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We extend the theory of Bose-Einstein condensation from Bogoliubov’s weak-coupling regime to
large s-wave scattering lengths as. For teperatures below and slightly above the free condensation
temperature T 0

c the model has two phase transitions at âc1
s and one at âc2

s . At the first, the
condensate disappears, at the second, the gas freezes. For zero temperature, âc2

s lies near the close-
packing radius. Our solution satisfies the Nambu-Goldstone theorem, thus avoiding an old problem
of many-boson theories.
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1. For φ4-theory in D < 4 Euclidean dimensions with
O(N)-symmetry, a powerful strong-coupling theory has
been developed in 1998 [1]. It has been carried to 7th
order in perturbation theory in D = 3 [2], and to 5th
order in D = 4 − ǫ dimensions [3]. The theory is an ex-
tension of a variational approach to path integrals set up
by R.P. Feynman and collaborator in 1989 [4]. The ex-
tension to high orders is called Variational Perturbation

Theory (VPT), and is developed in detail in the textbook
[5]. Originally, the theory was designed to convert only
the divergent perturbation expansions of quantum me-
chanics into exponentially fast convergent exressions [6].
In the papers [1–3], it was extended from quantum me-
chanics to φ4-theory with its anomalous dimensions and
produced all critical exponents. This is called quantum-
field-theoretic VPT. That theory is explained in the text-
book [7] and a recent review [8].

Surprisingly, this successful theory has not yet been
applied to the presently so popular phenomena of Bose-
Einstein condensation. These have so far mainly been fo-
cused [9] on the semiclassical treatments using the good-
old Gross-Pitaevskii equations, or to the weak-coupling
theory proposed many years ago by Bogoliubov [10]. This
is somewhat surprising since the subject is under intense
study by many authors. So far, only the shift of the crit-
ical temperature has been calculated to high orders [11].
There are only a few exceptions. For instance, a simple
extension of Bogoliubov’s thepry to strong couplings was
proposed in [13] and pursued further in [14]. But that had
an unpleasant feature that it needed two different chemi-
cal potentials to maintain the long-wavelength properties
of Nambu-Goldstone excitations required by the spon-
taneously broken U(1)-symmetry in the condenste. For
this reason it remained widely unnoticed. Another no-
table exception is the theory in [15] which came closest
to our approach, since it wa also based on a variational
optimization of the energy. But by following Bogoliubov
in identifying a0 as

√
ρ0 from the outset, they ran into

the notorious problem of violating the Nambu-Goldstone
theorem. Another approach that comes close to ours is
found in the paper [16]. Here the main difference lies in
the popular use the Hubbard-Stratonovic transformation

(HST) to introduce a fluctuating collective pair field [17].
But, as pointed out in [24] and re-emphasized in [25], this
makes it impossible to calculate higher-order corrections
[25].
The rules for applying VPT to nonrelativistic quantum

field theories in 3+1 dimensions have been specified some
time ago [18]. In this note we want to show how derive
from them, to lowest order, the properties of the Bose-
Einstein condensation at arbitrarily strong couplings.
It must be mentioned that in the literature, there have

been many attempts to treat the strong-coupling regime
of various field theories for models with a large num-
ber of identical field components (the so-called large-N -
models). This has first been done for the so-called spher-
ical model [19], later the Gross-Neveu model [20], and
O(N)-symmetric ϕ2-models [21]. In all these applica-
tions, the leading large-N limit has been easily solved
with the help of the HST trick of introducing a fluc-
tuating field variable [22, 23] for some dominant col-
lective phenomenon (Collective Quantum Field Theory
[17]). This approach has, however, the above-discussed
problems of going to higher orders [25], which are absent
here.
2. The Hamiltonian of the boson gas has a free term

H0 ≡
∑

p

a†p(εp − µ)ap =
∑

p

a†pξpap, (1)

where εp ≡ p2/2M are the single-particle energies and
ξp ≡ εp−µ the relevant energies in a grand-canonical en-
semble. As usual, a†p and ap are creation and annihilation
operators defined by the canonical equal-time commuta-
tors of the local fields ψ(x) =

∑

p
eipx/~ap. The local

interaction is

Hint =
g

2V

∑

p,p′,q

a†p+qa
†
p′−qap′ap. (2)

Instead of following Bogoliubov in treating the p = 0
modes of the operators ap classically and identifying with
the square-root of the condensate density ρ0, we intro-
duce the field expectation 〈ψ〉 ≡

√

V Σ0/g as a varia-

tional parameter ,and rewrite Hint as H0
int = (V/2g)Σ2

0
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plus

H ′
int=

1

2

∑

p 6=0

[

2Σ0

(

a†pap+a
†
−pa−p

)

+Σ0

(

a†pa
†
−p+h.c.

)]

, (3)

plus a fluctuation Hamiltonian H ′′
int, which looks like (2),

except that the sum contains only nonzero-momentum
modes. Now we proceed according to the rules of VPT
[25] and introduce dummy variational parameters Σ and
∆ via an auxiliary Hamiltonian

H̄trial=
1

2

∑

p6=0

[

Σ
(

a†pap+a
†
−pa−p

)

+∆a−pap+h.c.
]

, (4)

leading a harmonic Hamiltonian

H ′
0 ≡ −V µ

g
Σ0+

V

2g
Σ2

0+
∑

p6=0

(εp − µ+ 2Σ0 +Σ)a†pap

+
1

2

∑

p 6=0

(Σ0 +∆)
(

a†pa
†
−p+h.c.

)

, (5)

for which we have to calculate the energy prder by order
in perturation theory considering

Hvar
int = H ′′

int − H̄trial. (6)

as the interaction Hamiltonian. The zeroth-order varia-
tional energy is W0 = 〈H ′

0〉, and the lowest-order correc-
tion comes from the expectation value ∆1W = 〈Hvar

int 〉.
If the energy is calculate to all orders in Hvar

int the result
will be independent of the variational parameters Σ0, Σ,
and ∆, but the energy to any finite order will depend
on it. The optimal values of the parameters are found
by optimization (usually extremization), and the results
converge exponentially fast as a function of the order
[5, 7, 8].

A Bogoliubov transformation with as yet undeter-
mined coefficients up, vp constrained by the condition
u2p − v2p = 1, produces a ground state with vacuum ex-

pectation values 〈ap†ap〉 = v2p and 〈apa−p〉 = upvp, so
that

W0=−V µ
g
Σ0 +

V

2g
Σ2

0

+
∑

p6=0

{[εp − µ+ 2Σ0 +Σ] v2p + (Σ0 +∆)upvp}. (7)

The first-order variational energy W1 contains, in ad-
dition, the expectation value 〈Hvar

int 〉. Of this, the first
part, W11 = 〈H ′′

int〉, is found immediately with the help
of the standard commutation rules as a sum of three pair
terms

〈a†p+qa
†
p′−q

ap′ap〉=〈a†p+qa
†
p′−q

〉〈ap′ap〉
+〈a†p+qap〉〈a†p′−qap′〉+ 〈a†p+qap′〉〈a†p′−qap〉. (8)

so that

W11=〈H ′′
int〉=

g

2V

∑

p,p′ 6=0

(

2v2pv
2
p′ + upvpup′vp′

)

. (9)

The second part 〈−H̄trial〉 adds to this the expectation
value

W12 = −
∑

p6=0

(

Σv2p +∆upvp
)

. (10)

In order to fix the average total number of particles
N , we differentiate W1 ≡ W0 +W11 +W12 with respect
to −µ and set the result equal to N to find the density
ρ = N/V as

ρ =
Σ0

g
+
∑

p6=0

v2p. (11)

The momentum sum is the density of particles outside

the condensate, the uncondensed particle density

ρu =
∑

p 6=0

〈a†pap〉 =
1

V

∑

p

v2p, (12)

implying that Σ0/g is the condensate density ρ0:

Σ0

g
= ρ0 = ρ− ρu. (13)

If we extremize W1 with respect to the variational pa-
rameter Σ0, we find the equation

µ− Σ0

g
=
∑

p 6=0

(2v2p+upvp)=2ρu+
∑

p6=0

upvp = 2ρu+δ. (14)

Let us now determine the size of the Bogoliubov co-
efficients up and vp. The original way of doing this is
algebraic, based on the elimination of the off-diagonal el-
ements of the transformed Hamiltonian operator. In the
framework of our variational approach it is more natural
to use the equivalent procedure of extremizing the energy
expectationW0 with respect to up and vp under the con-
straint u2p − v2p = 1, so that ∂up/∂vp = vp/up. Doing
this, we obtain for each nonzero momentum the equation

2
(

εp−µ+2Σ0+Σ
)

vp+
(

Σ0+∆
)(

up+v
2
p/up

)

= 0. (15)

In order to solve this we introduce the constant

Σ̄≡−µ+2Σ0−Σ =−µ+2g(ρ− ρu)− Σ, (16)

the right-hand side emerging after using (12) and (13).
We further introduce the constant

∆̄ ≡ Σ0 +∆. (17)

so that we can rewrite (15) in the simple form

2
(

εp + Σ̄
)

vp + ∆̄
(

up + v2p/up
)

= 0, (18)
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which is solved by the Bogoliubov transformation coeffi-
cients

u2p =
1

2

(

1 +
εp + Σ̄

Ep

)

, v2p = −1

2

(

1− εp + Σ̄

Ep

)

, (19)

with upvp = ∆̄/2Ep, and the quasiparticle energies

Ep =

√

(

εp + Σ̄
)2 − ∆̄2, (20)

According to the Nambu-Goldstone theorem, these
have to vanish linearly for p → 0. This forces us to
set ∆̄ = Σ̄, or

∆ = Σ̄− Σ0, (21)

thus avoiding the main hurdle in previous attempts to go
beyond the Bogoliubov theory [13].
Having determined the Bogoliubov coefficients, we cal-

culate the momentum sums in Eqs. (12) and (14). In the
lowest approximation, the uncondensed particle density
(12) becomes, after inserting (19):

ρu =
1

V

∑

p

v2p =
1

2

∫

d3p

(2π~)3

(

εp + Σ̄

Ep
− 1

)

. (22)

The integral is easily done if we set |p| ≡ ~kΣ̄ κ with

kΣ̄ =
√
2M Σ̄/~, so that we find

ρu = k3Σ̄Iρu
/4π2, (23)

where

Iρu
≡
∫ ∞

0

dκ κ2

(

κ2+1
√

(κ2+1)2 − 1
−1

)

=

√
2

3
. (24)

The second momentum sum in Eq. (14) reads, after in-
serting (19),

δ ≡
∑

p 6=0

〈apap〉 =
1

V

∑

p 6=0

upvp = − Σ̄

2

∫

d3p

(2π~)3
1

Ep
. (25)

In contrast to (22), this is a divergent quantity. However,
as a consequence of the renormalizability of the theory,
the divergence can be removed by absorbing it into the
inverse coupling constant of the model defined by

1

gR
≡ 1

g
− 1

V

∑

p6=0

1

2εp
=

1

g
−
∫

d3p

(2π)3
1

2εp
, (26)

The renormalized coupling is finite and measurable in
two-body scattering as an s-wave scattering length: gR =
4π~2as/M . Thus we introduce the finite renormalized
quantity

δR =
1

V

∑

p

upvp = − Σ̄

2

∫

d3p

(2π~)3

(

1

Ep
− 1

εp

)

, (27)

and write δ = δR + δdiv, where the divergence is the
momentum sum

δdiv ≡ − Σ̄

V

∑

p

1

2εp
= − Σ̄

2

∫

d3p

(2π~)3
1

εp
. (28)

If we denote this by −Σ̄/V v, we have

δ = δR + δdiv = δR − Σ̄

V v
. (29)

Inserting this together with (12) into (14), we find

µ− Σ0

g
= 2ρu + δR + δdiv. (30)

Recalling (13), this implies

µ

g
= ρ0 + 2ρu + δR + δdiv = ρ+ ρu + δR + δdiv. (31)

If we evaluate the momentum sum (27) by the same
procedure as in (22), it yields

δR = k3Σ̄Iδ/4π
2, (32)

where Iδ is given by the integral

Iδ≡−
∫ ∞

0

dκ κ2

(

1
√

(κ2+1)2−1
− 1

κ2

)

=
√
2. (33)

We observe that

Iδ = 3Iρu
. (34)

We continue the discussion by rewriting Eq. (16), with
the help of (31), as

Σ̄

g
=ρ− 3ρu+

Σ

g
−δR−

Σ̄

V v
. (35)

As before in Eqs. (25), (26), and (27), the last, divergent
term can be absorbed into the first by renormalizing the
coupling constant, so that we obtain

Σ

g
=

Σ̄

gR
+ ρ− 3ρu − δR. (36)

Similarly we can use Eq. (21) to see that

∆

g
=

Σ̄

g
− ρ+ ρu. (37)

Finally, we calculate the total variational energy W1.
Inserting the Bogoliubov coefficients (19) into W0 of
Eq. (7) and adding the energies W11 +W12 of and (9)
and (10), we have

W1 = −V
g
µΣ0 +

V

2g
Σ2

0 + V w(Σ̄)− Σ̄2

4V v

+ W11 +W12, (38)
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where w(Σ̄) is the convergent momentum sum

w(Σ̄) ≡ 1

2V

∑

p6=0

{[

Ep − εp − Σ̄ +
Σ̄2

2εp

]}

. (39)

This is evaluated as in (22) to be

w(Σ̄) = Σ̄k3Σ̄IE/4π
2, (40)

where

IE ≡
∫ ∞

0

dκκ2
[

√

(κ2+1)2−1−κ2−1+
1

2κ2

]

. (41)

If we rename all I/4π2’s to Ī’s, the energy W1 becomes

W1= −V
g
µΣ0 +

V

2g
Σ2

0 + V Σ̄k3Σ̄ĪE (42)

+
V g

2
k6Σ̄(2Ī

2
ρu

+ Ī2δ )−V k3Σ̄(ΣĪρu
+∆Īδ).

The expression is renormalized via dimensional regular-
ization, that allows us to use Veltman’s rule [7] to set
1/v = 0.
We are now prepared to extremize the variational en-

ergy Eq. (42) with respect to Σ̄. We insert −Σ/g ≡
ρ− 3ρu − δR − Σ̄/g from (36) and −∆/g ≡ ρ− ρu − Σ̄/g
from (17) and vary W1 in δΣ to find

(Σ̄/g − ρ(−))ρu
′ + (Σ̄/g − ρ(+))δ′ = 0, (43)

where ρu
(±) ≡ ρ− ρu ± δR. This equation is solved by

Σ̄

g
= ρ− ρu − δR

ρu
′ − δ′

ρu′ + δ′
. (44)

Using the zero-temperature relation Iδ = 3Iρu
from (34),

this becomes

Σ̄

g
= ρ+

1

2
ρu. (45)

3. To extract experimental consequences it is useful
to re-express all equations in a dimensionless form by
introducing the reduced variables

s ≡ Σ̄

εa
. (46)

where εa ≡ ~
2/2Ma2 is the natural energy scale of the

system. We also introduce the reduced s-wave scattering
length

âs ≡ 8π
as
a
, (47)

in terms of which the renormalized coupling constant is

gR =
4π~2

M
as = 8πεaa

2as = εaa
3âs, (48)
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ρu/ρ
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Figure 1: Reduced gap s ≡ Σ̄/εa as a function of reduced

s-wave scattering length âs = 8πas/a = 8πasρ
1/3. The max-

imal value for âs is âmax
s ≈ 0.285.

while

kΣ̄=

√
s

a
,

Σ̄

gR
=

s

8πa2as
=

s

a3âs
, (49)

and the sound velocity reads

c =

√

s

2
va, va ≡ pa

M
≡ ~

aM
. (50)

Let us also define the reduced quantities

ρ̂u ≡ ρu/ρ = s3/2Īρu
, δ̂ ≡ δ/ρ = s3/2Īδ. (51)

The relation between s and âs is from (45) and (46):

s

âs
= 1 +

1

2
s3/2Īρu

= 1 +

√
2

24π2
s3/2. (52)

It is plotted in Fig. 1a). The corresponding behavior of
ρu is shown in Fig. 1b).

Using of ρ̂u and δ̂ from (51), we calculate from Eq. (42)
the reduced variational energy w1 ≡ W1/Nεa. We
go from the grand-canonical to the proper energies by
adding µN to W1 and forming W e =W1 + µV ρ. In this
way we obtain the reduced energy density per particle

we
1 =

âs
2

+

√
2

3π2
âss

3/2 −
√
2

5π2
s3/2 +

âs
72π4

s3. (53)

Inserting (52), we find that up to the term â4s the ex-
pansion

we
1 =

âs
2

+
2
√
2

15π2
â5/2s +

1

72π4
â4s + . . . . (54)

In Fig. 2 we compare the reduced total energy we
1 with

Bogoliubov’s result

wBog
1 =

âs
2

+

√
2

15π2
â5/2s . (55)

Note that the energy has a singularity at (âs, sc) =
(16.08, 48.23) where the condensate disappears in a con-
tinuoues phase transition.
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Figure 2: Reduced energy per particle we

1 = W1/Nεa as a
function of the reduced s-wave scattering length âs = 8πas/a
compared with Bogoliubov’s weak-coupling result (55). There
is a continuous phase transition at (âs, s) ≈ (16.08, 48.23),
where the condensate becomes depleted and the ratio ρu/ρ
reaches unity.

4. There is no problem to increase the accuracy to
any desired level, with exponentially fast convergence, as
was demonstrated by the calulation of critical exponents
in all Euclidean ϕ4 theories with N components in D
dimensions [7]. The procedural rules were explained in
the paper [25]. We merely have to calculate higher-order
diagrams using the harmonic Hamiltonian (5) as the free
theory that determines the Feynman diagrams, and (6)
as the interaction Hamiltonian that determines the ver-
tices. At any given order, the results are optimized in
the variational parameters Σ0,Σ, and ∆. The theory is
renormalizable, so that all divergencies can be absorbed
in a redefintion of the parameters of the orginal action,
order by order. This is the essential advantage of the
present theory over any previous strong-coupling scheme
published so far in the literature, in particular over those
based on Hubbard-Stratonovic transformations of the in-
teraction, which are applicable only in some large-N limit
as explained in [25], and for which no higher-loop calcu-
lations are renormalizable.

Our results can be made much more reliable in the
Σ̄ 6= 0 -regime by calculating the contribution of the still-
missing second two-loop diagram.1
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1 The second diagram in Eq. (3.741) of the textbook [5]. Its con-
tribution would be the 3+1-dimensional version of the last term
in Eq. (3.767), is essential in the X 6= 0 phase. Without this
term, the slope of the quantum-mechanical energy as a function
of the coupling constant is missed by 25%, as discussed in the
heading of Fig. 5.24.
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