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According to the Maupertuis principle, the movement of a classical particle in an external potential
V (x) can be understood as the movement in a curved space with the metric gµν(x) = 2M [V (x) −
E]δµν . We show that the principle can be extended to the quantum regime, i.e., we show that
the wave function of the particle follows a Schrödinger equation in curved space where the kinetic
operator is formed with the Weyl–invariant Laplace-Beltrami operator. As an application, we use
DeWitt’s recursive semiclassical expansion of the time-evolution operator in curved space to calculate
the semiclassical expansion of the particle density ρ(x;E) = 〈x|δ(E − Ĥ)|x〉.
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The famous principle discovered in 1741 by Pierre
Louis Maupertuis and refined by Hamilton and Jacobi
laid the foundation to the geometric formulation of New-
ton’s laws, and was an important stimulus for Einstein’s
general theory of relativity. In this note we want to point
out that this geometric view of classical physics remains
also valid in the quantum regime, i.e., the quantum me-
chanics of a particle in a potential V (x) may be described
alternatively by a Schrödinger equation in curved space
with the Maupertuis metric

gµν(x) ≡ 2M [V (x) − E]δµν . (1)

The Hamiltonian of this Schrödinger equation contains
the Weyl-invariant (conformally-invariant) version

∆W = ∆ −
1

4

D − 2

D − 1
R. (2)

of the Laplace-Beltrami operator

∆ = g−1/2∂µg
1/2gµν∂ν . (3)

Our result supplies us with an answer to an old, very fun-
damental problem left open by Einstein’s classical equiv-
alence principle. That principle states that the classical
laws of motion of a point particle can be derived from
a coordinate transformation in spacetime whose inertial
forces simulate the gravitational forces at the position of
the particle. Since a quantum particle is always an ex-
tended object described by a wave packet, there can be a
correction term ξR proportional to the curvature scalar
R, whose size ξ is undetermined by the classical equiva-
lence principle. The Quantum Maupertuis Principle fixes
the size of the R-term.

1. Consider the eikonal of an arbitrary trajectory of a
point particle moving in Euclidean space with a potential
V (x) which is defined as

S(E) ≡

∫

√

gE
µν(x)dxµdxν , (4)

with the Maupertuis metric (1). The integral (4) is a
functional of the trajectory which may be parameterized

with the help of an arbitrary variable λ as xµ(λ), and
rewritten as

S(E) ≡

∫

dλ
√

gµν(x(λ))ẋµ(λ)ẋν (λ) ≡ l. (5)

The right-hand side coincides with the invariant length
of the trajectory.

According to Maupertuis, the eikonal S(E) is extremal
for the classical trajectory, i.e., the classical orbit is geode-

tic. If λ is chosen to coincide with the invariant length l,
the extremization produces the geodetic differential equa-
tion

d2xδ

dl2
+ Γ δ

αβ

dxα

dl

dxβ

dl
= 0, (6)

where Γ λ
µν are the Christoffel symbols

Γ λ
µν =

1

2
gλσ (∂µgσν + ∂νgµσ − ∂σgµν) . (7)

Inserting the metric (1), we see that Eq. (6) is fulfilled if
the trajectory follows the Newton equation x′′µ = −∂µV.

The Maupertuis metric (1) differs from the flat Eu-
clidean metric ḡµν ≡ δµν only by a conformal factor

Ω2(x) ≡ 2M [V (x) − E], (8)

it is therefore called conformally flat. The geometric
properties of this space can be calculated directly as func-
tions of Ω(x). We observe that under the Weyl transfor-

mation ḡµν(x) → gµν = Ω2(x)ḡµν(x), the symbols (7)
change like

Γ λ
µν = Γ̄ λ

µν + Ω−1
(

δλ
ν ∂µΩ + δλ

µ∂νΩ − ḡσλḡµν∂σΩ
)

. (9)

Because of this, the Riemann tensor defined by the co-
variant curl [1]

R σ
µνλ = ∂µΓ σ

νλ − ∂νΓ σ
µλ − Γ τ

µλ Γ σ
ντ + Γ τ

νλ Γ σ
µτ (10)

is related to R̄µνλ
σ by

R σ
µνλ =R̄ σ

µνλ

+
(

2ḡλ[νδµ]β ḡ
σα−2δσ

[νδµ]αδλβ + δσ
[ν ḡµ]λḡ

αβ
) (∂αΩ) (∂βΩ)

Ω2

+
(

δσ
[νδµ]αδλβ + ḡσαḡλ[µδν]β

) ∇̄α∇̄βΩ

Ω
, (11)
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where ∇̄µvν ≡ ∂µvν − Γ̄ λ
µν vλ stands for the covari-

ant derivative, and ḡλ[νδµ]β ḡ
σα is defined as the an-

tisymmetrized expression ḡλ[νδµ]β ḡ
σα ≡ ḡλνδµβg

σα −

ḡλµδνβ ḡ
σα. The Ricci scalar R ≡ gνλRµνλ

λ is obtained
from (10) as

R =
R̄

Ω2
− 2(D − 1)ḡαβ ∇̄α∇̄βΩ

Ω3

− (D − 1)(D − 4)ḡαβ (∂αΩ) (∂βΩ)

Ω4
. (12)

Inserting Ω(x) from (8), this becomes

R =
1 −D

4

[

2∂µ∂µV

M(E − V )2
+

(D − 6)∂µV ∂µV

2M(E − V )3

]

. (13)

2. Consider now the quantum mechanics of the point
particle of energy E in the potential V (x). It is described
by the Schrödinger equation

(Ĥ − E)ψ(x) ≡

(

p̂2

2M
+ V (x) − E

)

ψ(x) = 0, (14)

where p̂ ≡ −i~∇. Using the metric (1), this can be
rewritten as

[

Ω−2(x)p̂2 + 1
]

ψ(x) = 0, or as

[

~
2∆W − 1

]

ψ(x) = 0, (15)

where ∆W ≡ Ω−2(x)
∑

µ ∂
2
xµ . It is easy to verify that

this is equal to the Weyl-invariant combination (2) of the
Laplace-Beltrami operator (3) and R.

Equation (15) is a simple but very fundamental result.
The Maupertuis metric (1) governs not only the classical
motion, but also the quantum mechanics, provided that
the Laplace-Beltrami operator is extended to the Weyl-
invariant form (2).

3. The advantage of the curved-space reformulation
(15) of the Schrödinger equation (14) is that, in curved
space, the particle is without a potential. It is a free

particle moving through the Maupertuis metric (1). For
such movements, there exist well-developed methods of
calculating quantum properties pioneered by Bryce De-
Witt [2, 3]. In particular, DeWitt has given a semiclas-
sical expansion of the matrix elements of the resolvent
operator

〈x|R̂|x′〉 ≡ 〈x|
i~

E − Ĥ
|x′〉, (16)

where Ĥ is a curved-space translation operator in
some pseudotime parameter τ , and E is the associ-
ated pseudoenergy. The pseudotime τ is commonly
called Schwinger time or fifth time. The Green function
G(x, x′) = 〈x|R̂|x′〉 can be written as an integral

G(x, x′) =

∫ ∞

0

dτ〈x, τ |x′, 0〉 (17)

over the pseudotime displacement amplitude

〈x, τ |x′, 0〉 = 〈x|e−i(Ĥ−E)τ/~|x′〉. (18)

This amplitude satisfies the Schrödinger equation

i~∂τ 〈x, τ | x′, 0〉 = Ĥ 〈x, τ |x′, 0〉 (19)

with the boundary condition in D dimensions

〈x, 0 | x′, 0〉 = δ(D)(x− x′). (20)

The Lagrangian treated by DeWitt is

L =
1

2
gµν(x)ẋµẋν . (21)

This has the pseudotime Hamiltonian H =
1

2
gµν(x)pµpν ≡ 1

2
pµpν , where gµν(x) is the inverse

of the metric gµν(x), and the action

A(x, x′; τ − τ ′) =

∫ x′,τ ′

x,τ

dτ L =
σ(x, x′)

τ − τ ′
. (22)

where σ(x, x′) ≈ 1

2
gµν(x)(x − x′)µ(x − x′)ν + . . . is the

geodetic interval. The action depends on the pseudotime
only via this ratio. This is a consequence of the “free
motion” in the metric gµν(x).

From the Hamilton-Jacobi equations it follows that

∂A

∂xµ
= pµ =

σµ

(τ − τ ′)
, (23)

−
∂A

∂τ
=

σ(x, x′)

(τ − τ ′)2
= H =

1

2
pµp

µ. (24)

DeWitt gave the solution of the Schrödinger equation
(19) as a power series in τ for the Hamiltonian

Ĥ = 1

2

(

−∆ + ξR +m2
)

, (25)

with an arbitrary parameter ξ. For small τ and x close
to x′, the solution is simply

〈x, τ | x′, τ ′〉 ≈
D

1/2
MV(x, x′)

(2πi~s)D/2
eiσ(x,x′)/s~, (26)

where s ≡ τ − τ ′ and DMV ≡ det[−∂µ∂
′
νσ(x, x′)] is the

Morette-van Vleck determinant [4, 6]. For arbitrary s,
the result is (26)

〈x, τ |x′, τ ′〉 =
D

1/2
MV(x, x′)

(2πi~s)D/2
eiσ(x,x′)/s~

∞
∑

n=0

an(is/2~)n,

(27)

where D
1/2
MV(x, x′) ≡ g1/4(x)∆

1/2
MV(x, x′)g1/4(x′) and

∆MV(x, x′) has the endpoint expansion (i.e., the deriva-
tives are evaluated at the endpoint x)

∆
1/2
MV =1+

1

12
Rµνσ

µσν−
1

24
Rµν;ρσ

µσνσρ (28)

+

(

1

288
RµνRρτ +

1

360
Rαβ

µ νRαρβτ +
1

80
Rµν;ρτ

)

σµσνσρστ+. . ..
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DeWitt allowed for the presence of an extra term ξR in
addition to the Laplace-Beltrami operator ∆ on the right-
hand side of (19). Then he derived a recursion relation
for the expansion coefficients [2]

σµ(a0)
µ

; =0 (29)

(n+1)an+1 +σµ(an+1)
µ

; =∆
−1/2
MV

(

∆
1/2
MVan

)

µ
;µ −ξRan,

(30)

whose lowest terms are

a1 =

(

1

6
− ξ

)

R (31)

a2 =
1

6

(

1

5
− ξ

)

R µ
;µ +

1

2

(

1

6
− ξ

)2

R2

−
1

180
RµνR

µν +
1

180
RµνρσR

µνρσ. (32)

4. We now come to the announced application of the
quantum Maupertuis principle by calculating the particle
density of the Schrödinger equation (14)

ρ(x;E) ≡ 〈x|δ(E − Ĥ)|x〉 =
1

2π~
disc

(

i~

E − En

)

. (33)

A simple algebra shows that

〈x|R̂|x′〉=
1

2
〈x|R̂|x′〉[V (x′)−E]−1. (34)

Now we insert the DeWitt expansion (27) which reduces
for x = x′ to

〈x|R̂|x〉=
g1/2(x)

(2πi~)D/2

∞
∑

n=0

an (−∂m2)n

∫ ∞

0

ds e−im2s/2~

sD/2
,(35)

where the integral is simply Γ(1 − D/2)(m2)D/2−1, so
that the sum on the right-hand side becomes

∞
∑

n=0

an Γ(n+ 1 −D/2)(m2)D/2−(n+1). (36)

To be used in in Eq. (34) we must take Eq. (35) for
ξ = (D − 2)/4(D − 1) and m2 = 1 and evaluate an with
curvature terms of the Maupertuis metric (1), where

〈x|R̂|x〉 =

(

M

2π~2

)D/2
{

Γ(1 −D/2)(V − E)D/2

−
~

2

12M
Γ(3 −D/2)∂µ∂

µV (V − E)D/2−2

+
~

2

24M
Γ(4 −D/2) ∂µV ∂

µV (V − E)D/2−3 + . . .
}

. (37)

The result is valid for V (x) > E where the metric is
positive. For E > V (x) se use the property V − E =
e∓iπ(E − V ) to find the discontinuity across the cuts.
Remembering the extra factor (V − E)−1 in (34) we

obtain from the DeWitt expansion the particle density
ρ

DW
(x;E) ≡ 〈x|δ(E − Ĥ)|x〉 as

ρ
DW

(x;E) =
1

π

(

M

2π~2

)D/2

sin

(

πD

2

)

×
[

Γ(1 −D/2)(E − V )D/2−1

−
~

2

12M
Γ(3 −D/2)(E − V )D/2−3∂µ∂

µV (38)

−
~

2

24M
Γ(4 −D/2)(E − V )D/2−4∂µV ∂

µV + . . .
]

,

Now we employ the reflection formula for Gamma func-
tions Γ(1 − z)Γ(z) = π/sin(πz) to find

ρ
DW

(E;x) =

(

M

2π~2

)D/2 [

1

Γ(D/2)
(E − V )D/2−1

−
~

2

12M

1

Γ(D/2 − 2)
(E − V )D/2−3∂µ∂

µV (39)

+
~

2

24M

1

Γ(D/2 − 3)
(E − V )D/2−4∂µV ∂

µV + . . .

]

.

This agrees with the result obtained from the original
Schrödinger equation (14) E > V (x) [6].

5. By virtue of the bilocal character of the DeWitt
techniques in curved space, the expansion of 〈x|R̂|x〉 ex-
ists also for the off-diagonal matrix elements 〈x|R̂|x′〉
which serves to find also the off-diagonal particle den-
sity ρ(x;E) ≡ 〈x|δ(E − Ĥ)|x′〉 beyond the result stated
in the literature [7].

6. The extra R-term found above is not univer-
sal. This can be seen by comparing the result with the
quantum mechanics of another system in curved space:
the hydrogen atom in momentum space. It obeys a
Schrödinger equation

(

p2 + p2
E

)

Ψ(p) =
2

r
Ψ(p). (40)

Here r is the radial coordinate and p2
E = −2E (in nat-

ural units with ~ = aH = EH = 1, where aH ≡
α2

~/mec= Bohr radius and EH = α2mec
2 = Rydberg

energy). By analogy with the previous approach we
rewrite (40) as

{ 1

4
[r̂(p2 + p2

E)]2 − 1}Ψ(p) = 0, (41)

and identify r̂2 with
∑D

µ=1 ∂pµ . B re-ordering the opera-
tors we can express (41) as a differential equation

(

1

2
∆p − p2

E + 1

)

Ψ = 0. (42)

where ∆p is now the Laplace-Beltrami operator in mo-
mentum space formed from the metric

gij =
2

(p2 + p2
E)2

δij , (43)
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which is again conformally flat. The associated curvature
scalar is now R = 2D(D − 1)p2

E , so that (44) can be
rewritten as

(

1

2
∆p −

R

2D(D − 1)
+ 1

)

Ψ = 0. (44)

Remarkably, the coefficient of the R-term in this mo-
mentum space problem does not correspond to the Weyl-
invariant expression, where the subtracted R-term would
have been (D − 2)R/8(D − 1) = R/16 for D = 3.

6. The result gives us the possibility of studying the
quantum mechanics of an arbitrary potential problem us-
ing the well-developed techniques of curved-space quan-
tum mechanics [2]. Conversely, it permits us to under-
stand questions about the quantum mechanics in curved
space from the knowledge of Schrödinger theory in flat
space.
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