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We show that an ensemble of particle orbits with large fluctuations around their classical paths
are described by quantum field theory in the strong-coupling limit.
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Grand-canonical ensembles of gaussian random walks
can be described by quantum field theory [1–5]. Indeed,
the relativistic scalar free-particle propagator of mass m
in D-dimensional euclidean momentum space p has the
form

G(p) =
1

p2 +m2
=

∫

∞

0

ds e−sm2

e−sp2

. (1)

The Fourier transform of e−sp2

is the distribution of
gaussian random walks of length s in D euclidean di-
mensions

P (s,x) = (4πs)−D/2e−x
2/4s, (2)

so that the propagator (1) is a superposition of gaussian

random walks whose lenghts are distributed like e−sm2

:

G(x) =

∫

∞

0

ds e−sm2

P (s,x). (3)

If δ-function-like interaction are added to the random
walks, their statistical mechanics is described by the eu-
clidean action

A =

∫

d3x
[

φ(x)(p̂2 +m2)φ(x) +
gc
4!
φ4(x)

]

. (4)

The evaluation of the partition function based on this ac-
tion is usually done approximately by perturbation the-
ory order by order in the coupling strength g. The results
are divergent power series in g from which the physical
properties must be extracted by renormalization. There
exists ao-called critical dimension, here Dc = 4, where
the action is scale invariant. If the physical dimension
D lies slightly below Dc, say at D = Dc − ǫ, the the-
ory appears to be still scale invariant, with fields ac-
quiring an anomalous dimension [φ] = 1 − η/2, and
the interaction becoming effectively φδ+1(x), where δ =
(D+2− η)/(D− 2+ η). This is known as the renormal-
ization group approach to critical phenomena [6]. Al-
ternatively, it can be formulated as to strong-coupling
limit of the quantum field theory [7, 8]. This theory has
exlpained critical phenomena with high accuracy. In par-
ticular it has predicted the value of the critical exponent
α in the singularity of the specific heat C ∝ |T −Tc|

−α to
be α ≈ −0.0127 in excellent agreement with the satellite
measurement αexp ≈ −0.0129 [9].

Thus gaussian random walks are a natural starting
point for many stochastic processes. For instance, they
form the basis of the most important tool in the the-
ory of financial markets, the Black-Scholes option price
theory [10] (Nobel Prize 1997), by which a portfolio of
assets is intended to grow steadily via hedging. In fact,
the famous central-limit theorem permits us to prove that
many independent random movements of finite variance
always pile up to display a gaussian distribution [11].

However, since the last crash and the ensuing financial
crisis, it has become clear that realistic stochastic distri-
butions in nature belong to a more general universality
class, the so-called Lévy distribution. While gaussian
distributions alway arise from a pile up of arbitrary fi-
nite steps, Lévy distribution emerge if these step have an
infinite variance. They describe that rare events, which
initiate crashes, are much more frequent than in gaussian
distributions. Such tail-events also occur in the distribu-
tion of earthquakes, with catastrophic consequences [12].

These are events in the so-called power tails∝ 1/|x|1+α

of the distributions, with α ≤ 2, whose description re-
quires a fractional Fokker-Planck equation [13]

[∂s + (p̂2)α/2]Pα(s,x) = 0. (5)

In the limit α → 2, the Lévy distributions reduce to gaus-
sian distributions. In general the solution for Pα(s,x) is
[14]

Pα(s,x)=
1

πD/2|x|D/2
H2,1

2,3

(

|x|α

2αs

∣

∣

∣

∣

(1,1);(1,1)

(1,1),(D

2
,α
2
);(1,α

2
)

)

, (6)

where H2,1
2,3 is a Fox H-function [15]. In the limits γ = 0

and α = 2, this reduces to the standard quantum me-
chanical gaussian expression (2). For γ = 0, α = 1, the
result is

Pα(s,x)=
s

π(D+1)/2|x|D+1
H1,1

1,1

(

s2

|x|2

∣

∣

∣

∣

(1/2−D/2,1)

(0,1)

)

,

which is simply the Cauchy distribution function
[Γ(D/2 + 1/2)/π(D+1)/2]s/(s2 + |x|2)D/2+1/2.

From what we explained above it is clear that these
nongaussian Lévy walks are contained in the theory based
on the action (4) in the strong-coupling limit. Using the



2

results of Ref. [7], and the textbook [8] the effective action
of this strong-coupling limit reads

Aeff =

∫

d3x
[

φ(x)(p̂2)1−η/2φ(x) +
gc
4!
|φ|δ+1(x)

]

, (7)

where 1 − η/2 ≈ 0.985, δ = (D + 2 − η)/(D − 2 + η) ≈
5(1− 6η/5) ≈ 4.83, and gc ≈ 1.4.
The original field theory based on the action (4) is

extremal for fields that satisfy the typical Schrödinger
boundary conditions that φ(x) must be single valued.
In the quantum theory this is the origin of all quantum
numbers. In the strong-coupling limit, on the other hand,
these conditions are no longer satisfied. Instead, the field
is multivalued [16], and by proposing such wave funtions
for strongly interacting electron systems in two dimen-
sions has earned Laughlin [17] the Nobel prize in 1998.
The strong-coupling limit may also be needed for an un-
derstanding of high-Tc conductivity, which is often asso-
ciated with a non-Fermi liquid behavior of the electrons
[18].
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