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We extend the theory of Bose-Einstein condensation from Bogoliubov’s weak-coupling regime
to large s-wave scattering lengths as. Our solution satisfies the Nambu-Goldstone theorem, thus
avoiding an old problem of many-boson theories.
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1. For φ4-theory in D < 4 Euclidean dimensions with
O(N)-symmetry, a powerful strong-coupling theory has
been developed in 1998 [1]. It has been carried to 7th
order in perturbation theory in D = 3 [2], and to 5th
order in D = 4 − ǫ dimensions [3]. The theory is an ex-
tension of a variational approach to path integrals set up
by R.P. Feynman and collaborator in 1989 [4]. The ex-
tension to high orders is called Variational Perturbation

Theory (VPT), and is developed in detail in the textbook
[5]. Originally, the theory was designed to convert only
the divergent perturbation expansions of quantum me-
chanics into exponentially fast convergent exressions [6].
In the papers [1–3], it was extended from quantum me-
chanics to φ4-theory with its anomalous dimensions and
produced all critical exponents. This is called quantum-
field-theoretic VPT. That theory is explained in the text-
book [7] and a recent review [8].

Surprisingly, this successful theory has not yet been
applied to the presently so popular phenomena of Bose-
Einstein condensation. These have so far mainly been fo-
cused [9] on the semiclassical treatments using the good-
old Gross-Pitaevskii equations, or to the weak-coupling
theory proposed many years ago by Bogoliubov [10]. This
is somewhat surprising since the subject is under intense
study by many authors. So far, only the shift of the crit-
ical temperature has been calculated to high orders [11].
There are only a few exceptions. For instance, a simple
extension of Bogoliubov’s thepry to strong couplings was
proposed in [12] and pursued further in [13]. But that had
an unpleasant feature that it needed two different chemi-
cal potentials to maintain the long-wavelength properties
of Nambu-Goldstone excitations required by the spon-
taneously broken U(1)-symmetry in the condenste. For
this reason it remained widely unnoticed. Another no-
table exception is the theory in [14] which came closest
to our approach, since it wa also based on a variational
optimization of the energy. But by following Bogoliubov
in identifying a0 as

√
ρ0 from the outset, they ran into

the notorious problem of violating the Nambu-Goldstone
theorem. Another approach that comes close to ours is
found in the paper [15]. Here the main difference lies in
the popular use the Hubbard-Stratonovic transformation
(HST) to introduce a fluctuating collective pair field [16].
But, as pointed out in [17] and re-emphasized in [18],

this makes it impossible to calculate higher-order correc-
tions [18]. The rules for applying VPT to nonrelativistic
quantum field theories in 3+1 dimensions have been spec-
ified some time ago [19]. In this note we want to show
how derive from them, to lowest order, the properties
of the Bose-Einstein condensation at arbitrarily strong
couplings.

It must be mentioned that in the literature, there have
been many attempts to treat the strong-coupling regime
of various field theories for models with a large num-
ber of identical field components (the so-called large-N -
models). This has first been done for the so-called spher-
ical model [20], later the Gross-Neveu model [21], and
O(N)-symmetric ϕ2-models [22]. In all these applica-
tions, the leading large-N limit has been easily solved
with the help of the HST trick of introducing a fluc-
tuating field variable [23, 24] for some dominant col-
lective phenomenon (Collective Quantum Field Theory
[16]). This approach has, however, the above-discussed
problems of going to higher orders [18], which are absent
here.

2. The Hamiltonian of the boson gas has a free term
H0 ≡

∑

p a
†
p(εp − µ)ap =

∑

p a
†
pξpap, where εp ≡

p2/2M are the single-particle energies and ξp ≡ εp − µ
the relevant energies in a grand-canonical ensemble. As
usual, a†p and ap are creation and annihilation operators
defined by the canonical equal-time commutators of the
local fields ψ(x) =

∑

p
eipx/~ap. The local interaction is

Hint =
g

2V

∑

p,p′,q

a†p+qa
†
p′−qap′ap. (1)

Instead of following Bogoliubov in treating the
p = 0 modes of the operators ap classically
and identifying with the square-root of the con-
densate density ρ0, we introduce the field expecta-
tion 〈ψ〉 ≡

√

V Σ0/g as a variational parameter ,
and rewrite Hint as H0

int = (V/2g)Σ2
0 plus H ′

int =
1
2

∑

p 6=0

[

2Σ0

(

a†pap+a
†
−pa−p

)

+Σ0

(

a†pa
†
−p+h.c.

)]

, plus a

fluctuation Hamiltonian H ′′
int, which looks like (1), ex-

cept that the sum contains only nonzero-momenta. Now
we proceed according to the rules of VPT [18]. We in-
troduce dummy variational parameter Σp and ∆p via an
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auxiliary Hamiltonian

H̄trial =
1

2

∑

p 6=0

[

Σp

(

a†pap+a
†
−pa−p

)

+∆pa−pap+h.c.
]

, (2)

leading a harmonic Hamiltonian

H ′
0 ≡ −V µ

g
Σ0+

V

2g
Σ2

0+
∑

p6=0

(εp − µ+ 2Σ0)a
†
pap

+
1

2
Σ0

∑

p 6=0

(

a†pa
†
−p+h.c.

)

+ H̄trial. (3)

From this we calculate the energy order by order in per-
turation theory considering the subtracted interaction

Hvar
int = H ′′

int − H̄trial. (4)

as a perturbation. The zeroth-order variational energy is
W0 = 〈H ′

0〉, and the lowest-order correction comes from
the expectation value ∆1W = 〈Hvar

int 〉. If the energy could
be calculated to all orders in Hvar

int , the result would be
independent of the variational parameters Σ0, Σp, and
∆p. At any finite order, however, the energy will de-
pend on these parameters. Their best values are found
by optimization (usually extremization), and the results
converge exponentially fast as a function of the order [5–
8].

A Bogoliubov transformation with as yet undeter-
mined coefficients up, vp constrained by the condition
u2
p − v2

p = 1, produces a ground state with vacuum ex-

pectation values 〈ap†ap〉 = v2
p and 〈apa−p〉 = upvp, so

that

W0 =−V µ
g

Σ0 +
V

2g
Σ2

0

+
∑

p6=0

{[εp − µ+ 2Σ0 + Σp] v2
p + (Σ0 + ∆p)upvp}. (5)

The first-order variational energy W1 contains, in ad-
dition, the expectation value 〈Hvar

int 〉. Of this, the first
part, ∆(1,0)W = 〈H ′′

int〉, is found immediately with the
help of the standard commutation rules as a sum of three
pair terms 〈a†p+q a

†
p′−qap′ap〉 = 〈a†p+qa

†
p′−q 〉〈ap′ap〉 +

〈a†p+qap〉〈a†p′−q
ap′〉+ 〈a†p+qap′〉〈a†

p′−q
ap〉, which yields

∆(1,0)W =〈H ′′
int〉=

g

2V

∑

p,p′ 6=0

(

2v2
pv

2
p′ + upvpup′vp′

)

. (6)

The second part 〈−H̄trial〉 adds to this:

∆(1,1)W = −
∑

p6=0

(

Σpv
2
p + ∆pupvp

)

. (7)

Let us now fix the total number of particles N on the
average. We differentiate W1 ≡W0 +∆(1,0)W +∆(1,1)W
with respect to −µ and set the result equal to N , lead-
ing for the density ρ = N/V to the equation ρ =

Σ0/g + V −1
∑

p 6=0 v
2
p. The momentum sum on the right

is the density of particles outside the condensate, the
uncondensed density ρu =

∑

p 6=0〈a†pap〉 = V −1
∑

p
v2
p.

Hence Σ0/g = ρ− ρu is the condensate density.
Now we extremize W1 with respect to the variational

parameter Σ0 which yields the equation (µ − Σ0)/g =
∑

p 6=0
(2v2

p+upvp)=2ρu+
∑

p 6=0
upvp = 2ρu+δ.

We are now able to determine the size of the Bogoli-
ubov coefficients up and vp. The original way of do-
ing this is algebraic, based on the elimination of the off-
diagonal elements in the transformed Hamiltonian op-
erator. In the framework of our variational approach
it is more natural to use the equivalent procedure of
extremizing the energy expectation W0 with respect to
up and vp under the constraint u2

p − v2
p = 1, so that

∂up/∂vp = vp/up. Varying W0, we obtain for each
nonzero momentum the equation

2
(

εp−µ+2Σ0+Σp

)

vp+
(

Σ0+∆p

)(

up+v2
p/up

)

= 0. (8)

In order to solve this we introduce the parameters Σ̄p≡
−µ+2Σ0+Σp, ∆̄p ≡ Σ0 + ∆p, and rewrite (8) in the
simple form

2
(

εp + Σ̄p

)

vp + ∆̄p

(

up + v2
p/up

)

= 0. (9)

This is solved for all p by the Bogoliubov transformation
coefficients

u2
p = 1

2

[

1+(εp+Σ̄p)/Ep

]

, v2
p =− 1

2

[

1−(εp+Σ̄p)/Ep

]

,(10)

with upvp = −∆̄p/2Ep, where Ep are the quasiparticle
energies Ep = [(εp + Σ̄p)2 − ∆̄2

p]1/2.
Here we make use of the U(1)-symmetry of the Hamil-

tonian to impose the Nambu-Goldstone property of the
quasiparticle energies by setting ∆̄p=0=Σ̄p=0 = Σ̄. This
ensures that the zero-momentum excitations have no en-
ergy, since they reduce to symmetry transformations.

Having determined the Bogoliubov coefficients, we can
calculate the momentum sums contained in µ− Σ0. For
simplicity we shall, in lowest approximation, seek for vari-
ational parameters that are indepencent of the momenta
p, i.e., Σ̄p ≡ ∆̄p ≡ Σ̄. In higher approximations we
shall eventually generalize this to Σ̄p ≡ Σ̄ + Σ̄′εp and
∆̄p ≡ Σ̄+∆̄′εp. The parameter Σ̄′ causes a wave function
renormalization corresponding to a new effective mass
M ′ = M/(1 + Σ′), the paramter ∆̄′ ntroduces a gradient
term in the anomalous expectations. Both maintain the
renormalizability of the variational procedure.

In the lowest approximation, the uncondensed particle
density is obtained using (10) and abbreviating -dp3 ≡
d3p/(2π~)3:

ρu = V −1
∑

p

v2
p =

1

2

∫

-d
3
p[(εp + Σ̄)/Ep − 1]. (11)

The integral is easily done if we set |p| ≡ ~kΣ̄ κ with

kΣ̄ =
√

2M Σ̄/~, so that ρu = k3
Σ̄
Iρu

/4π2, where Iρu
≡
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∫ ∞
0
dκ

(

κ2(κ2+1)√
(κ2+1)2−1

−1
)

=
√

2/3. The other important mo-

mentum sum in µ− Σ0 becomes, after inserting (10),

δ ≡
∑

p6=0

〈apa−p〉 = V −1
∑

p 6=0

upvp = − Σ̄

2

∫

-d
3
p

1

Ep

. (12)

In contrast to (11), this is a divergent quantity. However,
as a consequence of the renormalizability of the theory
with the harmonic bare Hamiltonian (3) and the interac-
tion Hvar

int , the divergence can be removed by renormal-
izing the parameters of the initial Hamiltonian. We may
use dimensional regularization and apply Veltman’s rule
[7] to set

∫

dDp pα = 0, in particular
∫

d3p 1/εp = 0. This
amounts to introducing the finite renormalized quantity
1/gR ≡ 1/g −

∫ -d
3
p/2εp. The constant gR is mea-

surable in two-body scattering as an s-wave scattering

length: gR = 4π~
2as/M . Similarly we define the sub-

tracted finite momentum sum δR = V −1
∑

p
upvp =

−(Σ̄/2)
∫ -d

3
p (1/Ep − 1/εp). Thus the above equation

for µ − Σ0 becomes (µ − Σ0)/g = 2ρu + δR. Inserting
Σ0/g = ρ− ρu, this implies µ/g = ρ+ ρu + δR.

If we evaluate the momentum sum for δR in the same
way as (11), it yields δR = k3

Σ̄
Iδ/4π

2, where Iδ is given

by the integral Iδ ≡ −
∫ ∞
0 dκ

(

κ2√
(κ2+1)2−1

− 1
κ2

)

=
√

2 = 3Iρu
.

In terms of this, we have the relation Σ̄/gR = ρ− 3ρu −
δR+Σ/g.

Finally, we calculate the total variational energy
W1. Inserting the Bogoliubov coefficients (10) into
W0 of Eq. (5), and adding the interaction en-
ergies ∆1W ≡ ∆(1,0)W + ∆(1,1)W of (6) and

(7), we obtain W1 = −V µ
g Σ0 + V

2g Σ2
0 + w0(Σ̄) +

∆1W , where w0(Σ̄) is the momentum sum w0(Σ̄) ≡
1
2

∑

p 6=0

{[

Ep − εp − Σ̄ + Σ̄2/2εp
]}

, made convergent af-
ter a minimal subtraction. It is evaluated as
in (11) to w0(Σ̄) = V Σ̄k3

Σ̄
IE/4π

2, where IE ≡
∫ ∞
0 dκκ2 [

√
(κ2+1)2−1−κ2−1+1/2κ2]=8

√
2/15. If we rename

all I/4π2’s to Ī’s, the energy W1 becomes

W1 = −V
g
µΣ0 +

V

2g
Σ2

0 + V Σ̄k3
Σ̄ĪE (13)

+
V g

2
k6
Σ̄(2Ī2

ρu

+Īδ
2)−V k3

Σ̄(ΣĪρu
+∆Īδ).

The expression is finite by dimensional regularization. It
can be extremized with respect to Σ̄. We insert Σ/g ≡
ρ − 3ρu − δR − Σ̄/g and ∆/g ≡ ρ − ρu − Σ̄/g, and vary
W1 in δΣ̄ to find

Σ̄

g
= ρ− ρu

4ρ′u + 2δ′

ρ′u+δ′
− δ

2ρ′u − δ′

ρ′u+δ′
. (14)

Here a prime denotes the derivative with respect to Σ̄,
and we have used the relation ∂Σ̄Σ̄k3

Σ̄
= 5k3

Σ̄
/2 to equate

∂Σ̄Σ̄k3
Σ̄
IE = k3

Σ̄
(Iρu

+ Iδ) = ρu + δ. Inserting δR = 3ρu,
Eq. (14) becomes Σ̄/g = ρ− 7ρu/4.

3. To extract experimental consequences it is use-
ful to re-express all equations in a dimensionless form
by introducing the reduced variables s ≡ Σ̄/εa, where
εa ≡ ~

2/2Ma2 is the natural energy scale of the system.
We also introduce the reduced s-wave scattering length
âs ≡ 8πas/a, in terms of which the renormalized coupling
constant is gR = 4π~

2as/M = 8πεaa
2as = εaa

3âs, while
kΣ̄ =

√
s/a, Σ̄/gR = s/8πa2as = s/a3âs, and the second-

sound velocity reads c =
√

s/2 va, va ≡ pa/M ≡ ~/aM .
Finally we define the reduced quantities ρ̂u ≡ ρu/ρ =

s3/2Īρu
and δ̂ ≡ δR/ρ = s3/2Īδ, so that the relation be-

tween s and âs is s/âs = 1 − 7s3/2Īρu
. In the strong-

coupling limit âs → ∞, this yields a maximal s-value

ssc =

(

1152π4

49

)1/3

≈ 13.18 . . . , (15)

where the maximal depletion is

ρu
sc = 4/7 ≈ 0.571 . (16)

For arbitrary âs, we find

s = âs −
19

24
√

2π2
â5/2

s +
361

786π4
â4

s + . . . , (17)

leading to

ρu
ρ

= 1 − 1

6
√

2π2
â3/2

s +
19

192π4
â3

s + . . . . (18)

These functions are plotted in Fig. 18.
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Figure 1: Reduced gap s ≡ Σ̄/εa as a function of reduced

s-wave scattering length âs = 8πas/a = 8πasρ
1/3. The max-

imal depletion value is ρu/ρ = 4/7 ≈ 0.571, reached in the
strong-coupling limit âs → ∞.

Finally we calulate the reduced variational energy
w1 ≡W1/Nεa from Eq. (13)

w1 = −âs(1+ρ̂u+δ̂)(1−ρ̂u)+
âs

2
(1−ρ̂u)

2+
s5/2

2
ĪE

+
âs

2
(2ρ̂2

u + δ̂2) − âs(σΣρ̂u + σ∆δ̂), (19)

with σΣ ≡ 1 − 3ρ̂u − δ̂ − s/âs and σ∆ ≡ 1 − ρ̂u − s/âs.

Inserting ρ̂u = s3/2Īρu
and δ̂ = 3s3/2Īρu

, and going from
the grand-canonical to the true proper energies by adding
µN to W1 forming W e = W1 + µV ρ, we obtain the re-

duced energy we
1 = âs

2 +
√

2
3π2 âss

3/2 −
√

2
5π2 s

3/2 + âs

72π4 s
3.
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Inserting here (17), we find we
1 = âs

2 +
√

2
15π2 â

5/2
s −

1
1152

√
2π6

â
11/2
s + O(â7

s).

In Fig. 2, we compare the reduced total energy we
1 with

Bogoliubov’s result wBog
1 = âs

2 +
√

2
15π2 â

5/2
s .
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Figure 2: Reduced energy per particle we
1 = W1/Nεa as

a function of the reduced s-wave scattering length wBog =
âs = 8πas/a = 8πasρ

1/3, compared with Bogoliubov’s weak-
coupling result.

4. In principle, the accuracy of our results can be in-
creased to any desired level, with an exponentially fast
convergence, as was demonstrated by the calculation of
critical exponents in all Euclidean ϕ4 theories with N
components in D dimensions [7]. The fact that the
theory is renormalizable, so that all divergencies can be
removed by Veltman’s rule, is an essential advantage
of the present theory over any previous strong-coupling
scheme.1
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