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We recall the successes of the Hubbard-Stratonovich Transformation (HST) of many-body theory,
point out its failure to cope with competing channels of collective phenomena and show how to
overcome this by Variational Perturbation Theory. That yields exponentially fast converging results,
thanks to the help of a variety of collective classical fields, rather than a fluctuating collective

quantum field as suggested by the HST.
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1. The Hubbard-Stratonovich transformation (HST)
has a well-established place in many-body theory [1] and
elementary particle physics [2]. It has led to a good un-
derstanding of important collective physical phenomena
such as superconductivity, superfluidity of He3, plasma
and other charge-density waves, pion physics and chiral
symmetry breaking in quark theories [3], etc. It has put
heuristic calculations such as the Gorkov’s derivation [4]
of the Ginzburg-Landau equations [5] on a solid theoret-
ical ground [6]. In addition, it is in spirit close [7] to the
famous density functional theory [8] via the celebrated
Hohenberg-Kohn and Kohn-Sham theorems [9].

The transformation is cherished by theoreticians since
it allows them to re-express a four-particle interaction
exactly in terms of a collective field variable whose fluc-
tations can in principle be described by higher loop di-
agrams. The only bitter pill is that any approximate
treatment of a many-body system can describe interest-
ing physics only if calcuations may be restricted to a few
low-order diagrams. This is precisely the point where the
HST fails.

Trouble arises in all those many-body systems in which
different collective effects compete with similar strenghts.
Historically, an important example is the fermionic su-
perfluid He3. While BCS superconductivity was de-
scribed easily via the HST by transforming the four-
electron interaction to a field theory of Cooper pairs,
this approach did initially not succeed in a liquid of He3

atoms. Due to the strongly repulsive core of an atom,
the forces in the attractive p-wave are not sufficient to
bind the Cooper pairs. Only after taking the help of an-
other collective field that arises in the competing para-
magnon channel into account, could the formation of
weakly bound Cooper pairs be explained [10].

It is the purpose of this note to point out how to cir-
cumvent the fatal fucussing of the HST upon a single
channel and to show how this can be avoided in a way
that takes several competing channels into account to
each order in perturation theory.

2. The problem of channel selection of the HST was
emphasized in the context of quark theories in [3] and

in many-body systems such as He3 in [6]. Let us briefly
recall how it appears. Let x = (t,x) be the time and
space coordinates, and consider the action A ≡ A0+Aint

of a nonrelativistic many-fermion system

A=

∫

x

ψ∗
x [i∂t − ξ(−i∇)]ψx −

1

2

∫

x,x′

ψ∗
x′ψ∗

xVx,x′ψxψx′ ,

(1)

where we have written ψx instead of ψ(x), and
∫

x
for

∫

d4x, to save space. The symbol ξ(p) ≡ ǫ(p) − µ de-
notes the single-particle energies minus chemical poten-
tial. Adding to A also a source term As =

∫

d4x(ψ∗
xηx +

c.c.) to form Ā = A + As, the grand-canonical gener-
ating functional of all fermionic Green functions reads
Z[η, η∗] =

∫

Dψ∗Dψ eiĀ.

The HST enters the arena by rewriting the interaction
part with the help of an auxiliary complex field ∆x,x′ as
[6]

Z[η, η∗] =

∫

Dψ∗DψD∆∗D∆ eiAa[ψ∗,ψ,∆∗,∆]+iAs (2)

with an auxiliary action

Aaux =

∫

x,x′

{

ψ∗
x [i∂t − ξ(−i∇)] δx,x′ψx′

− 1

2
∆∗
x,x′ψxψx′ − 1

2
ψ∗
xψ

∗
x′∆x,x′ + 1

2
|∆x,x′ |2/Vx,x′

}

, (3)

Indeed, if the field ∆x,x′ is integrated out in (2), one re-
covers the original generating functional. At the classical
level, the field ∆x,x′ is nothing but a convenient abbre-
viation for the composite pair field Vx,x′ψxψx′ upon ex-
tremizing the new action with respect to δ∆∗

x,x′ , yielding
δA/δ∆∗

x,x′ = (∆x,x′ − Vx,x′ψxψx′) /2Vx,x′ ≡ 0. Quantum
mechanically, there are Gaussian fluctuations around this
solution which are discussed in detail in [3, 6].

Expression (3) is quadratic in the fundamental fields
ψx and reads in functional matrix form 1

2
f∗
xAx,x′fx′ with

Ax,x′ =

(

[i∂t − ξ(−i∇)] δx,x′ −∆x,x′

− ∆∗
x,x′ [i∂t + ξ(i∇)] δx,x′

)

. (4)
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where fx denotes the fundamental field doublet (“Nambu
spinor”) with fTx = (ψx, ψ

∗
x), and f † ≡ f∗T , as usual.

Since f∗
x is not independent of fx, we can integrate out

the Fermi fields and find

Z[η∗, η] =

∫

D∆∗D∆ eiA[∆∗,∆]− 1

2

R

x,x′ j
†
x[G∆]x,x′ jx′ , (5)

where jx collects the external source ηx and its complex
conjugate, jTx ≡ (ηx, η

∗
x), and the collective action reads

A[∆∗,∆] = − i
2
Tr log

[

iG−1
∆

]

+ 1

2

∫

x.x′

|∆x,x′|2/Vx,x′. (6)

The 2×2 matrix G∆ denotes the propagator iA−1 which
satisfies the functional equation that the product

(

[i∂t − ξ(−i∇)] δx,x′ −∆x,x′

− ∆∗
x,x′ [i∂t + ξ(i∇)] δx,x′

)

[G∆]x′,x′′

is equal to iδx,x′′. Writing G∆ as a matrix

(

Gρ G∆

G†
∆ G̃ρ

)

the mean-field equations associated with this action are
precisely the equations used by Gorkov [4] to study the
behavior of type II superconductors.

With Z[η∗, η] being the full partition function of the
system, the fluctuations of the collective field ∆x,x′ can
now be incorporated, at least in principle, thereby yield-
ing corrections to these equations.

3. The basic weakness of the HST lies in the ambigu-
ity of the decomposition of the quadratic decomposition
(2) of the interaction in (1). For instance, there exists an
alternative elimination of the two-body interaction us-
ing an auxiliary real field ϕx, and writing the partition
function as

Z[η∗, η] =

∫

Dψ∗DψDϕ exp [iA[ψ∗, ψ, ϕ] + iAs] , (7)

rather than (2), where the action is now

A[ψ∗, ψ, ϕ]=

∫

x,x′

{

ψ∗
x[i∂t−ξ(−i∇)−ϕ(x)] δx,x′ψx′

+ 1

2
ϕxV

−1
x,x′ϕx′

}

.(8)

The new collective quantum field ϕx is directly related
to the particle density. At the classical level, this
is obtained from the field equation δA/∂ϕx = ϕx −
∫

dx′Vx,x′ψ∗
x′ψx′ = 0. For example, if Vx,x′ represents the

Coulomb interaction δt,t′/|x− x′| in an electron gas, the
field ϕx describes the plasmon fluctuations in the gas.

The trouble with the approach is that when introduc-
ing a collective quantum field ∆x,x′ or ϕx, the effects of
the other is automatically included if we sum over all fluc-
tuations. At first sight, this may appear as an advantage.
Unfortunately, this is an illusion. Even the lowest-order
fluctuation effect is extremely hard to calculate, already

for the simplest models of quantum field theory such as
the Gross-Neveu model, since the propagator of the col-
lective quantum field is a very complicated object. So it
is practically impossible to recover the effects from the
loop calculations with these propagators. Thus the use
of a collective quantum field theory must be abandoned
whenever collective effects of the different channels are
important.

The cure of this problem comes from the development
some time ago, in the treatment of path integrals of var-
ious quantum mechanical systems [11] and in the cal-
culation of critical exponents in φ4-field theories [12],
of a technique called Variational Perturbation Theory

(VPT) [13]. This is democratic in all competing chan-
nels of collective phenomena. The important point is
that it is based on the introduction of classical collective

fields which no longer fluctuate, and thus avoid double-
counting of diagrams of competing channels by quantum
fluctuations.

4. To be specific let us assume the fundamental inter-
action to be of the local form

Aloc
int =

g

2

∫

x

ψ∗
αψ

∗
βψβψα = g

∫

x

ψ∗
↑ψ

∗
↓ψ↓ψ↑, (9)

where the subscripts ↑, ↓ indicate spin directions, and
we have absorbed the spacetime arguments x in the spin
subscripts, for brevity.

We now introduce auxiliary classical collective fields
and replace the exponential of the action in the gener-
ating functional Z[η, η∗] =

∫

Dψ∗Dψ eiĀ identically by
[14]

ei g
R

x
ψ∗

↑,xψ
∗
↓,xψ↓,xψ↑,x = e−

i
2

R

x
fT

x Mxfx × eiA
new

int (10)

= e−
i
2

R

x(ψβ∆∗
βαψα+ψ∗

α∆αβψ
∗
β+ψ∗

βρβαψα+ψ∗
αραβψβ)×eiA

new

int ,

with the new interaction

Anew
int = Aloc

int +
1

2

∫

x

fTx Mxfx =

∫

x

[

g

2
ψ∗
αψ

∗
βψβψα (11)

+ 1

2

(

ψβ∆
∗
βαψα + ψ∗

α∆αβψ
∗
β

)

+ ψ∗
αραβψβ

]

.

We now define a new free action by the quadratic form
Anew

0 ≡ A0 − 1

2

∫

x
fTx Mxfx = 1

2
f †
xA

∆,ρ
x,x′fx′ , where fTx

denotes the fundamental field doublet fTx = (ψα, ψ
∗
α).

Then we rewrite Anew
0 in the 2×2 matrix form analogous

to (4) as Anew
0 ≡ A0 − 1

2

∫

x
fTx Mxfx = 1

2
f †
xA

∆,ρ
x,x′fx′ , with

the functional matrix A∆,ρ
x,x′ being now equal to

(

[i∂t−ξ(−i∇)]δαβ+ραβ ∆αβ

∆∗
αβ [i∂t+ξ(i∇)]δαβ−ραβ

)

. (12)

The physical properties of the theory associated with the
action Aloc

int + As can now be derived as follows: first we
calculate the generating functional of the new quadratic
action Anew

0 via the functional integral Znew
0 [η, η∗] =
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∫

Dψ∗Dψ eiA
new

0 . From its derivatives we find the new
free propagators G∆ and Gρ. To higher orders, we
expand the exponential eiA

new

int in a power series and
evaluate all expectation values (in/n!)〈[Anew

int ]n〉new
0 using

Wick’s theorem as a sum of products of the free parti-
cle propagators G∆ and Gρ. The sum of all diagrams
up to a certain order gN defines an effective collective
action AN

eff as a function of the collective classical fields
∆αβ ,∆

∗
βα, ραβ ,

Obviously, if the expansion is carried to infinite order,
the result must be independent of the auxiliary collective
fields since they were introduced and removed in (11)
without changing the theory. However, any calculation
can only be carried up to a finite order, and that will
depend on these fields. We therefore expect the best ap-
proximation to arise from the extremum of the effective
action [11, 12, 17].

The lowest-order effective collective action is obtained
from the trace of the logarithm of the matrix (12):

A0
∆,ρ = − i

2
Tr log

[

iG−1
∆,ρ

]

. (13)

The 2×2 matrix G∆,ρ denotes the propagator i[A∆,ρ
x,x′]−1.

To first order in perturbation theory we must calculate
the expectation value 〈Aint〉 of the interaction (12). This
is done with the help of the Wick contractions in the
three channels, Hartree, Fock, and Bogoliubov:

〈ψ∗
↑ψ

∗
↓ψ↓ψ↑〉 = 〈ψ∗

↑ψ↑〉〈ψ
∗
↓ψ↓〉 − 〈ψ∗

↑ψ↓〉〈ψ
∗
↓ψ↑〉

+ 〈ψ∗
↑ψ

∗
↓〉〈ψ↓ψ↑〉. (14)

For this purpose we now introduce the expectation values

∆̃∗
αβ ≡ g〈ψ∗

αψ
∗
β〉, ∆̃βα ≡ g〈ψβψα〉 = [∆∗

αβ ]
∗, (15)

ρ̃αβ ≡ g〈ψ∗
αψβ〉, ρ̃†αβ = [ρ̃βα]∗, (16)

and rewrite 〈Aint〉 as

〈Aint〉= (1/g)

∫

x

(∆̃∗
↓↑∆̃↓↑ − ρ̃↑↓ρ̃↓↑ + ρ̃↑↑ρ̃↓↓)

− (1/2g)

∫

x

(∆̃βα∆∗
βα + ∆̃∗

αβ∆βα + 2ρ̃αβραβ).(17)

Due to the locality of ∆̃αβ the diagonal matrix elements

vanish and ∆̃αβ = cαβ∆̃, where cαβ is i times the
Pauli matrix σ2

αβ . In the absence of a magnetic field,
the expectation values ρ̃αβ may have certain symmetries:

ρ̃↑↑ ≡ ρ̃↓↓ = ρ̃, ρ̃↑↓ = ρ̃↓↑ ≡ 0, (18)

so that (17) simplifies to

〈Aint〉=(1/g)

∫

x

[

(|∆̃|2+ρ̃2) − (∆̃∆∗ + ∆̃∗∆ + 2ρ̃ρ)
]

. (19)

The total first-order collective classical action A1
∆,ρ is

given by the sum A1
∆,ρ=A0

∆,ρ+〈Aint〉.

Now we observe that the functional derivatives of the
zeroth-order action A0

∆,ρ are the free-field propagators
G∆, and Gρ

δ

δ∆αβ

A0
∆,ρ = [G∆]αβ ,

δ

δραβ
A0

∆,ρ = [Gρ]αβ . (20)

Then we can extremize A1
∆,ρ with respect to ∆ and ρ,

and find that, to this order, the field expectation values
(16) are given by the free-field propagators (20) at equal
arguments:

∆̃x = g[G∆]x,x, ρ̃x = g[Gρ]x,x. (21)

Thus we see that at the extremum, the action A1
∆,ρ is

the same as the extremal action

A1[∆, ρ] = A0[∆, ρ] −
1

g

∫

x

(|∆|2 + ρ2). (22)

Note how the theory differs, at this level, from the col-
lective quantum field theory derived via the HST. If
we assume that ρ vanishes identically, the extremum
of the one-loop action A1[∆, ρ] gives the same result
as of the mean-field collective quantum field action (6),
which reads for the present δ-function attraction A1[∆] =
A0[∆]− 1

g

∫

x
|∆|2. On the other hand, if we extremize the

action A1
∆,ρ at ∆ = 0, we find the extremum from the ex-

pression A1[∆, ρ] = A0[∆, ρ]−
1
g

∫

x
ρ2. The extremum of

the first-order collective classical action (22) agrees with
the good-old Hartree-Fock-Bogolioubov theory.

The essential difference between this and the new
approach arises in two ways:

• First when it is carried to higher orders. In the col-
lective quantum field theory based on the HST the
higher-order diagrams must be calculated with the
help of the propagators of the collective field such
as 〈∆x∆x′〉. These are extremely complicated func-
tions. For this reason, any loop diagram formed
with them is practically impossible to integrate. In
contrast to that, the higher-order diagrams in the
present theory need to be calulated using only or-
dinary particle propagators G∆ and Gρ of Eq. (20)
and the interaction (12). Even that becomes, of
course, tedious for higher orders in g. At least,
there is a simple rule to find the contributions of the
quadratic terms 1

2

∫

x
fTx Mxfx in (11), given the di-

agrams without these terms. One calculates the di-
agrams from only the four-particle interaction, and
collects the contributions up to order gN in an effec-
tive action ÃN [∆, ρ]. Then one replaces ÃN [∆, ρ]
by ÃN [∆−ǫg∆, ρ−ǫgρ] and re-expands everything
in powers of g up to the order gN , forming a new
series

∑N

i=0 g
iÃi[∆, ρ]. Finally one sets ǫ equal to

1/g [15] and obtains the desired collective classical
action AN [∆, ρ] as an expansion extending (22):

AN [∆, ρ] =

N
∑

i=0

Ãi[∆, ρ] − (1/g)

∫

x

(|∆|2 + ρ2). (23)
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Note that this action must merely be extremized.
There are no more quantum fluctuations in the
classical collective fields ∆, ρ. Thus, at the ex-
tremum, the action (23) is directly the grand-
canonical potential.

• The second essential difference with respect to the
HST approach is that it is now possible to study a
rich variety of possible competing collective fields
without the danger of double-counting Feynman di-
agrams. One simply generalizes the matrix Mx

subtracted from Aint and added to Aint in (11) in
different ways. For instance, we may subtract and
add a vector field ψ†σaψSa containing the Pauli
matrices σa and study paramagnon fluctuations,
thus generalizing the assumption (18) and allow-
ing for a spontaneous magnetization in the ground
state. Or one may do the same thing with a term
ψ†σa∇iψAia+c.c. in addition to the previous term,
and derive the Ginzburg-Landau theory of super-
fluid He3 as in [6].

An important property of the proposed procedure is
that it yields good results in the limit of infinitely strong
coupling. It was precisely this property which led to the
successful calculation of critical exponents of all φ4 the-
ories in the textbook [12] since critical phenomena arise
in the limit in which the unrenormalized coupling con-
stant goes to infinity [18]. This is in contrast to another
possibility, in principle, of carrying the variational ap-
proach to higher order via the so-called higher effective

actions [19]. There one extremizes the Legendre trans-
forms of the generating functionals of bilocal correlation
functions, which sums up all two-particle irreducible di-
agrams. That does not give physically meaningful re-
sults [20] in the strong-coupling limit, even for simple
quantum-mechanical models.

6. The mother of this approach, Variational Pertur-
bation Theory [11], is a systematic extension of a vari-
ational method developed some years ago by Feynman
and the author [16]. It converts divergent perturbation
expansions of quantum mechanical systems into exponen-
tially fast converging expansions for all coupling strength
[17]. What we have shown here is that this powerful
theory can easily be transferred to many-body theory, if
we identfy a variety of relevant collective classical fields,
rather than a fluctuating collective quantum field sug-
gested by the HST. This allows us to go systematically
beyond the standard Hartree-Fock-Bogoliubov approxi-
mation.
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