A LeTTERS JOURNAL EXPLORING
THE FRONTIERS OF PHYsICS

October 2012

EPL, 100 (2012) 10001
doi: 10.1209/0295-5075/100/10001

www.epljournal.org

Fractional quantum field theory, path integral, and stochastic
differential equation for strongly interacting many-particle

systems

HaGEN KLEINERT(®)

Institut fur Theoretische Physik, Freie Universitat Berlin -

14195 Berlin, Germany, FU and

ICRANeT - Piazzale della Repubblica, 10, 65122 Pescara, Italy, EU

received on 25 July 2012; accepted by M. Lewenstein on 14 August 2012

published online 9 October 2012

PACS 05.30 Pr — Fractional statistics systems (anyons, etc.)
PACS 03.65 Ge — Solutions of wave equations: bound states

PACS 05.30 Fk — Fermion systems and electron gas

Abstract — While free and weakly interacting particles are described by a second-quantized
nonlinear Schrodinger field, or relativistic versions of it, the fields of strongly interacting particles
are governed by effective actions, whose quadratic terms are extremized by fractional wave
equations. Their particle orbits perform universal Lévy walks rather than Gaussian random walks

with perturbations.
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Quantum-mechanical physics is explained with high
accuracy by Schrodinger theory. The wave equation for
many particles can conveniently be reformulated as a
second-quantized field theory, with an action that is the
sum of a quadratic and an interacting term:

A=Az + Aint, (1)

where the term Ay has typically the form
A :/dedtz/)*(x, [0 +h2V2 /2m =V (x)|¥(x,1), (2)

with D being the space dimension, m the mass, and V' (x)
some external potential. The interaction term A4;,; may
be approximated in molecular systems by a fourth-order
term in the field
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(3)
where Vi2(x,x’) is some two-body potential.

If relativistic velocities are present, the field is general-
ized to a scalar Klein-Gordon field, or a quantized Dirac
field. In molecular physics, the fourth-order term is due
to the exchange of a minimally coupled quantized photon
field and is proportional to e?, where e is the electric
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charge. The field equations may be studied with any stan-
dard method of quantum field theory, and corrections
can be derived using perturbation theory in powers of
a=e?/ha21/137. Since « is very small, this approach is
quite successful.

If time is continued analytically to imaginary values
t =1t, one is faced with the so-called Euclidean version of
quantum field theory. Then perturbation theory may be
understood as developing a theory of particle physics from
an expansion around Gaussian random walks. Indeed, the
relativistic scalar free-particle propagator of mass m in
(D + 1)-dimensional Euclidean energy-momentum space
p* = (P, pa), has the form

1
p?+pitm?

G(p) = /dwwﬂﬁ@%% (4)
0

where the energy has been continued anzzilytzically to
ps=—iE. The Fourier transform of e (P *r1) is the
distribution of Gaussian random walks of length sin D + 1
Fuclidean dimensions:

P(x, z4) = (dms) =PV 2= (=" +ai) /45 (5)
which makes the propagator (4) a superposition of such
walks with lenghts distributed like e~*™" [1-3]. This

propagator is the relativistic version of the free-field
propagator of the action (2). The second-quantized field
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theory described by (1) accounts for grand-canonical
ensembles of orbits with their two-body interactions [4].

Gaussian random walks are a natural and rather univer-
sal starting point for many stochastic processes. For
instance, they form the basis of the most important tool in
the theory of financial markets, the Black-Scholes option
price theory [5] (Nobel Prize 1997), by which a portfo-
lio of assets is hoped to remain steadily growing through
hedging. In fact, the famous central-limit theorem permits
us to prove that many independent random movements of
finite variance always pile up to display a Gaussian distri-
bution [3,6].

However, since the last stock market crash and the
still ongoing financial crisis it has become clear that
realistic distributions belong to a more general universality
class, the so-called Lévy stable distribution. They are the
universal results of a pile-up of random movements of
infinite variance’. They account for the fact that rare
events, which initiate crashes, are much more frequent
than in Gaussian distributions. These are events in the
so-called Lévy tails o< 1/|z|'T* of the distributions, whose
description requires a Hamiltonian [3]

H = const (p?)*2.

(6)

Such tail events are present in the self-similar distribution
of matter in the universe [7-9], in velocity distributions of
many-body sytems with long-range forces [10], and in the
distributions of windgusts [11] and earthquakes [12], with
often catastrophic consequences. They are a consequence
of rather general maximal entropy assumptions [13]. In
the limit A — 2, the Lévy distributions reduce to Gaussian
distributions.

The purpose of this note is to point out, that such
distributions occur quite naturally also in many-particle
systems, provided the interactions are very strong [14].
They have been observed in numerous experiments
at second-order phase transitions. The most accurate
measurement of this type was done in a satellite (the
so-called Infrared Atronomical Satellite, IRAS) by study-
ing the singularity of the specific heat of superfluid
4He near the critical temperature [15]. The observation
agreed extremely well with the theoretical strong-coupling
prediction [16,17].

The field of a strongly interacting N-body system is
usually a multivalued function. Singularities perforate the
space via vortex lines (for instance in type-II supercon-
ductors or in superfluid *He), or via line-like defects in
the displacement field of a world-crystal formulation of
Einstein(-Cartan) gravity [18]. If the positions of two
particles are exchanged, one obtains a factor 41 for bosons
or —1 for electrons. In two dimensions, one may even
obtain a general phase ¢'¢ (anyons) [19)].

1A travelling pedestrian salesman is a Gaussian random walker,
as a jetsetter he becomes a Lévy random walker.

A strongly interacting field system has a conformally
invariant Green function [16,19,20]

G(p,pa) =Ips o /05)] . (7)

If the dimension D differs only by a very small amount ¢
from the critical dimension D., where the theory is scale-
invariant, i.e., D = D. + ¢, then v is of order ¢ and z differs
from unity by a similar amount. Such a power behavior is
assured near D, if the Gell-Mann-Low function [21] has an
infrared-stable fixed point in the renormalization flow of
the coupling constant. Very close to the critical dimension,
a lowest approximation to G(p, p,) is

G(p,pa) ={ps "[L+Da(P?*/p5)M?} 1, (8)

where A is close to 2, and D, is a generalization of the
diffusion constant in a Fokker-Planck equation.

Time-independent propagators involve the limit p, — 0,
where the correlation function behaves like

G(p, 0) o [p|~*77. ©)

The index 7 is the anomalous dimension of the field, which
is also of order e. The existence of this limit in (8) fixes
the scaling relation

A=2(1—7)/z2=2—n.

See appendix for the calculation of the exponents to
order ¢. The Green function (8) determines the particle
probability distribution after a time ¢ via the double
fractional Fokker-Planck equation

[63 "+ Da(?)M 2P (x, 1) = 8(£)5) (),

(10)

(11)

where p4=0:;, p=id,=iV. A convenient definition
of the fractional derivatives uses the same formula as
in the dimensional continuation of Feynman diagrams
(=V2)M2=T[\/2] ! [doo /2 1eAV*/2 (see 2 and ref. [22]).
The solution of (11) is given in the literature [23] and

reads
F4 H2 i |X|a (1,1);(1—,1—7)
7TD/2|X|D/2 2,3 22 Dyt

» (12)
(1,1),(D/2,7/2)i(1,7/2)

where szé is a Fox H-function [24]. In the limits
~v=0 and «=A, this reduces to the standard quantum-
mechanical Gaussian expression (47 Dyt)~P/2¢=xI*/4Dxt,
For v =0, A =1, the result is

P( t) DAt Hl i Ditz (1/2—-D/2,1)

X, t) = :

T APIRRPI N A W oy )
(13)

2The relevant functional matrix is (x|(=V2)M2|x') =

L=A/2]71 fdo O'7>\/271(47TO')7D/2€R2/4J = PeyR™M P, where
Doy =22 T((D +0)/2)/mP/20(=)/2), and R=|x—x/|. If \ is close
to an even integer, it needs a small positive shift A = A =X +4¢

and we can replace eR<1/2 by 4§(R)=SpRP-15PI(R).
For A>0 we have |x/|*A:Dc;j(x/|(—V2)>‘A/2|0> with

Aa=A-D, so that we find [dPu/(x|(=V?)"2x)|x'|"4 =
Do L x| (=92 AFA=DI2]0) — Doy, pPey ! x| =4,
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which is simply the Cauchy-Lorentz distribution function
[D(D/241/2)/7P+D/2) Dyt /[(Dat)? + [x[2]P/2+1/2,

The probability (11) may be calculated from the doubly
fractional canonical path integral over fluctuating orbits
t(s),x(s) pa(s), p(s) viewed as functions of some pseudo-
time s (see %)

{xbtbsb|xatssa}:/DthDpoe*A, (14)

where A is the Euclidean action of the paths t(s), x(s):

A= [ aslitox — ipt) - @l 05)
Here t/(s) =dt(s)/ds, x'(s)=dx(s)/ds, and H(p,ps)=
P+ Da(p?)M2. At each s, the integrals over the compo-
nents of p(s) and p4(s) run from —oo to oo, whereas those
over py(s) run from —ioo to ioo. At the end we obtain
P(x,t) from the integral [~ ds{xts000}.

If v =0, the path integral over p4(s) yields the func-
tional 8[t'(s) — 1], which brings (14) to the canonical path
integral

(xbtb|xata):/DxDpe*A/, (16)
with
A= [adtipx— a7 (17)

Now P(x,1)=(xt|00) satisfies the ordinary fractional
Fokker-Planck equation
[+ DA(B)MAP(t, %) = 51 P (x). (1)
This has been discussed at length in recent literature [25].
At this point it is worth mentioning that the
probability can be written as a superposition
Jy (o /o) fr(ot=2/) Pg(0,x) of Gaussian distributions
Pe(0,x) = (470)~P/2¢=x*/47 with weight

_1)n07nk/2

e g
fA(U)*SD;(n+1)!F(D—1—n/\/2)D )

X 3

(19)

where Sp =27P/2/T'(D/2) is the surface of a sphere in D
dimensions.

If v +£ 0, the above functional é-function is softened, and
the relation between the pseudotime s and the physical
time becomes stochastic. It is governed by the probability
distribution that solves the path integral

siltass) = [ Dopesp{ [ asoat =1} o)

3This technique is explained in Chapts. 12 and 19 of ref. [3]. The
pseudotime s resembles the so-called Schwinger proper time used in
relativistic physics.

For imaginary p, = —iF, we define a noise Hamiltonian

H(n) which has the property that®*

e Pi = /OO dne~Pan—H()

— 00

(21)

The inverse of the Fourier integral yields the noise

probability P(n) = fio.ooo dp;;epw*péllﬂ7 and a probability

K
functional®

Pl = 67”“?(”):/1?194 exp U ds (pm—pi”)}
(22)

Using this we may solve the stochastic differential equation
of the Langevin type

(23)

in which the noise 7(s) has a zero expectation value for
each s, and the correlation functions, for n=2,4,6,...,

(n(s1) ... n(s2n)) = /Dm?(sl) —n(szn) Pl (24)

If v = 0, the solution of (22) is P[n] = 6[n(s) — 1], imply-
ing that 7(s) ceases to fluctuate, and (23) becomes
t'(s)=1, so that t =s.

In the past, many nontrivial Schrédinger equations (for
instance that of the 1/r-potential) have been solved with
path integral methods by re-formulating them on the
pseudotime axis s, that is related to the time ¢ via a
space-dependent differential equation t'(s) = f(x(t)). This
method, invented by Duru and Kleinert [26] to solve
the path integral of the hydrogen atom, has recently
been applied successfully to various Fokker-Planck equa-
tions [27,28]. The stochastic differential equation (23) may
be seen as a stochastic version of the Duru-Kleinert trans-
formation that promises to be a useful tool to study non-
Markovian systems.

Certainly, the solutions of eq. (18) can also be obtained
from a stochastic differential equation

whose noise is distributed with a fractional probability

Pln) :/DDxef de(ip-n—Da(p*)?) (26)

Experimentally, a system within the strong-coupling
limit can be produced by forming a Bose-Einstein conden-
sate (BEC) in a magnetic field whose strength is tuned
to a Feshbach resonance [29] of the two-particle inter-
action. In a BEC, the four-field term in the interac-
tion (3) is local and parametrized by Vi5(x,x) o gd(x —
x'). At the Feshbach resonance, the bare coupling strength

4There should be no danger of confusing the fluctuating noise
variable 77 in this equation with the constant critical exponent n
in (9).

5See eq. (29.165) in ref. [3].
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g goes to infinity [30], and the renormalized coupling
times 124~ ¢/(47)? converges to a fixed point g* ~0.503.
(See fig. 17.1 in ref. [16].).

The theoretical tool to describe the physics in this
regime is the effective action I'[¥,W¥*]. This a func-
tional of the expectation values of the quantum fields
P(t,x) = (¢(t,x)), a classical expression that contains
all information of the full quantum theory [16,31]. It
is the Legendre transform of the generating functional
Zln,n*] = [ DyDyp*e A7 %=1 of the full quantum
theory, and is extremal on the phasical field expections. All
its vertex functions can be found from the functional deriv-
atives of I'[¥, U*]. In the strong-coupling limit, the effec-
tive interaction changes the interaction (3) to an anom-
alous power law "™ [, W*| = (g./2) [ dtdPz |¥ (¢, x)[° T2,
where g, = (29")*~1)/2(47)2 /24. The power § is a critical
exponent that is measured experimentally by the relation
B = |¥|%. Its value is determined by 7 via the so-called
hyperscaling relation® §=(D+2—7)/(D—-2+7). As
a possible application we may study the behavior of a
triangular lattice of vortices which form in a rotating
Bose-Einstein condensate [32], and letting the magnetic
field approach a Feshbach resonance.

The results may then be compared with a calculation
based on a new field equation that generalizes the famous
Gross-Pitaevskii equation [33]

- stk R W -0, @)
2m
The new equation is obtained by extremizing the effective
action D[W, U*] = To[¥, ¥*| + [ (¥, ¥*], where

Ty E/dthx (%) = DAB?) VAW (t, %), (28)

By forming §A°T /5WT (¢, x), we obtain what may be called
the fractional Gross-Pitacvskii equation:

o+1

{EAlW—Dx(f)Z)ln/z— — el W) (2, %) =0,

(29)

The fractional Schrodinger equation has many prob-
lems, such as the nonvalidity of the quantum superpo-
sition law, the violation of unitarity of the time evolution,
and the violation of probability conservation which can
produce nonsensical probabilities > 1. However, these
problems exist only if we restrict ourselves only to the
free effective action (28), and this is meaningless, since
the entire theory is only defined by the effective action in
the strong-coupling limit —and this contains necessarily
additional nonquadratic terms. Hence it does not possess
free quasiparticles as in the time-honored Landau theory
of Fermi liquids [34]. There is always an interaction that
invalidates the standard discussion of Schrodinger equa-
tions. In fact, the theory of high-T,. superconductivity

6See eq. (1.35) in ref. [16].

p=T*T

00 02 04 06 08 10 00 02 04 06 08 10
R/Ry R/Ry,

Fig. 1: (Colour on-line) Condensate density from Gross-
Pitaevskii equation (27) (GP, dashed line) and its fractional
version (29) (FGP), both in Thomas-Fermi approximation
where the gradients are ignored. The FGP-curve shows a
marked depletion of the condensate. On the right hand, a
vortex is included. The zeros at R/R; =21 will be smoothened
by the gradient terms in (32).

must probably be built as a true strong-coupling theory
of this type with electrons being non-Fermi liquids.

The relativistic version of the entire discussion is simpler
since it is based on the Euclidean Green function (9) in
which p denotes the (D — 1)-dimensional vectors (p,p4).
The Fourier transform is the distribution fulfilling the
Fokker-Planck equation

[0s + (D) "?]P(s,%) = ()P (x)  (30)
and possessing the path integral representation
P(s, %) :/DxDpefds[ip"‘*(f’z)lfn/z]. (31)

The e-expansion is now around D.=4 in powers of ¢=
—(D — D.). The critical exponent 17 is small of order €%

n=¢2/50+---~20.04. It can be ignored for ¢=1. The
power § in the interaction is 3+ ¢+ 23¢2/50 + - -~ 4.76
(see 7).

The time-independent fractional Gross-Pitaevskii equa-
tion reads now

041

()2 o[ (x) e (x) =0, (32)

with g.~6.7. For a d= (D — 1)-dimensional vortex in
D =3 dimensions, it is solved by W¥(x)=al|x,|~* with
A=(2-n)/(6—1)=D/2—1+n/2~1/2and (6§ + 1)a’~t/
20, = _dCA+A*ddCZ£d ~0.2, A =2 —7 (see footnote 2).
To compare our theory with experimental data, we
must study the BEC in the scale-invariant strong-coupling
limit. This is reached either by going to the temperature
T. of the second-order phase transition, or by raising
the magnetic field B towards the field strength B. of a
Feshbach resonance. Then the coherence length £ grows
like £ oc [T, — 1|7, where v 2 2/3 [16,35], or like £ o (B —
B.)7¥ [29]). If the BEC is enclosed in a weak harmonic
trap, this adds in the brackets of (27) a term o |x|? = R2.
This is normally observed by the condensate density going

"The decimal numbers are from seven-loop calculation in D =3
dimensions in table 20.2 of ref. [16].
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to zero linearly like 2 — R? near the border R, (in the
Thomas-Fermi approximation) [36]. For B near B. (or
T near T,), however, the anomalous power § will lead
to the steeper approach to zero (R? — R?)2v(2=m/(0=1)
(RZ — R%)%7. In addition, the central region is depleted
(see fig. 1).

Moreover, the resonance frequency of a forced collective
oscillation will depend on the field strength 5 near the
Feshbach resonance [37].

A finite mass will enter the brackets of eq. (32) in the
form (m?2)*(2= £ (|| /(m?)?F), with a Taylor expansion
of f(x), where ;i is a mass scale and Mm? a reduced
mass (in a trap Mm?ox RZ— R?). For small /M2 the
Taylor expansion can be resummed to a Widom-type
expression  [(8 4 1)g./4]|¥|* Lw(m?/|¥|'/F) [17]. This
explains the above-stated steeper density profiles in
fig. 1. The function w can be expanded in powers of
(1m2)“/? o £ which contain the Wegner critical expo-
nent w s 0.8 governing the approach to scaling®. Thereby
the kinetic term (p2)!~7/2 in (32) (and of course (29))
is modified to (Pp?)!="/2[1 + const x E~¥(p?) /2 .. ],
and the interaction term [¥|°~' to |¥|°~'(1 + const x
£ |2/ (D=2 (see ).

Summarizing we have seen that a many-body system
with strong couplings between the constituents satisfies
a more general form of the Schrodinger equation, in
which the momentum and the energy appear with a
power different from o =2 and v =0, respectively. The
associated Green function can be written as a path integral
over fluctuating time and space orbits that are functions
of some pseudotime s. This is a Markovian object, but
non-Markovian in the physical time ¢ that is related to
s by a stochastic differential equation of the Langevin
type. The particle distributions can also be obtained by
solving a Langevin type of equation in which the noise
has correlation functions whose probability distribution is
specified.

* ok ok

I am grateful to P. JizBA, N. LASKIN, M. LEWENSTEIN,
A. PELSTER, and M. ZWIERLEIN for useful comments.

APPENDIX

The lowest-order critical exponents can be extracted
directly from the one-loop-corrected inverse Green func-
tion G~ Y(F,p) in D=2+ ¢ dimensions after a minimal
subtraction of the (1/¢)-pole at [38]:

Popt (i)
For p=0, this has a power —(—F)!72¢ so that v=ae.
For £ =0, on the other hand, we obtain (—p?)!~*“/3, so
that (1 —v)/z—1~~/3.

8See sect. 10.8 in ref. [16], viz. eq. (10.151). Also compare (1.28)
and expand f(r/&)=1+c(r/&)* +....

9See eq. (10.191) in ref. [16] and expand f(t/M1/F)~
f(ed2/(P=24m)y like fw)=1+cx “+... .

(A.1)
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