thermal-
ized by scattering with acoustic phonons. A true understand-
ing of the different behavior of the frequency shift and
broadening between suspended nanotubes and nanotubes on
a substrate requires a distinct theory for suspended nanotubes
being out of the scope of this work.

VI. SUMMARY

In this paper we have used the coupled Boltzmann equa-
tions for electrons and optical phonons to calculate the
current-voltage characteristic of carbon nanotubes lying on a
substrate under high bias voltage. First we have studied the
coupled electron-phonon Boltzmann system. By taking into
account the electron-phonon relaxation time of Ref. 10
which agrees well with experiments, we have determined by
numerical fitting the relaxation times of the optical phonons
in the single-mode relaxation-time approximation. These are
much longer for short nanotubes below 1 �m than for large
ones. The result was obtained by fitting our numerically de-
termined current-voltage curves with the experiments. For
short nanotubes, this time did not agree with experimental
findings. In Sec. III we went beyond the single time relax-
ation approximation by taking into account also lower-lying
secondary phonons in the Boltzmann equation which leads
us to the conclusion that the phonon relaxation shows a
bottleneck in the sector of acoustic phonons for short nano-
tubes but not for long nanotubes. We have explained this by
the fact that due to the phonon velocity of the lower-lying
acoustic phonons, these phonons are redistributed in such a
way that at least locally a bottleneck is created for short
nanotubes. This leads to a plug in the relaxation path of the
optical phonons.

In Sec. IV, we have considered an analytical solution of
the Boltzmann system where we first linearize the electronic
equations and use further the assumption of a constant pho-
non distribution function to solve them in the electronic sec-
tor. We have compared our results for the current-voltage
characteristic and the phonon distribution function with the
numerical findings of Sec. II, Sec. III, and the experimental
results. We find an especially good agreement in the high-
voltage, small-length regime. Our analytical theory provides
us with the electron and phonon distribution functions as a
function of position and momentum. This opens the possibil-
ity to calculate the optical phonon broadening and frequency
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shift due to the coupling of the phonon system to the bias-
driven electronic system. For zero bias this coupling is the
dominant contribution for both quantities.

We have then calculated in Sec. V in a charge-current
conserved way the broadening and frequency shift of the
zone-center optical phonons. We find that the phonon-level
broadening, determined at zero-bias voltage mainly by the
electron-phonon coupling, vanishes at large voltage. The
vanishing was explained by a smoothing of the electron dis-
tribution function over the Fermi level at nonzero bias volt-
age. For very large voltages and small nanotubes, we found a
positive frequency shift. Note that this behavior of a vanish-
ing broadening and positive frequency shift is in contrast to
the self-energy contribution of the phonon-phonon interac-
tion to the lower-lying hot acoustic phonons. This contribu-
tion to the self-energy led to a negative frequency shift and
an additional broadening at higher bias due to a temperature
increase in the lower-lying acoustic phonons.

It was in fact just recently found experimentally by Ra-
man scattering, that the level broadening decreases and the
frequency shift increases for the zone-center optical
phonons6 for increasing bias voltage. In contrast to the very
high-voltage regime, we found a negative frequency shift at
moderate bias voltage and large nanotubes.
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APPENDIX: ANALYTIC CALCULATION OF
THE CURRENT-VOLTAGE CHARACTERISTIC

In the following, we carry out the calculation of the
current-voltage characteristic and the electron-phonon distri-
bution functions for eU��� explicitly by using Eqs.
�1�–�7�. To solve the system of equations we use the approxi-
mations �18� and �19�.

1. Current-voltage characteristic

In the following calculation we go in Fourier space

fL/R�kL/R ,x�=1 / �2��2dkdt f̂̂L/R�t ,k�exp�i�−kx� tvF�kL/R��
and use further the function f̂ L/R defined by fL/R�kL/R ,x�
=1 / �2��dt f̂L/R�t ,x�exp��i�tvF�kL/R��. With the help of

st =�1 − �2n̄ cos��t� + exp�− i�t�

2n̄ + 1
�2

�A1�

we obtain from Eq. �1�

f̂ L =
n̂F�t�
De

�e−ieE�x−L�t/��st cosh� �x�
lsc
r st� + sinh� �x�

lsc
r st��

+ e−ieExt/��1 − st2�1/2sinh� �x − L�
lsc
r st�� �A2�

with

De = st cosh� L

lsc
r st� + sinh� L

lsc
r st� , �A3�

where n̂F�t� is the Fourier transform of the Fermi function,
i.e., n̂F�t�=d�nF���exp�−it��=+i / �t+ i��. The function fR is
given by Eqs. �A2� and �A3� with the substitution

fR = fL�x → x − L,x − L → x� . �A4�

We note that one has to take into account during this substi-
tution the absolute value signs in the cosine hyperbolic and
sinus hyperbolic arguments in Eq. �A2�.

In the following, we evaluate Eq. �A2� by the help of a
residuum integration. With

fL = fL
t=0 + fL

t�0 �A5�

we obtain for the electron distribution function fL
t=0 due to the

residuum at t=0

fL
t=0 = 	1 − nF�� − eE�x − L��
 + 	nF�� − eEx�

− nF�� − eE�x − L��

�x − L�

lsc
r

1

1 +
L

lsc
r

. �A6�

fR
t=0 is given by Eq. �A6� with the substitution �A4�. The t

�0 singularities are given by the zeros of De. For L / lsc
r

�1 we obtain for these zeroes

st � i
�n

�1 +
L

lsc
r � for �st� � 1, �A7�

st � i��n −
�

2
� lsc

r

L
for �st� � 1. �A8�

With the help of

A1�x1,x2� =
1

2�i
��1 − nF�� − eEx1�� − nF�� − eEx1�exp�−

1

n̄

1

�
�� − eEx1���

��
�

�ln�1 + exp�−
�

�1 +
L

lsc
r ��

�� − eEx1�
�

� i
�x2�
lsc
r ��� , �A9�
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A2�x1,x2� =
1

2�1 +
L

lsc
r ���1 − nF�� − eEx1�� − nF�� − eEx1�exp�−

1

n̄

1

�
�� − eEx1���

��
� �1 + exp� �

�1 +
L

lsc
r ��

�� − eEx1�
�

� i
�x2�
lsc
r ���

−1

�A10�

we obtain for f t�0 due to the singularities in the regime �st�
�1 Eq. �A7�

fL
t�0 = A1�x,x − L� + A1�x − L,x� + A2�x − L,x� . �A11�

fR
t�0 is given by fL

t�0 with the substitution �A4�.
Finally, we have to discuss the contribution of singulari-

ties �st��1 �Eq. �A8�� to f t�0. Due to the Fourier exponent,
these terms are exponentially suppressed beyond a small en-
ergy strip of range ���� /��1 in comparison to terms calcu-
lated with residua �st��1. From the discussion above and the
following discussions we obtain that these terms are not rel-
evant in the range eU /���1, L� lsc

r for the determination
of the phonon distribution function. We also note without an
explicit calculation here but which can be shown with similar
methods as for the current calculation of the �st��1 singu-
larities below that the current from the �st��1 singularities is
negligible in comparison to the current calculated from the
singularities �st��1. This current contribution will be calcu-
lated explicitly in the following.

The current I can be calculated by the help of I
= �4e /h�d��fR− fL�. This is best done by carrying out the
integration at the boundaries x=0 or x=L of the nanotube.
From Eqs. �A6� and �A11� and the corresponding expres-
sions for fR, we obtain the following current-voltage charac-
teristic:

I = 4
e

h���B1� 1 +
L

lsc
r

�n̄ � + e
U

�1 +
L

lsc
r �� �A12�

with

B1�x� =
1

2�
�H� x

2
− 1� − H� x

2
� + ln�4� + 2H�x�� ,

�A13�

where H�x�=�+��x+1� and � is the Euler-Mascheroni con-
stant, ��x� is the digamma function. We show in Fig. 6 the
function B1�x�.

2. Phonon distribution function

Next we calculate the phonon distribution function n̄�x�
�Eq. �15��. We carry out this calculation only in the leading
order in lsc

r /L. In order to simplify our notation we define x̃
�x /L. Next we calculate from Eqs. �A6� and �A11� and the

corresponding equation for fR �Eq. �A4�� the phonon distri-
bution function in the regime �eU���L / lsc

a. Phonon distribution function for �eUš��L Õ lsc

In the following, we only have to determine the k	0
phonons since we find from symmetry arguments that

n�k,x� = n�− k,− x� . �A14�

To simplify our notation we define the following regimes for
k	0:

R1:x̃ 
1

2
,eU�1 − x̃� 	

vF�k

2
	 eUx̃ ,

R2:x̃ 	
1

2
,eUx̃ 	

vF�k

2
	 eU�1 − x̃� ,

R3:x̃ 
1

2
,eUx̃ 	

vF�k

2
or x̃ 	

1

2
,eU�1 − x̃� 	

vF�k

2
.

�A15�

We obtain for the phonon-Boltzmann Eq. �4� by using
Eqs. �A4�, �A6�, and �A11�

�

�x
n�k,x� = K1n�k,x� + K2 �A16�

with

R1:K1 = −
1

vph
� sp

�ep

lsc

L
+

1

�op
�,K2 =

spx̃

vph�ep
,

R2:K1 = −
1

vph
�−

sp

�ep

lsc

L
+

1

�op
�,K2 =

sp�1 − x̃�
vph�ep

,

R3:K1 = −
1

vph�op
,K2 = 2

spx̃�1 − x̃�
vph�ep

. �A17�

By taking into account the boundary conditions n�k ,0�=0
and further vph�op�L we obtain for n�k ,x� in R1 and R3

R1:nR1
�k,x� = −

spL

vph�ep

1

K1L
x̃ , �A18�
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R3:nR3
�k,x� = −

spL

vph�ep

1

K1L
2x̃�1 − x̃� . �A19�

We point out here that according to Eq. �A17� the expres-
sions for K1 in Eqs. �A18� and �A19� are different in the
different regimes �Eq. �A15��. We obtain in these regions the
same solutions n�k ,x� of Eq. �2� as we would set immedi-
ately vph=0 from the beginning. This is not true for n�k ,x� in
R2. We obtain especially in the regions where lsc /L
��ep /�op that the neglection of the vph term in Eq. �2� is not
allowed. Such parameter values lead to the result that the
phonon distribution function at the boundary of the nanotube
increases which is in fact seen in Fig. 5. In the regime R2 we
obtain from Eqs. �A16� and �A17�

R2:nR2
�k,x� = n0�k,x0�k��eK1�x−x0�k�� +

spL

vph�ep

1

K1L

�� 1

K1L
�1 + K1x� − eK1�x−x0�k��

�
1

K1L
�1 + K1x0�k��� , �A20�

where x0�k�=L�1 /2+ �1 /2−vF�k /2eU��, n0�k ,x0�k��
=nR3

�k ,x0�k�� for vF�k /2eU /2 and n0�k ,x0�k��=0 for
vF�k /2	eU /2.

We now use the abbreviation

K̃1 = K1L . �A21�

Next, we calculate the phonon density n̄�x� �Eq. �15��. Ac-
cording to the discussion above, we obtain

n̄�x� � �n̄R1
�L − x� + n̄R2

�x����x̃ − 1/2� + �n̄R1
�x�

+ n̄R2
�L − x����1 − �x̃ − 1/2�� + 2n̄R3

�x� , �A22�

where n̄Ri
are the energy averaged phonon distribution func-

tions �A18�–�A20� according to Eq. �15� where the integra-
tion region are restricted to Ri �Eq. �A15��. These are given
by

n̄R1
�x� = −

1

2

spL

vph�ep

1

K̃1

x̃�1 − 2x̃� , �A23�

n̄R3
�x� = −

spL

vph�ep

1

K̃1

�1

2
− �x̃ −

1

2
��x̃�1 − x̃� , �A24�

and

n̄R2
�x� �

spL

vph�ep

1

K̃1
��x̃ −

1

2��x̃ − 1� +
1

K̃1
��2x̃ −

3

2�
+

1

2
eK̃1�x̃−1/2�� +

2

K̃1
2
�1 − eK̃1�x̃−1/2��� , �A25�

where we took into account that L /vph�op�1. Finally, we
calculate the position-averaged phonon distribution function
n̄=dxn̄�x� /L. We obtain

n̄ � 2�n̄R1
+ n̄R2

+ n̄R3
� �A26�

with

n̄R1
� −

spL

vph�ep

1

K̃1

1

48
, �A27�

n̄R3
� −

spL

vph�ep

1

K̃1

13

192
, �A28�

and

n̄R2
�

spL

vph�ep

1

K̃1
�−

1

48
+

1

K̃1
2

+ � 1

2K̃1
2

−
2

K̃1
3��eK̃1/2 − 1�� .

�A29�

By taking into account the definition of K̃1 Eqs. �A17� and
�A21� we obtain that Eq. �A26� is the relation which deter-
mines the energy-position-averaged phonon distribution
function n̄ �Eq. �18��.

Let us first assume that K̃1�1 in region R2. From expres-
sion �A29� we find that there is no solution in this parameter
region for Eq. �A26� since L /vph�ep�1 and vF�ep=130 nm.

Next we assume that K̃1�−1 in the region R2. From Eq.

�A17� we find then that K̃1�−L /vph�op in the regions Ri. By
using Eq. �A26� we obtain

n̄ �
13

96

sp�op

�ep
for L �

vph�ep

26sp�op

96�ep
+ 1

� sp�op

�ep
− 1� .

�A30�

For �op=9.1 ps we obtain n̄=5.3. This leads to lsc
=11.1 nm. This value is in excellent agreement with the
experimentally determined value lsc�10–11 nm.3,4 From
Eqs. �A22�–�A25� we obtain that the phonon distribution
function n̄�x� is zero at the boundary of the nanotube. By
using the scattering parameters in Eq. �14� we further obtain
the validity of Eq. �A30� for L�426 nm.

For smaller nanotube lengths one has K̃1�0. By explicit

calculation we obtain for L /vph�op�1 and K̃1�0 that
n̄R1

, n̄R3
� n̄R2

. By taking only n̄R2
into account in Eqs.

�A22� and �A26� we obtain for the energy-averaged phonon
distribution function by Taylor expanding Eq. �A25� with

respect to K̃1

n̄�x� �
spL

vph�ep
�1

4
�x̃ − 1/2�2 −

1

3
�x̃ − 1/2�3� �A31�

and for Eq. �A26� with Eq. �A29�

n̄ �
spL

vph�ep

1

96
. �A32�

From Eq. �A31� we get an increasing behavior of the phonon
distribution function at the boundary of the nanotube in
agreement with Fig. 5.

Finally, we calculate the phonon distribution function n̄
by solving Eq. �A26� for n̄ with Eqs. �A27�–�A29� numeri-
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cally as a function of the nanotube length L. The result is
shown in Fig. 7. We obtain that the decrease in n̄ in the
direction of small L values given by Eq. �A32� is not quite
large so that we can assume approximately the validity of
Eq. �A30� in the whole regime L�50 nm. Next, we calcu-
late the phonon distribution function for �eU���L / lsc.

b. Phonon distribution function for �eU™��L Õ lsc

By taking into account Eqs. �A4�, �A6�, and �A11� we
obtain that n�k ,x��nB

ac only in the regime
���vF�k� /2��lsc /L��1 where we use that n̄�1 as will be
shown below. In this regime we obtain for k	0 �Eq. �A16��
with

K1 = −
1

vph
� sp

�ep

lsc

L
� cos��x̃�

1 − cos2��x̃�
� +

1

�op
� ,

K2 =
sp

4vph�ep
, �A33�

where again Eq. �A14� holds. We now assume that lsc /L
��ep /�op which is good fulfilled in the large length regime
where we have Eq. �14� �ep /�op�0.22. Then we obtain for
���vF�k� /2��lsc /L��1

n�k,x� �
sp

4

�op

�ep
. �A34�

We point out that Eq. �A34� is not valid in the small regime
where 0� ����eU , n̄�. We obtain a position-dependent nu-
merical prefactor to Eq. �A34� in this regime. From Eq.
�A34� we are able to calculate n̄�x� and n̄ given by

n̄�x� = n̄ �
sp

4

�op

�ep
. �A35�
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