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Abstract
We argue that part of ‘dark matter’ is not made of matter, but of the singular world lines and
world surfaces in the solutions of Einstein’s vacuum field equation Gµν = 0. Their
Einstein–Hilbert action governs, in a slightly modified form, also their quantum fluctuations in
a partition function formed from a sum over all line and surface configurations. For world
surfaces, the Einstein–Hilbert action coincides with that of closed bosonic ‘strings’ in four
spacetime dimensions, which appear here in a new physical context.

PACS numbers: 95.35.+d, 04.60.−m, 04.20.Cv, 04.90.+e

The surprisingly large orbital velocities of galaxies in clusters
induced F Zwicky in 1933 to postulate the existence of
dark matter. A confirmation came from plots of the orbital
velocities of stars versus distance inside individual galaxies,
whose explanation asked for large amounts of invisible matter
in each galaxy. The Friedmann model of the evolution of
the Universe indicates that dark matter constitutes a large
percentage, roughly 23%, of the mass energy of the Universe.
If dark matter is added to the so-called ‘dark energy’, which
accounts for roughly 70% of the energy, the visible matter
is practically negligible, which is the reason for ignoring
it completely in the most extensive computer simulation
reported so far of the evolution of cosmic structures [1], the
so-called ‘Millenium Simulation’.

There are many speculations as to its composition and
we want to propose, in this paper, the simplest possible
explanation of at least a part of it.

Let us remember that all static electric fields in nature
may be considered as originating from the nontrivial solutions
of the Poisson equation for the electric potential φ(x) as a
function of x = (t, x):

1φ(x) ≡ ∇ · ∇ φ(x) = 0. (1)

The simplest of them has the form e/r , where r = |x|, and
is attributed to point-like electric charges, whose size e can
be extracted from the pole strength of the singularity of
the electric field E which points radially outward and has a
strength e/r2. This becomes visible by performing an area

integral over the E field around the singularity which, by the
famous Gauss integral theorem,∫

V
d3x ∇ · E =

∫
A

d2a · E, (2)

is equal to the volume integral over ∇ · E = −1φ(x). Thus a
field that solves the homogeneous Poisson equation can have
a nonzero integral

∫
V d3x 1φ(x) = −4πe. This fact is more

properly expressed with the help of a Dirac delta function
δ(3)(x) as

1φ(x) = −4πeδ(3)(x). (3)

In the following, it is useful to re-express the Gauss
theorem (2) in a one-dimensional (1D) form as∫ R

dr∂r E(r) = E(R). (4)

This appears in the radial part of the Gaussian relation∫
d3x ∇·E = −4π

∫ R

dr r2
∇·∇e/r = 4π

∫ R

dr ∂r e, (5)

so that we find the electric charge e from the 1D equation∫ R

dr ∂r e = e, (6)

showing once more that ∇ · E = 4πeδ(3)(x).
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For celestial objects, the situation is quite similar. The
Einstein equation in the vacuum, Gµν = 0, possesses simple
nontrivial solutions in the form of the Schwarzschild metric
defined by

ds2
= B(r)c2dt2

− A(r)dr2
− r2(dθ2 + sin2 θdϕ2), (7)

with B(r) = 1 − rS/r , A(r) = 1/B(r), where rS ≡ 2GN M/c2

is the Schwarzschild radius and GN is Newton’s gravitational
constant. Its Einstein tensor has the component

G t
t =

A′

A2r
−

1 − A

Ar2
. (8)

This vanishes. However, if we calculate the volume integral∫
V d3x

√
−gG t

t , we find that
∫

V d3x
√

B/A[A′/Ar −

(1 − A)/r2], which is equal to
∫ R dr∂r (r − r/A) =

(2GN/c)
∫ R dr∂r M = (2GN/c)M . Using the 1D form (4) of

Gauss’ integral theorem, we find, also here, a nonzero integral∫
V

d3x
√

−g G t
t = κcM, (9)

where κ is defined, in terms of the Planck length lP, as

κ ≡ 8πl2
P/h̄ = 8πGN/c3. (10)

The other diagonal components of the Einstein tensor have the
volume integrals

Gr
r
=

1

A

(
−

B ′

Br
−

1 − A

r2

)
, (11)

Gθ
θ
= Gφ

φ
=

1

A

(
−

B ′′

2B
+

B ′2

4B2
−

B ′

2Br
+

A′ B ′

4AB
+

A′

2Ar

)
.

(12)
Inserting AB = 1, these can be rewritten as

Gr
r
=

1

r2
∂r

(
r −

r

A

)
=

2GN

c2

1

r2
∂r M, (13)

Gθ
θ
= Gφ

φ
=

1

r2

(
A′r2

2A2

)
= −

GN

c2

1

r2
∂r M. (14)

Performing the spatial integrals over these gives

c

8πGN

∫
V

d3x
√

−gGr
r
=

∫ R

dr∂r M = M (15)

c

8πGN

∫
V

d3x
√

−gGθ
θ
= −

M

2
, (16)

and the same thing for Gφ
φ , so that∫

V
d3x

√
−g Gµ

µ = κcM. (17)

From this and (9), we identify the mass of the object as M .
Another way of obtaining the same result is via the
ADM-mass formula [25] of a black hole:

MADM = −
c2

16πGN

∫
S

(
∂

∂x j
gi i −

∂

∂xi
gi j

)
dS j , (18)

where S is an asymptotic surface around the black hole, and
dS j is its normal element. Inserting the long-distance behavior
gi j ≈ −δi j + 2MGNδi j/c2r , the integral (18) agrees with (17).

If the mass point moves through spacetime along
a trajectory parameterized by xµ(τ ), it has an energy–
momentum tensor

T µν(y) =
M

√
−g

∫
∞

−∞

dτ ẋµ(τ )ẋν(τ )δ(4)(y − x(τ )), (19)

where a dot denotes the τ -derivative. We may integrate the
associated solution of the homogeneous Einstein equation
Gµν = 0 over spacetime and find, using ẋ2

= 1, that its
Einstein–Hilbert action

AEH =
1

2κ

∫
d4x

√
−gR (20)

is equal to the classical action of a point-like particle:

Aworldline
EH ∝ −Mc

∫
ds. (21)

A slight modification of (21), which is the same classically,
but different for fluctuating orbits, also describes the quantum
physics of a spin-0 particle [2] in a path integral over all orbits.
Thus Einstein’s action for a singular worldline in spacetime
can be used to define also the quantum physics of a spin-0
point particle.

In addition to point-like singularities, the homogeneous
Einstein equation will also possess singularities on surfaces in
spacetime. These may be parameterized by xµ(σ, τ ), and their
energy–momentum tensor has the form

T µν(y) =
1

√
−g

∫
∞

−∞

dσdτ(ẋµ ẋν
− x ′µx ′ν)δ(4)(y−x(σ, τ )),

(22)
where a prime denotes a σ -derivative. In the associated
vanishing Einstein tensor, the δ-function on the surface
manifests itself in the nonzero spacetime integral1:∫

d4x
√

−g Gµ
µ

∝

∫
A

d2a ≡
1

2

∫
dσdτ(ẋ2

− x ′2). (23)

In analogy with the line-like case, we obtain for such a
singular field an Einstein–Hilbert action (20)

Aworld surface
EH ∝ −

1

2κ

∫
A

d2a = −
h̄

16πl2
P

∫
A

d2a. (24)

Apart from a numerical proportionality factor of the order of
one, this is precisely the Nambu–Goto action of a bosonic
closed string in four spacetime dimensions:

ANG = −
h̄

2πl2
s

∫
A

d2a, (25)

where ls is the so-called string length ls, related to the slope
parameter α′

= dl/dm2 in the string tension T ≡ 1/2πα′h̄c
by ls = h̄c

√
α′. Note that, in contrast to the worldlines, there

is no extra mass parameter M .

1 For this, one takes the delta function on the surface as defined by
Dirac [5] (see his equation (15)) and makes use of the distributional form
of Gauss’s integral theorem as formulated by Kleinert [5] or on p 253 of the
textbook [9].

2



Phys. Scr. T151 (2012) 014081 H Kleinert

The original string model was proposed to describe
color-electric flux tubes and their Regge trajectories whose
slopes α′ lie around 1 GeV−2. However, since the tubes
are really fat objects, as fat as pions, only very long flux
tubes are approximately line-like. Short tubes degenerate into
spherical ‘MIT-bags’ [6]. The flux-tube role of strings was
therefore abandoned, and the action (25) was re-interpreted in
a completely different fashion, as describing the fundamental
particles of nature, assuming lS to be of the order of lP.
Then the spin-2 particles of (25) would interact like gravitons
and define quantum gravity. But also the ensuing ‘new string
theory’ [3] has been criticized by many authors2. One of its
most embarrassing failures is that it has not produced any
experimentally observable results. The particle spectra of its
solutions have not matched the existing particle spectra. The
proposal of this note cures this problem. If ‘strings’ describe
‘dark matter’, there would be no need to reproduce other
observed particle spectra. Instead, their celebrated virtue, that
their spin-2 quanta interact like gravitons, can be used to fix
the proportionality factor between the Einstein action (24) and
the string action (25).

It must be kept in mind that just as −Mc
∫

ds had to
be modified for fluctuating paths [2], also the Nambu–Goto
action (25) needs a modification if the surfaces fluctuate.
That was found by Polyakov when studying the consequences
of the conformal symmetry the theory [4]. He replaced the
action (25) by a new action that is equal to (25) at the classical
level, but contains in D 6= 26 dimensions another spin-0 field
with a Liouville action.

Since the singularities of Einstein’s fields possess only
gravitational interactions, their identification with ‘dark
matter’ seems very natural. All visible matter consists of
singular solutions to the Maxwell equations and the field
equations of the standard model. A grand-canonical ensemble
of these and the smooth wave solutions of the standard model
explain an important part of the matter in the Friedmann
model of cosmological evolution.

But the main contribution to the energy comes from
the above singularities of Einstein’s equation. Soon after
the Universe was created, the temperature was so high
that the configurational entropy of the surfaces overwhelmed
completely the impeding Boltzmann factors. Spacetime was
filled with these surfaces in the same way as superfluid helium
is filled with the world surface of vortex lines. In hot helium,
these lie so densely packed that the superfluid behaves like
a normal fluid [8, 9]. The Einstein–Hilbert action of such a
singularity-filled turbulent geometry behaves like the action
of a grand-canonical ensemble of world surfaces of a bosonic
closed-string model. Note that here these are 2D objects
living in four spacetime dimensions, and there is a definite
need to understand their spectrum by studying the associated
Polyakov action, without circumventing the accompanying
Liouville field by escaping into unphysical dimensions.

It should be noted that in the immediate neighborhood of
the singularities, the curvature will be so high that Einstein’s
linear approximation −(1/2κ)R to the Lagrangian must break
down and will have to be corrected by some nonlinear

2 See the list of critics in the Wikipedia article on string theory; also see
Schroer [7].

function of R that starts out like Einstein’s, but continues
differently. A possible modification was suggested a decade
ago [10], and many other options have been investigated since
then [11].

After the Big Bang, the Universe expanded and cooled
down, so that large singular surfaces shrunk by emitting
gravitational radiation. Their density decreased, and some
phase transition made the cosmos homogeneous and isotropic
on the large scale3. But the cosmos remained filled with
gravitational radiation and small singular surfaces that had
shrunk until their sizes reached the levels stabilized by
quantum physics, i.e. when their fluctuating action decreased
to order h̄. The statistical mechanics of this cosmos is the
analogue of a spacetime filled with superfluid helium whose
specific heat is governed by the zero-mass phonons and
by rotons. Recall [13] that in this way Landau discovered
the fundamental excitations called rotons whose existence
he deduced from the temperature behavior of the specific
heat. In the Universe, the role of rotons is played by
the smallest surface-like singularities of the homogeneous
Einstein equation, whose existence we deduce from the
cosmological requirement of dark matter.

The situation can also be illustrated by a further analogy
with a many-body system. The defects in a crystal whose
‘atoms’ have a lattice spacing lP simulate precisely the
mathematics of a Riemann–Cartan spacetime, in which
disclinations and dislocations define curvature and torsion
[9, 14, 15]. Thus we may imagine a model of the universe
as a ‘floppy world crystal’ [16], a liquid-crystal-like phase
[17] in which a first melting transition has led to correct
gravitational 1/r -interactions between disclinations. The
initial hot universe was filled with defects—it was a ‘world
liquid’. After cooling down to the present liquid-crystal state,
there remained plenty of residual defects around, which form
our ‘dark matter’.

We know that the cosmos is filled with a cosmic
microwave background (CMB) of photons of roughly
2.725 K, the remnants of the big bang. These contribute
to the Friedmann equation of motion a constant �radh2

=

(2.47 ± 0.01) × 10−5, where h = 0.72 ± 0.03 is the Hubble
parameter, defined in terms of the Hubble constant H
by h ≡ H/(100 km Mpc−1 s−1). The symbol � denotes the
energy density divided by the so-called critical density
ρc ≡ 3H 2/8πGN = 1.88 × 10−26h2 kg m−3 [18]. The baryon
density contributes �radh2

= 0.0227 ± 0.0006 or 720 times as
much, whereas the dark matter contributes �darkh2

= 0.104 ±

0.006 or 4210 times as much. If we assume for a moment
3 In this aspect, there are parallels with the work of Huang et al [12].
However, their turbulent baby universe is filled with tangles of vortex lines
of some scalar field theory, whereas mine contains only singularities of
Einstein’s equation. A bridge may be found by recalling that the textbook
[8] explains how tangles of line-like defects can be described by a complex
disorder field theory, whose Feynman diagrams are direct pictures of the
world lines. Thus, if Huang et al were to interpret their scalar field as a
disorder field of the purely geometric objects of my theory, the parallels would
be closer. Note that in two papers with Halperin [12], Huang manages to make
his scalar field theory asymptotically free in the ultraviolet (although at the
unpleasant cost of a sharp cutoff introducing forces of infinite range). This
property allows him to deduce an effective dark energy in the baby universe.
With our purely geometric tangles, such an effect may be reached using a
lattice gauge formulation of Einstein’s theory [9, 15], sketched at the end of
the text.
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that all massive strings are frozen out and that only the
subsequently emitted gravitons form a thermal background4,
then, since the energy of massless states is proportional to
T 4, the temperature of this background would be TDMB ≈

42101/4
≈ 8TCMB ≈ 22 K. In general, we expect the presence

of also other singular solutions of Einstein’s equation to
change this result.

There is an alternative way of deriving the above-
described properties of the fluctuating singular surfaces of
Einstein’s theory. One may rewrite Einstein’s theory as a
gauge theory [9, 15] and put it on a spacetime lattice [20].
Then the singular surfaces are built explicitly from plaquettes,
as in lattice gauge theories of asymptotically free non-Abelian
gauge theories [21]. In the Abelian case, the surfaces are
composed as shown in [22]; for the non-Abelian case,
see [23]. An equivalent derivation could also be given in the
framework of loop gravity [24]. But that would, require a
separate study, which is beyond the scope of this paper.

Summarizing, we have seen that the Einstein–Hilbert
action governs not only the classical physics of gravitational
fields5 but also, via the fluctuations of its line- and surface-like
singularities, the quantum physics of dark matter. A string-
like action, derived from it for the fluctuating surface-like
singularities, contains interacting spin-2 quanta that define a
finite quantum gravity.
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