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Abstract

A detailed analysis of electron-positron pair creation induced by a spatially nonuniform
and static electric field from vacuum is presented. A typical example is provided by the
Sauter potential. For this potential, we derive the analytic expressions for vacuum decay
and pair production rate accounted for the entire range of spatial variations. In the limit
of a sharp step, we recover the divergent result due to the singular electric field at the
origin. The limit of a constant field reproduces the classical result of Euler, Heisenberg
and Schwinger, if the latter is properly averaged over the width of a spatial variation. The
pair production by the Sauter potential is described for different physical regimes from
weak to strong fields. In all these regimes, the locally constant-field rate is shown to be
the upper limit.

1 Introduction

Since Klein’s formulation [?] of his gedanken experiment in 1929 and its interpretation by
Sauter [?], Heisenberg and Euler [?], and Hund [?] it became clear that the vacuum of quantum
electrodynamics (QED) is unstable against the electron-positron pair production in the present
of external electromagnetic field. The first discussions were all done at the level of first-quantized
field theory. The results were rederived within second-quantized field theory in the one-loop
approximation by Schwinger [?] for a constant electromagnetic field, and Nikishov [?, ?, ?] and
Narozhny and Nikishov [?, ?] for more general field configurations. The two-loop radiative
corrections were calculated by Ritus [?, ?] and Lebedev and Ritus [?]. The spin-statistics
connection in QED with unstable vacuum was discussed by Feynman [?]. A general discussion,
detailed calculations and further references on this subject can be found in Refs. [?, ?, ?, ?, ?,
?, ?, ?, ?]. For recent developments and the modern state of the problem, see Refs. [?, ?].

In a constant electric field E, the probability for vacuum decay via pair creation in unit
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volume per unit time (i.e., the vacuum decay rate) can be written as

wcf(E) =
c

4π3λ̄4e

(

E

Ec

)2 ∞
∑

n=1

1

n2
exp

(

−nπEc

E

)

, (1)

where Ec ≡ m2c3/|e|~ ≃ 1.3×1018V/m is the critical field, whose work to move an electron over
the Compton wavelengthλ̄e = ~/mc being equal to its rest energymc2 andλ̄4e/c ≃ 7.3×10−59m3s
is the Compton space-time volume. The rate (??) results from the imaginary part of the one-
loop Euler-Heisenberg Lagrangian [?]. The formula (??) was anticipated by Sauter [?] and
derived by Euler and Heisenberg [?] and, more elegantly, by Schwinger [?]. It is presently often
referred to as Schwinger formula, and the pair creation process as Schwinger mechanism of pair
production. The process can be understood within the Dirac picture of vacuum as a quantum
tunneling of electron through an electrostatic potential barrier created by the electric field. Its
rate is, however, exponentially suppressed for presently accessible field strengths E achieved
roughly 4× 1014V/m by optical lasers [?]. This leads to the present impossibility of observing
the pair creation for which the extraordinary strong electric field strengths E of the order or
above the critical value Ec ≃ 1.3× 1018V/m are required.

While creating such strong macroscopic fields in the laboratory is impossible today, it will
hopefully be achieved in the near future after further advances in the laser technology. Indeed,
the energy extraction and the optical focusing can be improved considerably in the X-ray free
electron lasers to produce the electric field of the order of E ∼ 10−2Ec capable of yielding a
sizeable effect of pair production [?, ?]. Under these circumstances, we could get a significant
progress in understanding the properties of QED beyond the scope of perturbation theory in the
strong-field regime. Of course, such strong macroscopic fields in the laboratory would never be
as uniform as those originally considered in the Schwinger mechanism of pair creation. Their
spatial and temporal modulations must be taken into account in optical and, especially, in
X-ray free electron lasers (for review, see Ref. [?] and for recent estimates of pair production
created by laser fields, Refs. [?, ?, ?, ?, ?, ?]). Apart from these, enormous electromagnetic and
gravitational fields are expected in the powerful Gamma Ray Bursts, strong Coulomb fields in
the relativistic heavy-ion collisions and nonabelian gauge fields in QCD, for which the Schwinger
mechanism of pair creation is also relevant [?].

Going beyond the constant fields in space and time is therefore an important goal in studying
pair creation. First estimates of the impact of spatial and temporal inhomogeneities on pair
production can be found in Refs. [?, ?] for spatially varying fields, in Refs. [?, ?, ?, ?, ?,
?, ?] for oscillating electric fields, and in Ref. [?] for an electric field enclosed by conducting
plates. Recent studies of pair production by inhomogeneous electromagnetic fields including
developments of many useful approximate schemes such as WKB method, world-line formalism,
instanton and Monte Carlo techniques can be found in Refs. [?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?].
The back-reaction of produced pairs on the external field has been also taken into account in
Refs. [?, ?], and more recently in Ref. [?].

For an arbitrary shape of background field the study of pair creation becomes rather in-
volved, so that only special field configurations have been considered. In fact, one has to
find the scattering and pair production probability densities in terms of solutions of the single-
particle Klein-Gordon or Dirac equation in the presence of external field yielding the Bogoliubov
transformation coefficients within the S-matrix formalism. In addition, the energy-momentum
integral over the level-crossing (Klein) region involving logarithm of the reflection coefficient
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must be performed. In this way, one can connect in a most transparent and efficient way the
one-particle Dirac theory, in which the Klein paradox appeared with the second-quantized field
theory, in which it was resolved satisfactorily.

In this paper, we examine the problem of pair creation of Dirac particles in a spatially
nonuniform and static electric field E(z) = (0, 0, E(z)) directed in the z-axis and varied only
along this axis, where E(z) is the Sauter field of the form

E(z) =
E0

cosh2 kz
, (2)

with the peak E0 = vk/|e| at z = 0. The parameters v and 1/k are associated with the height
and the width of the electrostatic potential V (z) = eφ(z) created by the field E(z) = −φ′(z),
respectively. Explicitly, it reads

V (z) = eφ(z) = v tanh kz , (3)

with v, k > 0. The limit k → ∞ leads to a sharp step, whereas the limit k → 0 with vk fixed
reproduces the linear potential caused by a constant field E0.

With no magnetic field, we use the gauge Aµ(t,x⊥, z) = (φ(z), 0, 0, 0) in which the Dirac
equation allows the full separation of variables. As a result, the problem of pair production
is reduced to an exactly solvable quantum-mechanical problem [?, ?, ?] of the scattering of a
Dirac particle on the static potential barrier (??). The problem is recapitulated in Section 2.
This provides us with exact expressions for reflection and transmission coefficients in terms of
scattering data for both the sub- and the supercritical values of the potential (??). For super-
critical barriers with the level crossing between positive and negative energy levels, the Klein
paradox is connected with the vacuum instability via the electron-positron pair production. In
Section 3, we discuss how the reflection and transmission amplitudes are related to the pair
production rates, first for a certain particular state, and then by taking all these states into
account. In particular, the total vacuum decay rate due to pair creation is expressed as an
energy and transverse momentum integral over the level-crossing (Klein) region involving the
logarithm of reflection coefficient.

The quantum-mechanical scattering amplitudes on the potential barrier (??) have been
known since Suater’s work [?], and their relation to the pair production probabilities since
Nikishov’s work [?, ?, ?]. In order to find the pair production rates, we must however complete
that work by evaluating the energy-momentum integral for a given local probabilities. The
method of calculating such an integral has been developed recently in Ref. [?]. In Section 3, we
apply this method to perform the rotationally invariant integral over transverse momenta in
three dimensions exactly. The remaining integral over the energy, after an appropriate change
of variable, provides us with simple spectral formulas for the vacuum decay rate and also for
the pair production rate. The analytic expressions for these rates are derived in Section 4 for
the entire range of the parameters v and k of the supercritical potential (??). This allows us
to access different physical regimes from weak to strong fields.

In the weak-field regime corresponding to presently available field strengths, the supercritical
potential (??) can only create the pairs near the constant limit. The pair production rate is
very small and is described by the semiclassical expressions of Refs. [?, ?, ?, ?, ?, ?] which are
recovered and slightly corrected in this paper. The constant-field limit of the vacuum decay rate
is found to be different from the Schwinger formula (??). It agrees, however, with formula (??),
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if the latter is properly averaged over the width of a spatial variation. As a such, this limit
represents the locally constant-field rate. The explanation as well as the detailed comparison
of the two constant-field rates can be found in Appendix A.

With increasing field strength from weak- to strong-field regime, the supercritical poten-
tial (??) creates the pairs much more intensively over entire field width extended from sharp
to the constant limit. The corresponding expression for the vacuum decay rate becomes very
large but interpolates analytically between these limits always below the locally constant-field
rate. The latter is therefore the upper limit for the spatially nonuniform electric field (??).

2 Barrier scattering and pair production

Consider a relativistic spin-1/2 particle of charge e (e = −|e| for electron), mass m and energy
ε moving along the z-axis in the field (??) of the potential barrier (??). The energy and
momentum of a particle in this potential read (c = 1):

p0(z) = ε− V (z), p3(z) =
√

p20(z)− (p2⊥ +m2), p2⊥ ≡ p21 + p22 . (4)

In the transverse direction the particle propagates freely as a plane wave exp[i(p⊥x⊥ − ε t)/~].
Its wave function can therefore be separated as a product of this plane wave with a four-
component spinor field ψ(z) satisfying the one-dimensional Dirac equation

[

γ0p0(z) + γ
⊥p⊥ + i~γ3∂z −m

]

ψ(z) = 0 , (5)

where γµ are the Dirac matrices. The solution of Eq. (??) is represented in the following form

ψ(z) =
[

γ0p0(z) + γ
⊥p⊥ + i~γ3∂z +m

]

χ(z) , (6)

where the four-component spinor field χ(z) satisfies the second-order Dirac equation

χ′′(z) +
1

~2

[

p23(z)− i~eE(z)(γ0γ3)
]

χ(z) = 0 . (7)

This has two sets of solutions, each associated with two spin states σ = 1, 2 of a particle

χ(z) → χσ(z) =







ϕ+1(z) uσ , σ = 1, 2

ϕ−1(z) vσ , σ = 1, 2
, (8)

where the constant spinors uσ and vσ are eigenvectors of the matrix (γ0γ3) with eigenvalues +1
and −1, respectively. In the Dirac representation of γ-matrices, these read explicitly,

u1 =
1√
2









0
1
0

−1









, u2 =
1√
2









1
0
1
0









, v1 =
1√
2









1
0

−1
0









, v2 =
1√
2









0
1
0
1









, (9)

with the normalization u†σuσ′ = δσσ′ , v†σvσ′ = δσσ′ and u†σvσ′ = 0, v†σuσ′ = 0.
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The functions ϕ±1(z) in Eq. (??) obey the Schrödinger-like equations

ϕ′′
s(z) +

1

~2

[

p23(z)− is~eE(z)
]

ϕs(z) = 0 , s = ±1 . (10)

For each s, there are two independent solutions which behave asymptotically as plane waves
outside the potential barrier (??). Let us introduce the initial and final values of the particle
energy far to the left and to the right of the potential

p
(∓)
0 ≡ p0(z)|z→∓∞ = ε± v , (11)

and the corresponding momenta

p
(∓)
3 ≡ p3(z)|z→∓∞ =

√

p
(∓)
0

2 − (p2⊥ +m2) , (12)

where we take the positive square roots. We assume also that momenta p
(∓)
3 in Eq. (??) are

real thus restricting the asymptotic energies to |p(∓)
0 | >

√

p2⊥ +m2.

For both signs s = ±1, the independent solutions possess the same asymptotic behavior at
z → −∞ as well as at z → +∞ due to vanishing the electric field (??). Let ±ϕs(z) be the
two independent solutions that describe the ingoing (+) and the outgoing (−) plane waves at
z → −∞,

±ϕs(z)|z→−∞ ≈ e±ip
(−)
3 z/~ , s = ±1 , (13)

whereas ±ϕs(z) the two independent solutions that describe the ingoing (+) and the outgoing
(−) plane waves at z → +∞,

±ϕs(z)
∣

∣

z→+∞ ≈ e±ip
(+)
3 z/~ , s = ±1 . (14)

Depending on two projections r = ± of momenta p
(∓)
3 onto the z-axis, we obtain two complete

sets of solutions {rϕs} and {rϕs} for equations (??) satisfying the asymptotic conditions (??)
and (??), respectively. By virtue of linearity of equations (??), each function from the one
set {±ϕs} can be expressed as a linear combination of the both functions from the another set
{±ϕs} and vice versa. The coefficients of these combinations are then related to the reflection
and transmission amplitudes of a particle in a scattering problem. Explicitly, these can be
found for potentials for which the equations (??) are solvable exactly.

For each s, the functions {±ϕs} as well as the functions {±ϕs} are linearly independent. For
each r, the functions {rϕ±1} as well as the functions {rϕ±1} are related to each other. The
relations for rϕ+1(z) and

rϕ−1(z) follow from Eqs. (??) and (??). Explicitly, these read

[i~∂z + p0(z)]
±ϕ+1(z) =

[

p
(+)
0 ∓ p

(+)
3

]

±ϕ−1(z) , (15)

[i~∂z − p0(z)]
±ϕ−1(z) = −

[

p
(+)
0 ± p

(+)
3

]

±ϕ+1(z) . (16)

Similar relations can be found for rϕ+1(z) and rϕ−1(z) with the help of Eqs. (??) and (??).

According to Eq. (??), each complete set of solutions {rϕs} and {rϕs} provides eight solutions
for the second-order equation (??) with only four solutions being linearly independent. Using
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for instance {rϕs}, we obtain eight solutions explicitly as rϕ+1(z) uσ and rϕ−1(z) vσ with r = ±
and σ = 1, 2, where the functions rϕ+1(z) and

rϕ−1(z) obey Eqs. (??) and (??). Thus, we can
use either rϕ+1(z) uσ, or

rϕ−1(z) vσ in order to obtain four independent solutions for the Dirac
equation (??) with the help of Eq. (??). Substituting for instance ±ϕ−1(z) vσ into Eq. (??) and
applying Eqs. (??) and (??) yields one complete set of solutions as

±ψσ(z) =
[

γ0p0(z) + γ
⊥p⊥ + i~γ3∂z +m

] ±ϕ−1(z) vσ

= ±N
{

±ϕ−1(z) ξσ +
[

p
(+)
0 ± p

(+)
3

]

±ϕ+1(z) ησ

}

, σ = 1, 2 , (17)

where ξσ ≡ (γ⊥p⊥ +m)vσ and ησ ≡ (γ0vσ) for σ = 1, 2 and ±N are normalization constants to
be determined later. Similarly, the another complete set of solutions for the Dirac equation (??)
reads

±ψσ(z) =
[

γ0p0(z) + γ
⊥p⊥ + i~γ3∂z +m

]

±ϕ−1(z) vσ

= ±N
{

±ϕ−1(z) ξσ +
[

p
(−)
0 ± p

(−)
3

]

±ϕ+1(z) ησ

}

, σ = 1, 2 , (18)

with the normalization constants ±N . In Eqs. (??) and (??), the spinor fields with σ 6= σ′ are
orthogonal ψ†

σ(z)ψσ′(z) = 0.

In order to solve equations (??) with the potential (??), we set

p
(−)
3 ≡ 2~kµ , p

(+)
3 ≡ 2~kν , (19)

where

µ2 − ν2 = λ
ε

~k
, (20)

with

λ ≡ v

~k
> 0 . (21)

In these notations, equations (??) become

ϕ′′
±1(z) +

k2

cosh2 kz

[

ν2 e2kz + µ2 e−2kz +
(

ν2 + µ2 − λ2
)

± iλ
]

ϕ±1(z) = 0 . (22)

Thus, the solution ϕ+1(z) ≡ ϕ(z,−λ) can be obtained from the solution ϕ−1(z) ≡ ϕ(z, λ) via
the interchanging λ→ −λ with λ > 0. The function ϕ(z, λ) satisfies

ϕ′′(z, λ) +
k2

cosh2 kz

[

ν2 e2kz + µ2 e−2kz +
(

ν2 + µ2 − λ2
)

− iλ
]

ϕ(z, λ) = 0 . (23)

Equation (??) is solvable exactly in terms of the hypergeometric function [?]. For this equa-
tion, we are looking for two independent solutions +ϕ(z, λ) and −ϕ(z, λ) with fixed asymptotic
behaviors at z → +∞:

±ϕ(z, λ) ≈ exp (±2ikνz) , z → +∞ , (24)

where the normalization can be neglected. Let us introduce the new dimensionless variable

ζ = − exp(−2kz) , (25)
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running from −∞ to 0. To find +ϕ(z, λ), we use the substitution

+ϕ(ζ, λ) = (−ζ)−iν f(ζ, λ) , (26)

where the function f(ζ, λ) satisfies

ζf ′′(ζ, λ) + (1− 2iν)f ′(ζ, λ) +

[

(λ2 + iλ)

(1− ζ)2
− (µ2 − ν2)

(1− ζ)

]

f(ζ, λ) = 0 . (27)

To remove the singularity at ζ = 1 in Eq. (??), we replace

f(ζ, λ) = (1− ζ)iλw(ζ, λ) . (28)

Eq. (??) becomes now a hypergeometric equation

ζ(1− ζ)w′′(ζ, λ) + {(1− 2iν)− [(1− 2iν) + 2iλ] ζ}w′(ζ, λ) +
[

(λ− ν)2 − µ2
]

w(ζ, λ) = 0, (29)

where the function w(ζ, λ) tends to a constant for ζ → 0 (z → +∞). With this condition the
solution is the hypergeometric function

w(ζ, λ) = F [i (λ− ν − µ) , i (λ− ν + µ) , 1− 2iν ; ζ ] (30)

up to some normalization factor.

The solution +ϕ(z, λ) of Eq. (??) reads finally,

+ϕ(z, λ) = (−ζ)−iν (1− ζ)iλ F [i (λ− ν − µ) , i (λ− ν + µ) , 1− 2iν ; ζ ] ,

ζ ≡ − exp(−2kz) . (31)

For z → +∞ (ζ → 0), the function +ϕ(z, λ) satisfies the asymptotic condition in Eq. (??). To
find its the asymptotic behavior for z → −∞ (ζ → −∞), we use the Kummer transformation
of the hypergeometric function. This yields the superposition

+ϕ(z, λ) = a(λ) +ϕ(z, λ) + b(λ) −ϕ(z, λ) , (32)

with the amplitudes

a(λ) =
Γ(1− 2iν) Γ(−2iµ)

Γ[i(λ− ν − µ)] Γ[1− i(λ + ν + µ)]
, (33)

b(λ) =
Γ(1− 2iν) Γ(2iµ)

Γ[i(λ− ν + µ)] Γ[1− i(λ+ ν − µ)]
. (34)

Here the functions +ϕ(z, λ) and −ϕ(z, λ) are two other independent solutions of Eq. (??) with
fixed asymptotic behaviors at z → −∞:

±ϕ(z, λ) ≈ exp (±2ikµz) , z → −∞ . (35)

Their explicit forms will not be necessary further. To get the asymptotic behavior of the
function +ϕ(z, λ) at z → −∞ from Eq. (??), we apply the conditions (??) and obtain

+ϕ(z, λ) ≈ a(λ) exp (+2ikµz) + b(λ) exp (−2ikµz) , z → −∞ . (36)
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In order to find the second solution −ϕ(z, λ), we use the invariance of Eq. (??) under the
transformation involving a combination of complex conjugation with the substitution λ→ −λ
for λ > 0. Applying this transformation to the solution in Eq. (??) yields

−ϕ(z, λ) = (−ζ)iν (1− ζ)iλ F [i (λ+ ν + µ) , i (λ+ ν − µ) , 1 + 2iν ; ζ ] ,

ζ ≡ − exp(−2kz) . (37)

For z → +∞, the solution −ϕ(z, λ) satisfies the asymptotic condition in Eq. (??). For z → −∞,
we use the Kummer transformation of the hypergeometric function in Eq. (??):

−ϕ(z, λ) = b∗(−λ) +ϕ(z, λ) + a∗(−λ) −ϕ(z, λ) , (38)

and the asymptotic conditions (??). This yields

−ϕ(z, λ) ≈ b∗(−λ) exp (+2ikµz) + a∗(−λ) exp (−2ikµz) , z → −∞ . (39)

The equation (??) for ϕ+1(z) ≡ ϕ(z,−λ) can be obtained from Eq. (??) via the interchanging
λ→ −λ for λ > 0. The corresponding solutions +ϕ(z,−λ) and −ϕ(z,−λ) are given by Eqs. (??)
and (??) respectively, with the same interchanging. For z → +∞, their asymptotic behaviors
are coincident with the asymptotic behaviors of the functions ±ϕ(z, λ) in Eq. (??):

±ϕ(z,−λ) ≈ exp (±2ikνz) , z → +∞ . (40)

Note that both equations (??) take the same independent of λ form in this limit. Accordingly,
the asymptotic behaviors of the second set of independent solutions +ϕ(z,−λ) and −ϕ(z,−λ)
coincide with that for the functions ±ϕ(z, λ) in Eq. (??):

±ϕ(z,−λ) ≈ exp (±2ikµz) , z → −∞ . (41)

We use these conditions to find the asymptotic behavior of the functions ±ϕ(z,−λ) at z → −∞
from Eqs. (??) and (??) with the replacement λ→ −λ. This yields

+ϕ(z,−λ) ≈ a(−λ) exp (+2ikµz) + b(−λ) exp (−2ikµz) , z → −∞ , (42)
−ϕ(z,−λ) ≈ b∗(λ) exp (+2ikµz) + a∗(λ) exp (−2ikµz) , z → −∞ . (43)

In Eqs. (??), (??) and (??), (??), the amplitudes can be found from Eqs. (??) and (??) with
the help of relations

a(−λ) = (µ+ ν + λ)

(µ+ ν − λ)
a(λ) , b(−λ) = (µ− ν − λ)

(µ− ν + λ)
b(λ) , (44)

and their complex conjugated.

Having obtained the functions ±ϕ(z, λ) and ±ϕ(z,−λ), we find from Eq. (??) four indepen-
dent solutions of the Dirac equation (??) explicitly as

±ψσ(z) =

±ϕ(z, λ) ξσ +
[

p
(+)
0 ± p

(+)
3

]

±ϕ(z,−λ) ησ
√

2p
(+)
3 |p(+)

0 ± p
(+)
3 |

, σ = 1, 2 . (45)

8



Their asymptotic behaviors are fixed at z → +∞, where according to Eqs. (??) and (??) we
obtain

±ψσ(z) ≈ ±ψR
σ (z) ≡

exp(±ip(+)
3 z/~)

√

2p
(+)
3 |p(+)

0 ± p
(+)
3 |

[

ξσ + (p
(+)
0 ± p

(+)
3 )ησ

]

, z → +∞ , σ = 1, 2 . (46)

In turn, the asymptotic behaviors of four other independent solutions ±ψσ(z) are fixed at
z → −∞, where it follows from Eq. (??) with the help of Eqs. (??) and (??) that

±ψσ(z) ≈ ±ψ
L
σ (z) ≡

exp(±ip(−)
3 z/~)

√

2p
(−)
3 |p(−)

0 ± p
(−)
3 |

[

ξσ + (p
(−)
0 ± p

(−)
3 )ησ

]

, z → −∞ , σ = 1, 2 . (47)

The wave functions in Eq. (??) are normalized in such a way that the absolute value of current
density along the z-axis evaluated with respect to these functions for the states with given
σ, ε and p⊥ is equal to unity. By virtue of Eq. (??), this quantity is the z-independent and
can therefore be evaluated with the help of the asymptotic expressions (??) and (??). The
normalization is thus |±ψ̄R

σ (z)γ
3±ψR

σ (z)| = |±ψ̄L
σ (z)γ

3
±ψ

L
σ (z)| = 1.

By means of asymptotic expressions (??), the asymptotic behaviors of the solutions ±ψσ(z)
in Eq. (??) at z → −∞ can be found from Eqs. (??), (??) and Eqs. (??), (??), respectively.
For +ψσ(z), this yields

+ψσ(z) ≈ I(λ) +ψ
L
σ (z) +R(λ) −ψ

L
σ (z) , z → −∞ , σ = 1, 2 , (48)

where the amplitudes I(λ) and R(λ) are determined independently of the spin state σ = 1, 2
with the help of relations (??) as

I(λ) =

(

µ |µ+ ν + λ|
ν |µ+ ν − λ|

)1/2

a(λ) , R(λ) =

(

µ |µ− ν − λ|
ν |µ− ν + λ|

)1/2

b(λ) . (49)

Thus, we find the solution +ψσ(z) satisfying the asymptotic boundary conditions

+ψσ(z) −→







I(λ) +ψ
L
σ (z) +R(λ) −ψ

L
σ (z) , z → −∞

+ψR
σ (z) , z → +∞

. (50)

The process in Eq. (??) involves the electron wave of the energy ε > 0 impacting from z = −∞
with the amplitude I(λ) on the potential barrier (??) with v > 0 at early times, which is partly
reflected back to z = −∞ with the amplitude R(λ) at late times. The energy of electron far

to the left is therefore positive p
(−)
0 = (ε+ v) ≥

√

p2⊥ +m2 ≥ 0, and its momentum p
(−)
3 is real

and positive in this region.

In order to describe the plane wave solution involved in this process at z = +∞, we have
to specify the height v of the potential barrier (??). For weak (subcritical) potentials with
v ≤ ε−

√

p2⊥ +m2, this plane wave solution with the unit amplitude corresponds to a particle
transmitted through the potential barrier at late times and moving towards z = +∞ with the
positive energy p

(+)
0 = (ε−v) ≥

√

p2⊥ +m2 ≥ 0 and with the real and positive momentum p
(+)
3 .

However, for very strong (supercritical) potentials with the height v ≥ ε+
√

p2⊥ +m2 there
are no longer particles in the asymptotic region of the large positive z. In this case, the
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energy ε of impinging electron lies in the interval −v +
√

p2⊥ +m2 ≤ ε ≤ v −
√

p2⊥ +m2

henceforth called the Klein region. The energy far to the right becomes now negative p
(+)
0 =

(ε − v) ≤ −
√

p2⊥ +m2 ≤ 0, while the momentum p
(+)
3 is real and, by our assumption, is still

positive. For v >
√

p2⊥ +m2 > m, the positive energy levels far to the left overlaps the negative
energy levels far to the right in the Klein region. The plane wave solution +ψR

σ (z) with negative
energy in Eq. (??) represents the transmitted wave via a quantum tunneling. This right-moving
wave propagates with the unit amplitude backwards in time and corresponds to an incoming
antiparticle coming in from z = +∞ and moving forwards in time towards the potential barrier.
In the process (??), the incoming from the left at z = −∞ particle annihilates the incoming
from the right at z = +∞ antiparticle.

With wave functions (??), we obtain the incident and reflected electron currents in the
asymptotic region z < 0 for the process (??) as follows

j
p, in
z<0 ≡ |I(λ)|2

(

+ψ̄
L
σγ+ψ

L
σ

)

= |I(λ)|2
(

+ψ̄
L
σ γ

3
+ψ

L
σ

)

ẑ = |I(λ)|2 ẑ , (51)

j
p, refl
z<0 ≡ |R(λ)|2

(

−ψ̄
L
σγ−ψ

L
σ

)

= |R(λ)|2
(

−ψ̄
L
σ γ

3
−ψ

L
σ

)

ẑ = −|R(λ)|2 ẑ , (52)

where the superscript p denotes the particle state and, according to Eqs. (??), (??) and (??),

|I(λ)|2 = ∓sinh π(λ− ν − µ) sinh π(λ+ ν + µ)

sinh 2πµ sinh 2πν
≥ 0 , (53)

|R(λ)|2 = ∓sinh π(λ− ν + µ) sinh π(λ+ ν − µ)

sinh 2πµ sinh 2πν
≥ 0 . (54)

Here and below the upper/lower sign refers to (sub/super)critical potential barrier (??), re-
spectively. Note that (λ± ν − µ)<>0 for (sub/super)critical potential, while (λ± ν + µ) > 0 for
the both potentials.

The current in the asymptotic region z > 0 is evaluated with respect to wave functions (??).
This yields

j
p, tr/n, in
z>0 ≡

(

+ψ̄R
σ γ

+ψR
σ

)

=
(

+ψ̄R
σ γ

3+ψR
σ

)

ẑ = ±ẑ , (55)

where j
p, tr
z>0 is the transmitted towards z = +∞ electron current and j

n, in
z>0 is the incident from

z = +∞ positron current directed in the positive/negative z-direction within the asymptotic
region z > 0 of the (sub/super)critical potential barrier (??), respectively. The superscript
n denotes the antiparticle state. According to Eqs. (??), (??) and (??), the conservation of
current along the z-axis reads

|I(λ)|2 − |R(λ)|2 = ±1 , (56)

with |I(λ)|2 and |R(λ)|2 are given in Eqs. (??) and (??).

The reflection coefficient is then defined by the ratio

r ≡ |j p, reflz<0 |
|j p, inz<0 |

=
|R(λ)|2
|I(λ)|2 =

sinh π(λ− ν + µ) sinh π(λ+ ν − µ)

sinh π(λ− ν − µ) sinh π(λ+ ν + µ)
≥ 0 . (57)

It is the relative probability for elastic scattering of electron by (sub/super)critical potential
barrier (??). The transmission coefficient reads

t ≡ |j p, tr/n, inz>0 |
|j p, in

z<0 |
=

1

|I(λ)|2 = ∓ sinh 2πµ sinh 2πν

sinh π(λ− ν − µ) sinh π(λ+ ν + µ)
≥ 0 . (58)
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For supercritical potentials, the probability (??) is a relative probability for incoming electron
to annihilate the incoming positron. The coefficients (??) and (??) were first obtained by
Sauter [?].

From Eqs. (??), (??) and (??) we find the relation between reflection and transmission
coefficients for (sub/super)critical potential

r ± t = 1 . (59)

For supercritical potentials, the reflected electron current is therefore larger than the incoming
electron current, and even without the incoming electron, the reflected current is exactly equal
to the transmitted current. This is known as the Klein paradox [?] for which the single-particle
description becomes inadequate, since the time evolution operator of a single-electron wave
function is no longer unitary as far as r ≥ 1. Contrary, within the second quantization the
scattering matrix operator is always unitary and the Klein paradox implies that the negative
energy continuum of the Dirac vacuum contributes to the both currents via production of
electron-positron pairs under the influence of supercritical potential. The probability (??) is
then the relative probability for spontaneous production of a single electron-positron pair.

To show this, we go back to our discussion above Eq. (??) in order to find the asymptotic
behavior of the second independent solution −ψσ(z) in Eq. (??) at z → −∞ in terms of
asymptotic expressions (??). From now on, we shall only consider the supercritical potentials.
In this case, applying Eqs. (??), (??) to Eq. (??), we obtain

−ψσ(z) ≈ −R∗(λ) +ψ
L
σ (z)− I∗(λ) −ψ

L
σ (z) , z → −∞ , σ = 1, 2 , (60)

where the amplitudes I∗(λ) and R∗(λ) are complex conjugated of the relations (??).

Thus, the solution −ψσ(z) has the following asymptotic behaviors at both infinities

−ψσ(z) −→







−R∗(λ) +ψ
L
σ (z)− I∗(λ) −ψ

L
σ (z) , z → −∞

−ψR
σ (z) , z → +∞

. (61)

The process (??) describes directly the steady state of the electron-positron pair production
by means of amplitudes of the previous process (??): within the asymptotic region z < 0 of
the supercritical potential barrier (??) there are the ingoing electron wave +ψ

L
σ (z) with the

amplitude −R∗(λ) and the outgoing electron wave −ψ
L
σ (z) with the amplitude −I∗(λ). This

wave is accompanied by the outgoing positron wave −ψR
σ (z) with the unit amplitude in the

asymptotic region z > 0. The corresponding currents far to the left are

j
p, in
z<0 ≡ |R(λ)|2

(

+ψ̄
L
σγ+ψ

L
σ

)

= |R(λ)|2
(

+ψ̄
L
σ γ

3
+ψ

L
σ

)

ẑ = |R(λ)|2 ẑ , (62)

j
p, out
z<0 ≡ |I(λ)|2

(

−ψ̄
L
σγ−ψ

L
σ

)

= |I(λ)|2
(

−ψ̄
L
σ γ

3
−ψ

L
σ

)

ẑ = −|I(λ)|2 ẑ , (63)

and, far to the right is

j
n, out
z>0 ≡

(−ψ̄R
σ γ

−ψR
σ

)

=
(−ψ̄R

σ γ
3−ψR

σ

)

ẑ = ẑ , (64)

with the current conservation being the same as in Eq. (??) for supercritical potentials.

From Eqs. (??) and (??), the relative probability for production of a single electron-positron
pair is

w ≡ |j n, outz>0 |
|j p, outz<0 |

=
1

|I(λ)|2 =
sinh 2πµ sinh 2πν

sinh π(λ− ν − µ) sinh π(λ+ ν + µ)
≥ 0 , (65)
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and therefore w ≡ t with t being the transmission coefficient for supercritical potentials found
before in Eq. (??).

The average rate of produced electron-positron pairs in the process (??) is then derived from
Eqs. (??) and (??) as

n̄ ≡ |j n, out
z>0 |

|j p, inz<0 |
=

1

|R(λ)|2 =
sinh 2πµ sinh 2πν

sinh π(λ− ν + µ) sinh π(λ+ ν − µ)
≥ 0 (66)

and, together with Eqs. (??) and (??), reads

n̄ = t/r . (67)

It is the absolute probability for production of a single electron-positron pair in a given state
for which t is the relative probability and 1/r is the probability that no pairs are created in this
state. This probability is called the vacuum-to-vacuum probability and is determined in such
a way that the total probability for production of zero and one pairs is unity (1/r)(1 + t) = 1
which follows from Eq. (??) for supercritical potentials. Thus creating more than one pair is
blocked by Eq. (??) in the agreement with the Pauli principle for fermions. Note, finally, that
1/r is the reflection coefficient and t/r is the transmission coefficient for the process (??).

3 Vacuum decay and pair production rates

In the previous section, the particle-antiparticle pair production has been described for each
particular state n = (p, σ) which is completely specified by the total energy and transverse
momentum p = {ε, p⊥}, and also by a certain spin projection σ. For these conserved quan-
tum numbers, we shall treat all physical transitions related to each separate state n as the
independent events.

The exact solutions of a single-particle Dirac equation in external fields can be used for
calculating the scattering and pair production probabilities in quantum field theory [?, ?, ?].
Consider the in- and out-going asymptotic solutions ±ψ(z) for one-particle states given in
Eq. (??) as well as the in- and out-going asymptotic solutions ±ψ(z) for one-antiparticle states
given in Eq. (??). Their asymptotic forms are found after solving the Dirac equation (??) in the
potential (??) exactly. As a result, all these in- and out-going one-particle (antiparticle) states
are related by Eqs. (??) and (??) with the coefficients I(λ) and R(λ) and their complex conju-
gated given in Eq. (??), and also in Eqs. (??) and (??). Accordingly, any field operator can be
expanded either over all possible in-states or, equivalently, over all possible out-states in terms
of creation and annihilation operators. These are also separated as in- and out-operators in
such a way that the operator ainn /a

out
n annihilates the in/out-going particle with the wave func-

tion +ψ(z)/−ψ(z), while the operator
(

binn
)†
/ (boutn )

†
creates the in/out-going antiparticle with

the wave function +ψ(z)/−ψ(z), respectively. The key point [?, ?, ?] is now that the asymp-
totic relations (??) and (??) between +ψ(z)/−ψ(z) and

+ψ(z)/−ψ(z) determine completely the
coefficients of the Bogoliubov transformation between the in- and out-going operators

ainn = − I(λ)

R(λ)
aoutn − 1

R(λ)

(

boutn

)†
,
(

binn
)†

= − 1

R(λ)
aoutn − I∗(λ)

R(λ)

(

boutn

)†
, (68)
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whose anticommutation relations preserve the current conservation (??) for supercritical po-
tentials. Thus the Klein paradoxical result |R(λ)|2 ≥ 1 of a single-particle treatment is a
direct consequence of the fact that fermions obey the Pauli principle and therefore quantized
by anticommutators [?, ?].

With these operators, one can construct two complete sets of in- and out-states from the two
vacua. These are the in-vacuum state |0inn 〉 and the out-vacuum state |0outn 〉 related for a certain
n by the unitary S-matrix operator Sn as follows |0inn 〉 = Sn|0outn 〉. The both are annihilated
by the operators ainn and aoutn , respectively. This allows one to calculate all necessary matrix
elements. For example, the absolute probability amplitude for pair creation in a given state is

wpair
n ≡

〈

0outn

∣

∣boutn aoutn

∣

∣ 0inn
〉

= − 1

I(λ)

〈

0outn

∣

∣

∣
boutn

(

boutn

)†
∣

∣

∣
0inn

〉

= − 1

I(λ)

〈

0outn

∣

∣ 0inn
〉

, (69)

where 〈0outn | 0inn 〉 is the probability amplitude for the vacuum to remain a vacuum. The absolute
probability for production of a single electron-positron pair in a certain state is therefore

|wpair
i |2 = ti |〈0outi | 0ini 〉|2 , (70)

where ti is the relative probability (??) for production of a single electron-positron pair in
the state i and |〈0outi | 0ini 〉|2 is the probability that no pairs are created in this state, or the
vacuum-to-vacuum probability. This probability can be determined consistently as follows.

First, we note that the absolute probability (??) must be equal to the mean number of
pairs created from the in-vacuum in a given state. Taking the expectation value of the number
operator, we calculate this explicitly

n̄i ≡
〈

0ini

∣

∣

∣

(

aouti

)†
aouti

∣

∣

∣
0ini

〉

=
1

|R(λ)|2
〈

0ini

∣

∣

∣
bini
(

bini
)†
∣

∣

∣
0ini

〉

=
1

|R(λ)|2 =
ti
ri
, (71)

with the result as in Eqs. (??) and (??), where the transmission coefficient ti and the reflection
coefficient ri are both referred to a certain state i. From Eqs. (??) and (??) it follows that

|〈0outi | 0ini 〉|2 = 1/ri . (72)

Second, we use the probability conservation in a given state together with the Pauli principle
for fermions to obtain directly,

(1 + ti) |〈0outi | 0ini 〉|2 = ri |〈0outi | 0ini 〉|2 = 1 , (73)

where we apply Eq. (??) for supercritical potentials. This defines the vacuum-to-vacuum prob-
ability |〈0outi | 0ini 〉|2 as in Eq. (??).

Finally, we calculate the absolute probability amplitude for elastic scattering in a given state
n as follows

wscatt
n ≡

〈

0outn

∣

∣

∣
aoutn

(

ainn
)†
∣

∣

∣
0inn

〉

= − I∗(λ)

R∗(λ)

〈

0outn

∣

∣

∣
aoutn

(

aoutn

)†
∣

∣

∣
0inn

〉

− 1

R∗(λ)

〈

0outn

∣

∣aoutn boutn

∣

∣ 0inn
〉

= − I∗(λ)

R∗(λ)

〈

0outn

∣

∣ 0inn
〉

+
1

R∗(λ)
wpair

n = −R(λ)
I(λ)

〈

0outn

∣

∣ 0inn
〉

, (74)
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where we use Eq. (??) and the current conservation (??) for supercritical potentials. With
Eq. (??), the absolute probability for elastic scattering of electron in a certain state is therefore

|wscatt
i |2 = ri |〈0outi | 0ini 〉|2 = 1 , (75)

where the total reflection of electron by supercritical potentials is due to the Pauli principle
since the initial state is already occupied.

We conclude therefore that all Eqs. (??), (??) and (??) define consistently the vacuum-
to-vacuum probability for a certain i-state as 1/ri, where ri is the reflection coefficient (??)
referred to this state. For all these states, the total vacuum-to-vacuum probability is

|〈0out|0in〉|2 =
∏

i

(ri)
−1 = exp

(

−
∑

i

ln ri

)

, (76)

where the products and the sums are taken over all states i = (p, σ) with the quantum numbers
p = {ε, p⊥} and also with the two spin projections σ = 1, 2. Since |〈0out|0in〉|2 < 1, the vacuum
is unstable producing particle-antiparticle pairs under the influence of supercritical potentials.

The total probability for vacuum decay via pair creation reads

W = 1− exp

(

−
∑

i

ln ri

)

≃
∑

i

ln ri = 2
∑

p

ln ri , (77)

where the factor 2 is due to summation over two spin projections σ = 1, 2. The remaining sum
over p = {ε, p⊥} can be rewritten as the integral in a box-like volume V⊥T with V⊥ =

∫

d2x⊥ =
∫

dx1dx2 being the area transverse to the z-direction, and T the total time. This yields

∑

p

ln ri = V⊥T

∫

d2p⊥
(2π~)2

∫

d ε

(2π~)
ln r(ε, p⊥) , (78)

where r = r(ε, p⊥) with p⊥ ≡ |p⊥| being the rotationally invariant function as it follows from
Eq. (??). This invariance reduces the integral

∫

d2p⊥ to π
∫

dp2⊥. For supercritical potentials
with v > m, integrating over ε and p2⊥ has to be done over the Klein region

p
(−)
0 = ε+ v ≥

√

p2⊥ +m2 , p
(+)
0 = ε− v ≤ −

√

p2⊥ +m2 . (79)

The total probability is now completely defined by Eqs. (??)–(??). The vacuum decay
rate (the total probability per unit cross-sectional area and unit time) is represented due to
Nikishov [?, ?] as

w⊥ =
1

(2π)2~3

∫ (v2−m2)

0

dp2⊥

∫ v−
√

p2⊥+m2

−v+
√

p2
⊥
+m2

dε ln r(ε, p2⊥) , (80)

where the integration region in the (p2⊥, ε)-plane is shown in Fig. 1. The reflection coefficient
r(ε, p2⊥) is defined by the symmetric under the interchanging µ ↔ ν expression (??), and
therefore remains invariant upon replacing ε → −ε which interchanges merely µ and ν given

14



ε

0
p2⊥

v −m

−v +m

v2 −m2

Figure 1: In the (p2⊥, ε)-plane, the integration covers the positive region restricted by two
intersecting parabolas ε = v −

√

p2⊥ +m2 and ε = −v +
√

p2⊥ +m2 with horizontal axes of
symmetry above and below the p2⊥-axis for v > m.

by Eqs. (??) and (??). This allows us to obtain from (??) yet another representation for the
vacuum decay rate as follows. We interchange the order of integration

w⊥ =
1

(2π)2~3

[

∫ 0

−v+m

dε

∫ (ε+v)2−m2

0

dp2⊥ +

∫ v−m

0

dε

∫ (ε−v)2−m2

0

dp2⊥

]

ln r(ε, p2⊥) (81)

and replace ε → −ε in the first term of Eq. (??). Due to the symmetry r(−ε, p2⊥) = r(ε, p2⊥),
the two terms in Eq. (??) are then combined into a simple integral representation

w⊥ =
1

2π2~3

∫ v−m

0

dε

∫ (ε−v)2−m2

0

dp2⊥ ln r(ε, p2⊥) , (82)

where the integraion region in the (ε, p2⊥)-plane is shown in Fig. 2. In the same way, we express
also the total mean number of created electron-positron pairs

N̄ ≡
∑

i

n̄i = 2
∑

p

n̄p , (83)

where the average number of electron-positron pairs n̄i created in a certain i-state is defined
by Eq. (??) independently on the spin state σ = 1, 2. Like the reflection probability, it is the
rotationally invariant function n̄ = n̄(ε, p⊥) with the same symmetry n̄(−ε, p2⊥) = n̄(ε, p2⊥)
under the interchanging µ ↔ ν in Eq. (??). The corresponding integral representation is

p2⊥

0 ε

v −m

v2 −m2

Figure 2: In the (ε, p2⊥)-plane, the integration covers the region under the left branch of the
parabola p2⊥ = (ε− v)2 −m2 in the first quadrant for v > m.
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therefore obtained as before via replacing the sum over p = {ε, p⊥} in Eqs. (??) by the integral
over the Klein region. This yields the mean number of electron-positron pairs produced by the
supercritical Sauter potential (??) from the vacuum in unit area per unit time, i.e., the pair

production rate,

n̄⊥ =
1

2π2~3

∫ v−m

0

dε

∫ (ε−v)2−m2

0

dp2⊥ n̄(ε, p
2
⊥) , (84)

with the integration region in the (ε, p2⊥)-plane shown in Fig. 2.

Eqs. (??) and (??) allow us to calculate the pair production rates for supercritical poten-
tials (??) with v > m. In the limit k → 0 and v → ∞ (the linear potential due to constant
electric field), the obtained results can be compared with the Schwinger formula (??), and in
the regime close to this limit, with semiclassical expressions of Refs. [?, ?, ?, ?, ?, ?]. The op-
posite limit k → ∞ (the step potential due to delta-shaped electric field) is however beyond the
semiclassical approximation. It leads to infinite results caused by the extremely strong electric
field at the origin [?]. In the regime close to this limit, no analytic results for production rate
were obtained so far to the best of our knowledge.

In equation (??), the reflection coefficient is given by Eq. (??), where µ = µ(ε, p2⊥) and
ν = ν(ε, p2⊥) are the functions of ε and p2⊥ defined by Eqs. (??), (??) and (??) with the
constraint (??), while λ = v/k~ > 0 is a constant. Taking logarithms of Eq. (??) leads to the
expansion

ln r = 4

∞
∑

n=1

1

n
cosh(2πnλ) sinh(2πnµ) sinh(2πnν) , (85)

where the right hand side is found by replacing each logarithm containing the ratio of hyperbolic
functions as ln(sinh x/ sinh y) = −

∑∞
n=1 cosh(2nx)/n +

∑∞
n=1 cosh(2ny)/n, and combining all

sums.

With Eq. (??), the vacuum decay rate (??) takes the form

w⊥ =
2

π2~3

∞
∑

n=1

1

n
cosh(2πnλ) J (n) , (86)

where J (n) are the integrals

J (n)=

∫ v−m

0

dε I(n)(ε) ≡
∫ v−m

0

dε

∫ (ε−v)2−m2

0

dp2⊥ sinh 2πnµ(ε, p2⊥) sinh 2πnν(ε, p
2
⊥) , (87)

with the integration region shown in Fig. 2.

The p2⊥-integration in Eq. (??) can be done exactly [?]. The result is expressed in terms of
the total energy ε with the help of the functions

θ±(ε) ≡ µ(ε, 0)± ν(ε, 0) , θ+(ε) θ−(ε) = (vε)/(~k)2 , (88)

where µ(ε, 0) and ν(ε, 0) are two positive square roots

µ(ε, 0) =
√

(ε+ v)2 −m2/2~k , ν(ε, 0) =
√

(ε− v)2 −m2/2~k , (89)
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as in Eqs. (??), (??) and (??) but now with p2⊥ = 0. Using these functions, we obtain

I(n)(ε) = F (n)(θ+(ε))− F (n)(θ−(ε)) , (90)

where

F (n)(θ) =

(

~k

2πn

)2

F
(n)
1 (θ)− (vε)2

2

(

2πn

~k

)2

F
(n)
2 (θ) , (91)

with

F
(n)
1 (θ) ≡ 2πn θ sinh (2πn θ)− cosh (2πn θ) , (92)

F
(n)
2 (θ) ≡ Chi (2πn θ)− 2πnθ sinh (2πn θ) + cosh (2πn θ)

(2πn θ)2
, (93)

where Chi (2πn θ) is the hyperbolic cosine integral and the next two terms represent the leading
terms of its asymptotic expansion for large arguments 2πn θ, n = 1, 2, . . . .

Now the remaining ε-integral in Eq. (??) reads

J (n) =

∫ v−m

0

dε I(n)(ε) = J
(n)
+ − J

(n)
− , (94)

where

J
(n)
± =

∫ v−m

0

dε F (n)(θ±(ε)) . (95)

The two terms in Eq. (??) can be combined into a single integral by subjecting J
(n)
± in Eq. (??)

to the following change of variable

ε(θ) = ~kθ

{

1− m2

[v2 − (~kθ)2]

}1/2

, (96)

with 0 ≤ θ ≤
√
v2 −m2/~k, where the endpoints are the zeros of the function ε(θ), whereas its

maximum (v −m) lies at
√

v(v −m)/~k. Note that m2 ≤ [v2 − (~kθ)2] within these limits.

For 0 ≤ θ ≤
√

v(v −m)/~k, where the function (??) increases from 0 to (v−m), the positive
square roots (??) are expressed in terms of θ as follows

√

(ε± v)2 −m2 = ±~kθ + v

{

1− m2

[v2 − (~kθ)2]

}1/2

≥ 0 (97)

and therefore,

θ−(ε) = θ , θ+(ε) = vε(θ)/(~k)2 θ . (98)

Within this range, we substitute θ instead of ε into the second integral J
(n)
− in Eq. (??). This

yields

J
(n)
− =

∫ v−m

0

dε F (n)(θ−(ε)) =

∫

√
v(v−m)/~k

0

dθ
dε(θ)

dθ
F (n)(θ) . (99)
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In turn, for
√

v(v −m)/~k ≤ θ ≤
√
v2 −m2/~k, where the function (??) decreases from

(v −m) to 0, the two manifestly positive square roots (??) are

√

(ε± v)2 −m2 = ~kθ ± v

{

1− m2

[v2 − (~kθ)2]

}1/2

≥ 0 . (100)

Combining these yields

θ+(ε) = θ , θ−(ε) = vε(θ)/(~k)2 θ . (101)

Within this range, θ replaces ε in the first integral J
(n)
+ in Eq. (??). This gives

J
(n)
+ =

∫ v−m

0

dε F (n)(θ+(ε)) = −
∫

√
v2−m2/~k

√
v(v−m)/~k

dθ
dε(θ)

dθ
F (n)(θ) . (102)

With Eqs. (??) and (??) we obtain the integral (??) in terms of dimensionless variable θ as
follows

J (n)=−
∫ θ̄

0

dθ
dε(θ)

dθ
F (n)(θ) =

∫ θ̄

0

dθ

[

(

~k

2πn

)2
F

(n)
1 (θ)

dθ
ε(θ)− v2

6

(

2πn

~k

)2
F

(n)
2 (θ)

dθ
ε3(θ)

]

, (103)

where

θ̄ ≡
√
v2 −m2/~k , (104)

and the last term is found via partial integration thanks to the vanishing of the function (??)
at the endpoints. Substituting (??) and (??) into Eq. (??) yields

J (n) = (~k)3
∫ θ̄

0

dθ f(θ) cosh (2πn θ) . (105)

Here the function f(θ) has the form

f(θ) ≡ (~k)−2
[

(~kθ) ε(θ)− (v2/3) ε3(θ)/(~kθ)3
]

, (106)

and by Eq. (??) reads explicitly,

f(θ) = θ2
(

θ̄2 − θ2

λ2 − θ2

)1/2

− λ2

3

(

θ̄2 − θ2

λ2 − θ2

)3/2

= f(−θ) . (107)

Note that the integral over this function vanishes
∫ θ̄

0
dθ f(θ) = 0, so that J (0) = 0. The integrals

J (n) are all functions of v,m, and k.

With integrals (??) the vacuum decay rate (??) becomes

w⊥ =
2k3

π2

∫ θ̄

0

dθ f(θ)

∞
∑

n=1

1

n
cosh(2πnλ) cosh(2πnθ) , (108)

where we interchange the order of summation and integration. For 0 ≤ θ ≤ θ̄ ≤ λ, the sum

∞
∑

n=1

1

n
cosh(2πnλ) cosh(2πnθ) =

1

2

∞
∑

n=1

1

n

(

e2πnλ + e−2πnλ
)

cosh(2πnθ) . (109)
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can be found as follows. The second sum in Eq. (??) has the form

∞
∑

n=1

pn

n
cosh(nx) = −1

2
ln(1− 2p cosh x+ p2) , p2 < 1 , (110)

with x = 2πθ and p = exp(−2πλ). Explicitly, it reads

1

2

∞
∑

n=1

1

n
e−2πnλ cosh(2πnθ) = −1

4
ln
[

1− e−2π(λ+θ)
]

− 1

4
ln
[

1− e−2π(λ−θ)
]

. (111)

The first sum in Eq. (??) can formally be written as

1

2

∞
∑

n=1

1

n
e2πnλ cosh(2πnθ) =

1

4
Li1(e

2π(λ+θ)) +
1

4
Li1(e

2π(λ−θ)) , (112)

where Li1(z) is the polylogarithm function

Liν(z) =
∞
∑

n=1

zn

nν
, |z| < 1 , (113)

with ν = 1 for which we use the analytic continuation into the region |z| > 1,

Li1 (z) = Li1

(

1

z

)

− ln (−z) . (114)

Applying this to Eq. (??), we obtain

1

2

∞
∑

n=1

1

n
e2πnλ cosh(2πnθ) = −πλ− 1

4
ln
[

1− e−2π(λ+θ)
]

− 1

4
ln
[

1− e−2π(λ−θ)
]

. (115)

By Eqs. (??) and (??), the infinite sum (??) becomes

∞
∑

n=1

1

n
cosh(2πnλ) cosh(2πnθ) = −πλ− 1

2
ln
[

1− e−2π(λ+θ)
]

− 1

2
ln
[

1− e−2π(λ−θ)
]

. (116)

Finally, inserting Eq. (??) into Eq. (??) yields the vacuum decay rate

w⊥ = −k
3

π2

∫ θ̄

−θ̄

dθf(θ) ln
[

1− e−2π(λ−θ)
]

, (117)

where we use the symmetry of the function f(θ) = f(−θ).
The pair production rate (??) can be obtained in the same way for large λ, i.e., close to the

constant-field limit. In this case, the average number of produced pairs (??) becomes

n̄ =
2 sinh 2πµ sinh 2πν

[cosh 2πλ− cosh 2π(µ− ν)]
≃ 4 e−2πλ sinh 2πµ sinh 2πν . (118)

Substituting Eq. (??) into Eq. (??) yields

n̄⊥ =
2

π2~3
e−2πλ J (1) =

2k3

π2
e−2πλ

∫ θ̄

0

dθ f(θ) cosh(2πθ) =
k3

π2

∫ θ̄

−θ̄

dθf(θ)e2π(θ−λ) , (119)
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where the integral J (1) is determined by Eqs. (??) and (??) for n = 1. The obtained equa-
tions (??) and (??) provide us with simple integral representations for probabilities (??)
and (??), respectively, where the sum over all quantum numbers σ, p0 and p⊥ is replaced
by the θ-integral with the function f(θ). In particular, the pair production rate (??) is given
by the first term in the expansion of logarithm in Eq. (??) for the vacuum decay rate, i.e., in
the same way as Eq. (??) is related to Eq. (??).

4 Pair production rates and field inhomogeneity

The obtained rates (??) and (??) include the effect of spatial variations of the electric field (??)
on pair production. To make this more explicit, we represent the function (??) in the form
f(θ) = (−1/3)∂g(θ)/∂θ with

g(θ) = θ
(θ̄2 − θ2)3/2

(λ2 − θ2)1/2
= −g(−θ) , (120)

and perform the partial integration in Eqs. (??) and (??) by taking into account that the
function (??) vanishes on both ends. Then the vacuum decay rate (??) becomes

w⊥ =
2k3

3π

∫ θ̄

−θ̄

dθ g(θ)
1

e2π(λ−θ) − 1
. (121)

In what follows, we shall use the natural units in which the height v and the width 1/k of the
potential barrier (??) are measured in units of the rest energymc2 and the Compton wavelength
λ̄e of electron, respectively

v ≡ αmc2 , 1/k ≡ βλ̄e , (122)

where α and β are dimensionless parameters, whose ratio is

ǫ ≡ α/β = E0/Ec . (123)

Note that α > 1 and therefore β > 1/ǫ for supercritical potentials. By these restrictions the
electric field (??), whose peak E0 is of the order of presently available field strengths ǫ ≪ 1
can only create the pairs near the constant limit β ≫ 1, whereas for pair production near the
sharp limit β ≪ 1 much stronger field strengths ǫ ≫ 1 are required. In the units (??), the
parameters (??) and (??) entered in Eq. (??) read

λ = αβ , θ̄ = β
√
α2 − 1 . (124)

Setting these up in Eq. (??) and expressing the integral in terms of the new dimensionless
variable ϑ = α− θ/β yields the rate per area

w⊥(α, β) =
2c

3πλ̄3e

∫ α+
√
α2−1

α−
√
α2−1

dϑ (α− ϑ)
(2αϑ− 1− ϑ2)3/2

(2αϑ− ϑ2)1/2
β

e2πβϑ − 1
. (125)

We define now the vacuum decay rate per volume as w ≡ kw⊥ = w⊥/βλ̄e. It can be
obtained by dividing both sides of Eq. (??) by the width 1/k of the electric field (??). This
yields explicitly,

w(α, β) =
2c

3πλ̄4e

∫ α+
√
α2−1

α−
√
α2−1

dϑ (α− ϑ)
(2αϑ− 1− ϑ2)3/2

(2αϑ− ϑ2)1/2
1

e2πβϑ − 1
. (126)
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Figure 3: The dimensionless rate (??) is plotted as a function of two independent variables in
natural units: the width β and the height α.

The expression (??) is a function of two independent variables. Similarly to the dimensionless
field (??), it increases with growing α and decreases with growing β as shown in Fig. 3. For α
fixed, the rate (??) vanishes in the limit β → ∞ and diverges in the limit β → 0. In the later
limit, the electric field (??) takes a singular δ-shaped form at the origin. The divergence of
the vacuum decay rate (??) in this limit is the property particular to the sharp step [?], whose
discontinuity leads to enormous electric field.

With increasing both arguments to infinity in such a way that their ratio ǫ remains a con-
stant, the expression (??) becomes a homogeneous function of this ratio. It is therefore also a
constant in this limit which we denote by wlcf(ǫ). The rate wlcf(ǫ) corresponds to a spatially
uniform electric field ǫEc obtained from the Sauter field (??) in the same limit. For its explicit
calculation, we rewrite Eq. (??) in the form

w(α, β) =
4c

3πλ̄4e
α2

∫ α+
√
α2−1

α−
√
α2−1

dϑ

(

1− ϑ

α

)(

ϑ− ϑ2

2α

)− 1
2
(

ϑ− 1

2α
− ϑ2

2α

)
3
2 1

e2πβϑ − 1

=
c

3π3λ̄4e
ǫ2
∫ 2πβ(α+

√
α2−1)

2πβ(α−
√
α2−1)

dω

(

1− ω

2παβ

)(

ω − ω2

4παβ

)− 1
2
(

ω − π

ǫ
− ω2

4παβ

)
3
2 1

eω − 1
, (127)

where ω = 2πβϑ. Substituting then α = ǫβ into Eq. (??) and taking the limit β → ∞ with ǫ
fixed, we obtain

wlcf(ǫ) ≡ w(α=ǫβ, β)|β→∞ =
c

3π3λ̄4e
ǫ2
∫ ∞

π/ǫ

dω ω−1/2 (ω − π/ǫ)3/2
1

eω − 1
. (128)

The integral (??) can be evaluated explicitly by substituting into Eq. (??) the expansion

1

eω − 1
=

∞
∑

n=1

e−nω (129)
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Figure 4: The dimensionless rate (??) is plotted as a function of the field width β in Compton
units for fixed values of the dimensionless electric field ǫ = 0.1 (a), 1.0 (b) and 10.0 (c) (solid
blue lines). Dashed red lines refer to the constant-field rate (??) for these values of the field.
The variable β starts running from 1/ǫ.

and interchanging the order of summation and integration. In this way, we obtain the constant-
field rate per volume as

wlcf(ǫ) =
c

3π3λ̄4e
ǫ2

∞
∑

n=1

∫ ∞

π/ǫ

dω ω−1/2 (ω − π/ǫ)3/2 e−nω

=
c

4π5/2λ̄4e
ǫ2

∞
∑

n=1

e−nπ/ǫ

n2
U

(

1

2
,−1,

nπ

ǫ

)

, (130)

where U(1/2,−1, z) is the Tricomi confluent hypergeometric function [?] with the argument
z = nπ/ǫ and the first term represents the constant-field limit of the total mean number
of created pairs (??). Thus, the constant-field limit of the vacuum decay rate (??) is the
expression (??) rather than the Schwinger formula (??). It agrees, however, with formula (??),
if the latter is extended to the space-dependent electric field (??) and is averaged over the
infinite width of a spatial variation appropriated for a constant field. The expression (??)
represents therefore the locally constant-field rate. We explain this fact and present the detailed
comparison of the two constant-field rates in Appendix A. In formula (??), the ratio ǫ takes
on arbitrary values despite of the conditions β ≫ 1 and α ≫ 1. The vacuum decay rate (??)
approaches the constant-field limit (??) with increasing β and fixed ǫ as shown in Fig. 4.

Below the constant-field limit (??), the expression (??) for the vacuum decay rate per volume
interpolates analytically between the regime of sharp field β ≪ 1 with ǫ ≫ 1 and the regime
of constant field β ≫ 1 with an arbitrary ǫ > 1/β. In order to describe such a behavior, we
put the integral (??) in a more symmetric form by noting that the upper and lower limits of
integration are the two zeros of the quadratic polynomial in the numerator. By denoting these
limits as ϑ± ≡ α ±

√
α2 − 1 with ϑ+ϑ− = 1 and ϑ+ + ϑ− = 2α, we represent the rate (??) as

follows

w(α, β) =
2c

3πλ̄4e

∫ ϑ+

ϑ−

dϑ [(ϑ+ + ϑ−) /2− ϑ]
[(ϑ+ − ϑ) (ϑ− ϑ−)]

3/2

[(ϑ+ − ϑ) (ϑ− ϑ−) + ϑ+ϑ−]
1/2

1

e2πβϑ − 1
, (131)

where ϑ+ > 1 and ϑ− < 1. The integral (??) is dominated by the region ϑ . 1/2πβ in which the
function 1/

(

e2πβϑ − 1
)

differs appreciably from zero. With respect to this region, the positions
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Figure 5: The interval of integration with endpoints ϑ± = α±
√
α2 − 1 is shown with respect

to dominant region of the width 1/β in Eq. (??): completely outside (a), partly outside and
partly inside (b), completely inside (c). The corresponding analytic expressions are given by
Eqs. (??), (??) and (??), respectively.

of endpoints ϑ± are completely arbitrary. Thus locating the interval of integration as shown in
Fig. 5 we can estimate the integral (??) analytically as follows.

We assume first that the position of the upper limit ϑ+ is far to the right of the dominant
region ϑ+ ≫ 1/β as shown in Figs. 5a and 5b. Then the region of integration is cut off by the
factor 1/

(

e2πβϑ − 1
)

and is of the order 1/β. In this region, ϑ ≪ ϑ+ and the upper limit can
be extended to the positive infinity. Thus the rate (??) becomes approximately,

w(α, β) ≃
βϑ+ ≫ 1

c

3πλ̄4e
ϑ2+

∫ ∞

ϑ−

dϑϑ−1/2 (ϑ− ϑ−)
3/2 1

e2πβϑ − 1

=
c

3πλ̄4e
Λ−2

∫ ∞

Λ

dω ω−1/2 (ω − Λ)3/2
1

eω − 1
≡ w(Λ) , (132)

where we replace the variable ϑ by ω = 2πβϑ and introduce the scaling parameter Λ ≡ 2πβϑ−.
The integral is now performed by substituting (??) into (??) and interchanging the order of
summation and integration. Then we obtain

w(Λ) =
c

3πλ̄4e
Λ−2

∞
∑

n=1

∫ ∞

Λ

dω ω−1/2 (ω − Λ)3/2 e−nω

=
c

4π1/2λ̄4e
Λ−2

∞
∑

n=1

e−nΛ

n2
U (1/2,−1, nΛ) , (133)

where all steps of calculation are similar to those in Eqs. (??)-(??). This leads to the same
hypergeometric function U(1/2,−1, z) but now with the argument z = nΛ. As a such, the
parameter Λ depends on α and β. It can also be expressed in terms of α and ǫ with the help of
Eq. (??). This yields Λ ≡ (π/ǫ) (2α/ϑ+) with Λ > (π/ǫ). Thus, the rate (??) is always smaller
than its constant-filed limit (??). The latter is attained by Eq. (??) in the limit β → ∞ with
fixed ǫ via substituting Λ → π/ǫ.

In going from Eq. (??) to Eq. (??) the position of the lower limit of integration ϑ− is still
arbitrary. For its location there are two possibilities: far to the right ϑ− ≫ 1/β (Fig. 5a) and
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far to the left ϑ− ≪ 1/β (Fig. 5b) of the boundary 1/β. For the first, the interval of integration
is located completely outside the dominant region, whereas for the second, it is partly outside
and mostly inside. The both are the limiting cases of Eq. (??) and can be estimated as follows.

If the interval of integration is located completely outside the dominant region (Fig. 5a), the
rate (??) is obviously very small. The corresponding restriction ϑ− ≫ 1/β or βϑ− ≫ 1 leads to
β ≫ ϑ+ > α > 1 > ϑ−. This implies, in turn, that the initially imposed restriction ϑ+ ≫ 1/β
is already preserved, and also that the electric field (??) is near its constant limit β ≫ 1 with
β ≫ α or ǫ≪ 1. As long as Λ ≫ 1, we estimate the rate (??) by making use of the asymptotic
expansion of the function U(1/2,−1, z) for large arguments z = nΛ [?]:

U(1/2,−1, z) ≃ z−1/2
[

1− (5/4)z−1 +O
(

z−2
)]

, z → ∞ . (134)

Inserting this into Eq. (??) and subjecting further to Λ ≫ 1 yields

w(Λ) ≃
Λ ≫ 1

c

4π1/2λ̄4e
Λ−5/2

[

Li 5
2
(e−Λ)− 5

4
Λ−1 Li 7

2
(e−Λ) + · · ·

]

≃
Λ ≫ 1

c

4π1/2λ̄4e
Λ−5/2 exp

[

−Λ

(

1 +
5

4
Λ−2 +O

(

Λ−3
)

)]

. (135)

The rate (??) describes the pair production in the weak-field regime ǫ ≪ 1 near the constant
limit β ≫ 1 with 1 < α ≪ β. In terms of α and ǫ, it can be represented via the substitution
Λ ≡ (π/ǫ) (2α/ϑ+) as

w(α, ǫ) ≃
ǫ≪ α/ϑ+

c

4π3λ̄4e
ǫ5/2

(

ϑ+
2α

)5/2

exp

{

−π
ǫ

2α

ϑ+

[

1 +
5

4

(

ǫ

π

ϑ+
2α

)2

− · · ·
]}

, (136)

where ǫ ≪ α/ϑ+ < 1. The leading term of the expansion (??) with slightly different pre-
exponential factor including

√
α2 − 1/α instead of ϑ+/2α was found in Ref. [?] by integrating

the Nikishov result and also in Refs. [?, ?, ?, ?] by various semiclassical approximations. 1 The
corrections in powers of small ǫ were obtained in Ref. [?].

In the limit β → ∞ with fixed ǫ≪ 1 we obtain from (??) the small-ǫ asymptotic (??) of the
constant-field rate (??) by replacing Λ → π/ǫ ≫ 1. With increasing α from moderate α > 1
to large α ≫ 1 values until α ≪ β, the rate (??) increases approaching the asymptotic (??)
from below. For α3 ≫ β, the corrections can be obtained by expanding the scaling parameter
Λ ≃ (π/ǫ) (1 + 1/4α2 + · · ·) and then the expression (??) as follows

w(α, ǫ) ≃
ǫ≪ 1

c

4π3λ̄4e
ǫ5/2 exp

{

−π
ǫ

[

1 +
5

4

ǫ2

π2
+

1

4α2
+O

(

1

ǫ2α4

)]}

, α ≪ β ≪ α3 . (137)

If the interval of integration is located only partly outside the dominant region while occu-
pying the most of its part inside as shown in Fig. 5b, the rate (??) becomes very large. The
corresponding restriction ϑ− ≪ 1/β together with the initial restriction ϑ+ ≫ 1/β leads to

1Note that our parameter α = v/mc2 > 1 coincides with 1/γ̃ of [?, ?], with 1/ǫ of [?, ?] and with σ of [?].
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the condition α ≫ 1 for which the two restrictions are reduced to αβ ≫ 1 and β/α ≪ 1,
or ǫ ≫ 1. As long as Λ ≪ 1, estimating the rate (??) becomes more involved than in the
previous case. Indeed, the use of the asymptotic expansion of the function U(1/2,−1, z) for
small arguments [?]:

U(1/2,−1, z) ≃ 4

3
√
π

(

1− z

2
+O

(

z2
)

)

, z → 0 (138)

with z = nΛ leads to a slow convergent series for large n in Eq. (??). Therefore we determine
the small-Λ behavior of the rate (??) from the integral representation (??) as follows. First of
all, we rewrite this in the form

w(Λ) =
c

3πλ̄4e
Λ−2

∫ ∞

Λ

dω

(

1− Λ

ω

)3/2
ω

eω − 1
. (139)

In order to perform the integral (??) for Λ ≪ 1, we expand

(

1− Λ

ω

)3/2

=

∞
∑

n=0

anΛ
nω−n = 1− 3Λ

2
ω−1 +

3Λ2

8
ω−2 + · · · , (140)

with the coefficients

an =
3(2n− 1)!!

2n(2n− 1)(2n− 3)n!
. (141)

Substituting (??) into (??) and separating the integral into two parts yields

w(Λ) =
c

3πλ̄4e
Λ−2

∞
∑

n=0

anΛ
n

(
∫ ∞

0

dω ω1−n

eω − 1
−
∫ Λ

0

dω ω1−n

eω − 1

)

. (142)

Here the first integral is the product Γ(2−n)ζ(2−n), where Γ(2−n) and ζ(2−n) are the gamma
and zeta functions, respectively [?]. In the presence of Γ(2− n), each term of the infinite sum
with n ≥ 2 over this product consists of the singular part (−1)nζ(2−n)/(n−2)! = Bn−1/(n−1)!
plus the regular part (−1)nψ(n− 1)ζ(2−n)/(n− 2)! = ψ(n− 1)Bn−1/(n− 1)!, where Bn−1 are
the Bernoulli numbers and ψ(n − 1) is the polygamma function [?]. In the second integral of
Eq. (??) with the small upper limit Λ ≪ 1, we substitute the expansion

ω

eω − 1
=

∞
∑

k=0

Bk

k!
ωk = 1− ω

2
+
ω2

12
− · · · , ω → 0 , (143)

and extract from the double sum the logarithmically divergent term with n = k + 1 involving
the coefficients Bn−1/(n− 1)! after the integration. This cancels the singular part coming from
the gamma function Γ(2− n) to each power of small Λ. Then, the rate (??) takes the form

w(Λ) =
c

3πλ̄4e
Λ−2

[

π2

6
− ln Λ

∞
∑

n=1

Λn anBn−1

(n− 1)!
+

∞
∑

n=2

Λnanψ(n− 1)Bn−1

(n− 1)!

−
∞
∑

n=0
n6=k+1

an

∞
∑

k=0

Λk+1 Bk

(k − n+ 1)k!

]

. (144)
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For Λ ≪ 1, the expansion (??) is well approximated by the first few terms. In doing so, we
obtain finally,

w(Λ) ≃
Λ ≪ 1

c

3πλ̄4e
Λ−2

{

π2

6
+ Λ

[

3

2
lnΛ + S1

]

+ Λ2

[

3

16
(ln Λ + γ)− S2

]

+O
(

Λ3
)

}

, (145)

where γ ≃ 0.5772157 . . . is the Euler constant [?] and the sums S1 and S2 read explicitly,

S1 ≡
∞
∑

n=0
n6=1

an
(n− 1)

= −1 +

∞
∑

n=2

an
(n− 1)

≃ −0.5794415 . . . ,

S2 ≡ 1

2

∞
∑

n=0
n6=2

an
(n− 2)

= −1

4
+

3

4
+

1

2

∞
∑

n=3

an
(n− 2)

≃ 0.5411802 . . . . (146)

The rate (??) describes the pair production by extremely strong electric fields ǫ ≫ 1 within
the following range of the parameters α ≫ 1 and 1/α ≪ β ≪ α. Under these conditions, the
electric field (??) can either be near the sharp limit 1/α ≪ β ≪ 1, or near the constant limit
1 ≪ β ≪ α. Thus, the two regimes of pair production β ≪ 1 and β ≫ 1 bear a neat similarity
for very large values α ≫ 1.

In the limit β → ∞ with fixed ǫ ≫ 1, we obtain from (??) the large-ǫ asymptotic (??) of
the constant-field rate (??) via substituting Λ → π/ǫ ≪ 1. As long as α ≫ 1, the parameter
Λ in (??) can be expanded as Λ ≃ (π/ǫ) (1 + 1/4α2 + · · ·) and the expression (??) can be then
re-expanded in powers of small 1/α as follows

w(α, β) ≃
α ≫ 1

c

3π3λ̄4e

{

ǫ2
[

π2

6
+
π

ǫ

(

3

2
ln
π

ǫ
+ S1

)

+

(

π

ǫ

)2(
3

16
ln
π

ǫ
+

3γ

16
− S2

)]

− π2

12β2
− π

4αβ

(

3

2
ln
π

ǫ
− 3

2
+ S1

)

+O
(

α−2
)

}

, 1/α≪ β ≪ α . (147)

In the regime 1/α ≪ β ≪ 1, the rate (??) is very large but is overestimated by the large-ǫ
asymptotic (??). With growing β the expansion (??) decreases approaching the asymptotic (??)
in the regime 1 ≪ β ≪ α.

Let us assume now that the position of the upper limit ϑ+ lies far to the left ϑ+ ≪ 1/β
of the boundary 1/β as shown in Fig. 5c. The restriction ϑ+ ≪ 1/β or βϑ+ ≪ 1 leads to
β ≪ ϑ− < 1 < α < ϑ+. This yields, in turn, the restriction βϑ− ≪ 1 for the lower limit ϑ−
and implies that the electric field (??) is near the sharp limit β ≪ 1 with β ≪ α or ǫ ≫ 1.
The parameter α is restricted by the condition α < ϑ+ ≪ 1/β. The integral (??), where the
interval of integration is located completely inside the dominant region can be estimated as
follows. Within this interval, we use the representation

1

e2πβϑ − 1
=

∞
∑

k=0

Bk

k!
(2πβϑ)k−1 ≃ 1

2πβϑ

(

1− 2πβϑ

2
+ · · ·

)

, (148)

where Bk are the Bernoulli numbers [?]. Substituting Eq. (??) into Eq. (??) and making the
change of integration variable ϑ = [(ϑ+ − ϑ−) υ + (ϑ+ + ϑ−)] /2, we obtain

w(α, β) =
c

3π2λ̄4e

α3

β

∞
∑

k=0

Bk

k!
(2παβ)k Ik(a) , (149)
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where a ≡
√
α2 − 1/α < 1 and the integrals

Ik(a) = a5
∫ 1

−1

dυ
υ (1− υ2)3/2

(1− a2υ2)1/2
(1− aυ)k−1 (150)

are certain combinations of the complete elliptic integrals K(a) and E(a) of the first and the
second kind, respectively. Explicitly, these read

I0(a) =
2

3

[(

8− 7a2
)

E(a)−
(

8− 11a2 + 3a4
)

K(a)
]

, I1(a) = 0 ,

I2(a) =
2

15

[(

8 + 5a2 + 3a4
)

E(a)−
(

8 + 9a2 + 12a4
)

K(a)
]

, . . . . (151)

For αβ ≪ 1, retaining only the first few terms in Eq. (??) provides us with a good approximate
rate. In fact, the expression (??) represents a quickly convergent series

w(α, β) ≃
βϑ+ ≪ 1

c

3π2λ̄4e

α3

β

[

I0(a) +
π2

3
I2(a) (αβ)

2 +O
(

(αβ)3
)

]

, αβ ≪ 1 . (152)

The rate (??) describes the pair production in the strong-field regime ǫ≫ 1 near the sharp-field
limit β ≪ 1 for all values of the parameter α satisfying 1 < α ≪ 1/β. With increasing α from
moderate α > 1 to large α ≫ 1 values until α≪ 1/β, it can be expanded further as

w(α, β) ≃
β ≪ 1

2c

9π2λ̄4e

α3

β

[

1 +
9

2

(

3

2
− log 4α

)

1

α2
+O

(

1

α4

)]

, 1 ≪ α≪ 1/β , (153)

where α3/β ≡ ǫα2 ≪ ǫ2 as long as αβ ≪ 1. The rate (??) is therefore smaller than the rate (??)
in the same strong-field regime of pair production.

The pair production near the constant-field limit β ≫ 1 is now described as follows. For
β ≫ 1 > ϑ−, the restriction βϑ+ ≫ 1 is always satisfied. For moderate values of the parameter
α > 1, we obtain in addition the restriction βϑ− ≫ 1 due to β ≫ 1. This yields β ≫
ϑ+ > α > 1 implying that the regime of pair production is just the weak-field regime ǫ ≪ 1
described by the rate (??). With growing α from moderate α > 1 to large α ≫ 1 values
until α ≪ β, the first restriction βϑ+ ≃ αβ ≫ 1 is satisfied automatically, whereas the second
βϑ− ≃ β/α ≫ 1 is still preserved by the condition 1 ≪ α ≪ β. With these conditions, the
weak-field regime is still maintained but is described now by the large-α asymptotic (??) of
the expansion (??) approaching from below the small-ǫ asymptotic (??) of the constant-field
rate (??) with growing α. Increasing α further as α≫ β ≫ 1 leads to βϑ− ≃ β/α≪ 1 instead
of βϑ− ≃ β/α ≫ 1. Then the pair production undergoes the transition from weak-field ǫ ≪ 1
to strong-field ǫ≫ 1 regime, where it described by the large-α expansion (??) approaching the
large-ǫ asymptotic (??) of the constant-field rate (??). The increase of pair production rate
due to transition is of the order of two magnitudes. Near ǫ = 1, the rate of pair production is
interpolated analytically by the expression (??).

Consider now the pair production near the sharp-field limit β ≪ 1. For β ≪ 1 < ϑ+, the
restriction βϑ− ≪ 1 is always satisfied. For moderate values of the parameter α > 1, there
is in addition the restriction βϑ+ ≪ 1 due to β ≪ 1. This yields β ≪ ϑ− < 1 < α. The
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regime of pair production is therefore the strong-field regime ǫ≫ 1 described by the rate (??).
With increasing α from moderate α > 1 to large α ≫ 1 values until α ≪ 1/β, the first
restriction βϑ− ≃ β/α ≪ 1 is satisfied automatically, whereas the second βϑ+ ≃ αβ ≪ 1 is
still preserved by the condition 1 ≪ α ≪ 1/β. The strong-field regime ǫ≫ 1 of pair production
in now described by the large-α expansion (??). Increasing α further as α ≫ 1/β ≫ 1 yields
βϑ+ ≃ αβ ≫ 1 instead of βϑ+ ≃ αβ ≪ 1. Then the strong-field regime of pair production
undergoes the smooth transition from ǫ≪ 1/β2 to ǫ≫ 1/β2, where it described by the large-α
expansion (??).

For very large values α ≫ 1, the pair production is thus described by the expression (??)
whatever β ≫ 1 or β ≪ 1. In the strong-field regime ǫ≫ 1, this expression becomes very large
but does not exceed the large-ǫ asymptotic (??) of the locally constant-field rate (??). The
latter is therefore the upper limit for the vacuum decay rate (??). Thus, in agreement with
Refs. [?, ?, ?, ?, ?], we come to the conclusion that the spatial variations of the Sauter field (??)
cannot increase the pair production over the locally constant-field rate (??) even for extremely
strong fields with ǫ ≫ 1. The later rate overestimates however the Schwinger formula (??) as
long as ǫ≫ 1.

5 Conclusion

We have calculated analytic expressions for the production rate of electron-positron pairs from
the vacuum by the Sauter potential. For an arbitrary potential barrier, the rate was related
to the scattering amplitude on the barrier, and expressed as an energy-momentum integral
over the logarithm of the reflection coefficient. For the Sauter potential, we have evaluated
the rotationally invariant integral over transverse momenta in three dimensions exactly. The
remaining integral over the energy gave us the simple spectral formulas for the vacuum decay
and pair production rate. The analytic expressions for these rates were derived for the entire
range of the parameters v and k of the supercritical potential (??). This allowed us to access
different physical regimes from weak to strong fields.
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A Appendix: Constant-field limit

In previous studies of pair creation by inhomogeneous fields, the transition to the constant
field has often been made for the local probabilities before the energy-momentum integration.
In order to outline this procedure, we consider the densities for reflection and transmission
probabilities, and also for the average number of pairs created in each mode given by Eqs. (??),
(??) and (??), respectively.

The reflection and transmission coefficients in Eqs. (??) and (??) can be written as

r =
1

1− n̄
, t =

n̄

1− n̄
, (154)
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with r−t = 1 for supercritical potentials, where n̄ is the density number of produced pairs (??).
In order to find this quantity in the constant-field limit k → 0 with fixed E0, we first substitute
v = (|e|E0)/k. Then evaluating the limit yields

n̄ = exp
[

−π
(

p2⊥ +m2
)

/(~|e|E0)
]

. (155)

By Eq. (??), the reflection coefficient in Eq. (??) becomes independent of the energy ε. Its
logarithm is

ln r(p2⊥) = − ln (1− n̄) =

∞
∑

n=1

1

n
exp

[

−nπ
(

p2⊥ +m2
)

/(~|e|E0)
]

. (156)

With Eq. (??) the vacuum decay rate per area (??) in the constant-field limit becomes

wcf
⊥(E0) =

1

(2π)2~3

∫ +∞

−∞
dε

∫ ∞

0

dp2⊥ ln r(p2⊥)

=
1

(2π)2~3

∞
∑

n=1

1

n

∫ +∞

−∞
dε

∫ ∞

0

dp2⊥ e
−nπ(p2⊥+m2)/(~|e|E0) . (157)

Here the p2⊥-integral results in a factor of ~|e|E0/nπ and the ε-integral, via the substitution
dε = |e|E0 dz, in a factor of |e|E0L, where L is the infinite length. This yields the constant-field
rate per area

wcf
⊥(E0) = Lwcf(E0) , (158)

where wcf(E0) is the vacuum decay rate per volume given by the Schwinger formula (??). For
the constant electric field E0, it reads

wcf(E0) =
(eE0)

2

4π3~2c

∞
∑

n=1

1

n2
e−nπ(Ec/E0) =

c

4π3λ̄4e
ǫ2

∞
∑

n=1

1

n2
e−nπ/ǫ = wcf(ǫ) , (159)

with ǫ ≡ E0/Ec. Thus, the finite rate per volume (??) is obtained from the infinite rate per
area (??) via dividing by the infinite factor of a length.

In order to compute the limit k → 0 after the energy-momentum integration, we modify the
above derivation by noting that E(z) → E0 for k → 0, where E(z) is the electric field (??).
Then Eq. (??) can be rewritten as

ln r(p2⊥) = lim
k→0

∞
∑

n=1

1

n
exp

[

−nπ
(

p2⊥ +m2
)

/(~|e|E(z))
]

. (160)

The constant-field rate per area (??) becomes

wcf
⊥(E0) =

1

(2π)2~3
lim
k→0

∞
∑

n=1

1

n

∫ +∞

−∞
dε

∫ ∞

0

dp2⊥ e
−nπ(p2⊥+m2)/(~|e|E(z))

=
1

4π3~2
lim
k→0

∞
∑

n=1

1

n2

∫ +∞

−∞
dε (|e|E(z))e−nπ(Ec/E(z)) , (161)
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where we interchange the limit and the energy-momentum integral and perform the integration
over p2⊥. In the remaining integral, the energy ε is related to the position z of the electric field
E(z) as dε = |e|E(z) dz. For the Sauter electric field (??), this substitution yields

wcf
⊥(E0) =

1

4π3~2
lim
k→0

∞
∑

n=1

1

n2

∫ +∞

−∞
dz (|e|E(z))2 e−nπ(Ec/E(z))

=
c

4π3λ̄4e
ǫ2 lim

k→0

∞
∑

n=1

1

n2

∫ +∞

−∞

dz

cosh4 kz
e−(nπ/ǫ) cosh2 kz . (162)

By changing the variable y = kz the constant-field rate per area (??) takes the form

wcf
⊥(E0) =

(

lim
k→0

1

k

)

wlcf(E0) , (163)

where lim
k→0

(1/k) plays now the role of the infinite length. The constant-field rate per volume

reads

wlcf(E0) =
c

4π3λ̄4e
ǫ2

∞
∑

n=1

1

n2

∫ +∞

−∞

dy

cosh4 y
e−(nπ/ǫ) cosh2 y

=
c

4π3λ̄4e
ǫ2

∞
∑

n=1

e−nπ/ǫ

n2

∫ +∞

−∞

dx

(1 + x2)5/2
e−(nπ/ǫ)x2

= wlcf(ǫ) , (164)

where x = sinh y. The last integral in Eq. (??) is a certain combination of the modified Bessel
functions Kν(z) with ν = 0, 1 and z = nπ/ǫ which can be expressed in terms of the function
U(1/2,−1, z) [?]. This yields, finally, the constant-field rate per volume as

wlcf(ǫ) =
c

4π3λ̄4e

2

3
ǫ2

∞
∑

n=1

e−nπ/ǫ

n2

(nπ

ǫ

)

enπ/2ǫ
[nπ

ǫ
K0

(nπ

2ǫ

)

+
(

1− nπ

ǫ

)

K1

(nπ

2ǫ

)]

=
c

4π5/2λ̄4e
ǫ2

∞
∑

n=1

e−nπ/ǫ

n2
U

(

1

2
,−1,

nπ

ǫ

)

. (165)

This result was already found in Eq. (??). The rate (??) as well as the rate (??) corresponds
to the constant electric field E0 but does not coincide with the latter. Moreover, the above
derivation shows that the Schwinger expression (??) cannot be recovered as a constant-field limit
of the non-constant field rate in which the energy-momentum integral was already performed.
On the other hand, both rates per volume are found from the same (infinite) rate per area by
the only different factorization of an infinite length and can therefore be related to each other.
Comparing (??) with (??), we obtain

wcf
⊥(E0) =

(

lim
k→0

1

k

)

wlcf(E0) = Lwcf(E0) = L lim
k→0

wcf(E(z))

= lim
k→0

∫ +∞

−∞
dz wcf(E(z)) =

(

lim
k→0

1

k

)∫ +∞

−∞
dy wcf(E(y/k)) . (166)

This expresses the rate (??) in terms of the rate (??) extended to the space-dependent electric
field (??) and averaged over the infinite width of a spatial variation

wlcf(E0) =

∫ +∞

−∞
dy wcf(E(y/k)) = lim

k→0
k

∫ +∞

−∞
dz wcf(E(z)) . (167)
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The rate (??) is therefore the locally constant-field rate. The locally constant field approxi-
mation was introduced in Ref. [?]. In section 4, we have shown that the expression (??) is a
constant-field limit of the vacuum decay rate (??).

The rate (??) possesses the integral representation (??). Similar integral representation can
also be found for the rate (??) provided that we express the sum in Eq. (??) as

Li2(e
−π/ǫ) ≡

∞
∑

n=1

e−nπ/ǫ

n2
=

∞
∑

n=1

∫ ∞

π/ǫ

dθ
(

θ − π

ǫ

)

e−nθ =

∫ ∞

π/ǫ

dθ
(

θ − π

ǫ

) 1

eθ − 1
. (168)

Inserting this into Eq. (??) yields

wcf(ǫ) =
c

4π3λ̄4e
ǫ2
∫ ∞

π/ǫ

dθ
(

θ − π

ǫ

) 1

eθ − 1
. (169)

For better comparison of the two constant-field rates (??) and (??), let us estimate their
asymptotic behavior for small and large ǫ, respectively. For weak electric fields ǫ ≪ 1, a good
approximation of the rate (??) is the Heisenberg-Euler expression given by the first term of the
Schwinger formula

wcf(ǫ) =
c

4π3λ̄4e
ǫ2 Li2(e

−π/ǫ) ≃ c

4π3λ̄4e
ǫ2 exp (−π/ǫ) , ǫ≪ 1 . (170)

The corresponding behavior of the rate (??) can be found directly from the expansion (??) in
the limit β → ∞ with fixed ǫ≪ 1. Since Λ → π/ǫ≫ 1 in this limit, Eq. (??) takes the form

wlcf(ǫ) ≃ c

4π3λ̄4e
ǫ5/2

[

Li 5
2
(e−π/ǫ)− (5ǫ/4π) Li 7

2
(e−π/ǫ) + · · ·

]

≃ c

4π3λ̄4e
ǫ5/2 exp

{

(−π/ǫ)
[

1 +
(

5/4π2
)

ǫ2 +O
(

ǫ3
)]}

, ǫ≪ 1 . (171)

This differs from the result (??) by the small pre-exponential factor
√
ǫ and also by small sub-

leading terms. The Schwinger formula (??) is therefore underestimated by the locally constant-
field expression (??) for small ǫ as it shown in Fig. 6a. Otherwise, for nǫ ≪ 1, the expression
under the sum sign in the first line of Eq. (??) can be represented as

ǫ5/2

n5/2

[

1− 5

4πn
ǫ+

105

32π2n2
ǫ2 · · ·

]

exp (−nπ/ǫ) ≃ ǫ5/2

n5/2
exp [−nπ/ǫ∗(n)] , nǫ≪ 1 , (172)

where

1

ǫ∗(n)
≡ 1

ǫ
+

5

4π2n2
ǫ− 5

2π3n3
ǫ2 , nǫ ≪ 1 , (173)

can be interpreted as a mass shift via the coherent production of n pairs of particles [?].

For strong electric fields ǫ ≫ 1, the asymptotic behavior of the rate (??) can be found
most easily from the integral representation (??). To this end, we separate the last integral in
Eq. (??) further into three parts

Li2(e
−π/ǫ) =

∫ ∞

0

dθ
θ

eθ − 1
−
∫ π/ǫ

0

dθ
θ

eθ − 1
− π

ǫ

∫ ∞

π/ǫ

dθ
1

eθ − 1
. (174)
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Here the first integral is the number Γ(2) ζ(2) = π2/6, the second is represented for θ ≤ π/ǫ≪ 1
by the expansion π/ǫ − π2/4ǫ2 + · · · ≃ π/ǫ, the third is equal to − ln(1 − e−π/ǫ) and can be
expanded further as − ln π/ǫ+ π/2ǫ+ · · · . Collecting all terms together yields the expansion

Li2(e
−π/ǫ) ≃ π2

6
+
π

ǫ

(

ln
π

ǫ
− 1
)

+O
(

ǫ−2
)

, ǫ≫ 1 . (175)

With Eq. (??) the large-ǫ expansion of the constant-field rate (??) reads finally,

wcf(ǫ) =
c

4π3λ̄4e
ǫ2 Li2(e

−π/ǫ) ≃ c

4π3λ̄4e
ǫ2
[

π2

6
+
π

ǫ

(

ln
π

ǫ
− 1
)

+O
(

ǫ−2
)

]

, ǫ≫ 1 . (176)

The large-ǫ behavior of the rate (??) we find from the expansion (??) in the limit β → ∞ with
fixed ǫ≫ 1. In this limit, substituting Λ → π/ǫ≪ 1 into Eq. (??) yields

wlcf(ǫ) ≃ c

3π3λ̄4e
ǫ2
{

π2

6
+
(π

ǫ

)

[

3

2
ln
π

ǫ
− 0.5794415 . . .

]

+
(π

ǫ

)2
[

3

16

(

ln
π

ǫ
+ γ
)

− 0.5411802 . . .

]

+O
(

(π

ǫ

)3
)}

, ǫ≫ 1, (177)

where γ ≃ 0.5772157 . . . is the Euler constant [?]. The large-ǫ asymptotic (??) is compared
to the corresponding asymptotic (??) in Fig. 6b. We observe that the Schwinger formula (??)
is overestimated by the locally constant-field expression (??) as long as ǫ ≫ 1, i.e. in the
strong-field limit.
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Figure 6: The dimensionless probability w · (̄λ4e/c) to produce an e+e− pair within one Compton
space-time volume λ̄4e/c ≈ 10−58m3s as a function of the constant electric field ǫ = E0/Ec. The
weak-field regime ǫ ≪ 1 is shown in (a), the strong-field ǫ ≫ 1 in (b). The solid red and blue
lines refer to the Schwinger formula (??) and the expression (??), respectively.
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[34] G. Dunne, H. Gies, and R. Schützhold, Phys. Rev. D 80, 111301(R) (2009).

[35] E. Brezin and C. Itzykson, Phys. Rev. D2, 1191 (1970).

[36] V.S. Popov, JETP Lett. 13, 185 (1971).

[37] V.S. Popov, Sov. Phys. JETP 34, 709 (1972).

[38] V.S. Popov, JETP Lett. 18, 2555 (1974).

[39] V.M. Mostepanenko and V.M. Frolov, Sov. J. Nucl. Phys. 19, 451 (1974).

[40] R.-C. Wang, C.-Y. Wong, Phys. Rev. D 38, 348 (1988).

[41] S.P. Gavrilov and D.M. Gitman, Phys. Rev. D 53, 7162 (1996).

[42] G. Dunne and T. Hall, Phys. Rev. D 58, 105022 (1998).

[43] V.S. Popov, Sov. Phys. JETP 94, 1057 (2002).

[44] S.P. Kim, D.N. Page, Phys. Rev. D 65, 105002 (2002).

[45] G.V. Dunne and C. Schubert, Phys. Rev. D 72, 105004 (2005).

[46] H. Gies and K. Klingmüller, Phys. Rev. D 72, 065001 (2005).

[47] G.V. Dunne, Q.-H. Wang, H. Gies, and C. Schubert, Phys. Rev. D 73, 065028 (2006).

[48] S.P. Kim, D.N. Page, Phys. Rev. D 73, 065020 (2006).

34



[49] S.P. Kim, D.N. Page, Phys. Rev. D 75, 045013 (2007).

[50] H. Kleinert, R. Ruffini, and S.-S. Xue, Phys. Rev. D 78, 025011 (2008).

[51] S. P. Kim, H. K. Lee and Y. Yoon, Phys. Rev. D 78, 105013 (2008).

[52] S. P. Kim, H. K. Lee, Y. Yoon, Phys. Rev. D 82, 025015 (2010).

[53] A. Chervyakov and H. Kleinert, Phys. Rev. D 80, 065010-1 (2009).

[54] F. Hebenstreit, R. Alkofer, H. Gies, Phys. Rev. D 82, 105026 (2010).

[55] F. Cooper and E. Mottola, Phys. Rev. D 40, 456 (1989).

[56] Y. Kluger, J.M. Esenberg, B. Svetitsky, F. Cooper and E. Mottola, Phys. Rev. D 45,
4659 (1992).

[57] E. T. Akhmedov and P. Burda, Phys. Lett. B 687, 267 (2010).

[58] M. Abramowitz and I.A. Stegun, Handbook of Mathematical Functions, Dover Pub., New
York, 1970.

35


