
Physica A 391 (2012) 2971–2989

Contents lists available at SciVerse ScienceDirect

Physica A

journal homepage: www.elsevier.com/locate/physa

Rényi’s information transfer between financial time series
Petr Jizba a,b,∗, Hagen Kleinert a,c, Mohammad Shefaat d
a ITP, Freie Universität Berlin, Arnimallee 14 D-14195 Berlin, Germany
b FNSPE, Czech Technical University in Prague, Břehová 7, 115 19 Praha 1, Czech Republic
c ICRANeT, Piazzale della Republica 1, 10 -65122, Pescara, Italy
d Quirin Bank AG, Kurfüstendamm 119, 10711 Berlin, Germany

a r t i c l e i n f o

Article history:
Received 8 July 2011
Received in revised form 9 December 2011
Available online 10 January 2012

Keywords:
Econophysics
Rényi entropy
Information transfer
Financial time series

a b s t r a c t

In this paper, we quantify the statistical coherence between financial time series by
means of the Rényi entropy. With the help of Campbell’s coding theorem, we show
that the Rényi entropy selectively emphasizes only certain sectors of the underlying
empirical distribution while strongly suppressing others. This accentuation is controlled
with Rényi’s parameter q. To tackle the issue of the information flow between time series,
we formulate the concept of Rényi’s transfer entropy as a measure of information that
is transferred only between certain parts of underlying distributions. This is particularly
pertinent in financial time series, where the knowledge of marginal events such as spikes
or sudden jumps is of a crucial importance. We apply the Rényian information flow to
stock market time series from 11 world stock indices as sampled at a daily rate in the
time period 02.01.1990–31.12.2009. Corresponding heatmaps and net information flows are
represented graphically. A detailed discussion of the transfer entropy between theDAX and
S&P500 indices based on minute tick data gathered in the period 02.04.2008–11.09.2009
is also provided. Our analysis shows that the bivariate information flow between world
markets is strongly asymmetric with a distinct information surplus flowing from the
Asia–Pacific region to both European andUSmarkets. An important yet less dramatic excess
of information also flows from Europe to the US. This is particularly clearly seen from a
careful analysis of Rényi information flow between the DAX and S&P500 indices.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

The evolution of many complex systems in natural, economical, and social sciences is usually presented in the form of
time series. In order to analyze time series, several statistical measures have been introduced in the literature. These in-
clude such concepts as probability distributions [1,2], autocorrelations [2], multi-fractals [3], complexity [4,5], or entropy
densities [5]. Recently, it has been pointed out that the transfer entropy (TE) is a very useful instrument in quantifying statis-
tical coherence between time-evolving statistical systems [6–8]. In particular, in Schreiber’s paper [6], it was demonstrated
that TE is especially expedient when the global properties of time series are analyzed. Prominent applications are in mul-
tivariate analysis of time series, including for example, the study of multichannel physiological data or bivariate analysis of
historical stock exchange indices. Methods based on TE have substantial computational advantages which are particularly
important when analyzing a large amount of data. In all past works, including [8–10], the emphasis has been on various
generalizations of transfer entropies that were firmly rooted in the framework of Shannon’s information theory. These so-
called Shannonian transfer entropies are, indeed, natural candidates due to their ability to quantify in a non-parametric and
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explicitly non-symmetric way the flow of information between two time series. Financial market time series are an ideal
testing ground for various TE concepts, because of the immense amount of electronically recorded financial data.

Recently, economics has become an active research area for physicists. They have investigated stock markets using
statistical physics methods, such as percolation theory, multifractals, spin-glass models, information theory, complex
networks, and path integrals. In this context, the name econophysics has been coined to denote this new hybrid field on the
border between statistical physics and (quantitative) finance. In the framework of econophysics it has became increasingly
evident that the market interactions are highly nonlinear, unstable, and long ranged. It has also became apparent that all
agents (e.g., companies) involved in a given stock market exhibit interconnectedness and correlations which represent
important internal forces of the market. Typically one uses correlation functions to study the internal cross-correlations
between various market activities. The correlation functions, however, have at least two limitations. First, they measure
only linear relations, although it is clear that linear models do not faithfully reflect real market interactions. Second, all
they determine is whether two time series (e.g., two stock-index series) have correlated movement. However, they do
not indicate which series affects which, or, in other words, they do not provide any directional information about cause
and effect. Some authors use such concepts as time-delayed correlation or time-delayed mutual information in order to
construct asymmetric ‘‘correlation’’ matrices with inherent directionality. This procedure is in many respects ad hoc, as it
does not provide any natural measure (or quantifier) of the information flow between involved series.

In this paper, we study multivariate properties of stock-index time series with the help of an econophysics paradigm. In
order to quantify the information flow between two or more stock indices, we generalize Schreibers’ Shannonian transfer
entropy to Rényi’s information setting. With this we demonstrate that the corresponding new transfer entropy provides
more detailed information concerning the excess (or lack) of information in various parts of the underlying distribution
resulting from updating the distribution on the condition that a second time series is known. This is particularly relevant in
the context of financial time series, where the knowledge of tail-part (or marginal) events such as spikes or sudden jumps
bears direct implications, e.g., in various risk-reducing formulas in portfolio theory.

The paper is organized as follows. In Section 2, we provide some information-theoretic background on the Shannon
entropy (SE) and the Rényi entropy (RE). In particular, we identify the conditional Rényi entropy with the information
measure introduced in Ref. [11]. Apart from satisfying the chain rule (i.e., rule of additivity of information), the latter has
many desirable properties that are to be expected from a conditional informationmeasure. Another key concept, themutual
Rényi entropy, is then introduced in a close analogy with Shannon’s case. The ensuing properties are also discussed. The
Shannonian transfer entropy of Schreiber is briefly reviewed in Section 3. There we also comment on the effective transfer
entropy of Marschinski et al. The core quantity of this work, the Rényian transfer entropy (RTE), is motivated and derived
in Section 4. In contrast to the Shannonian case, the Rényian transfer entropy is generally not positive semi-definite. This is
because the RE nonlinearly emphasizes different parts of the probability density functions (PDFs) involved. With the help of
Campbell’s coding theorem, we show that the RTE rates a gain/loss in risk involved in a next-time-step behavior in a given
stochastic process, say X , resulting from learning new information, namely the historical behavior of another (generally
cross-correlated) process, say Y . In this view, the RTE can serve as a convenient rating factor of a riskiness in interconnected
markets. We also show that the Rényian transfer entropy allows one to amend spurious effects caused by the finite size of a
real data set which in Shannon’s context must, otherwise, be solved by means of the surrogate data technique and ensuing
effective transfer entropy. In Section 5, we demonstrate the usefulness and formal consistency of the RTE by analyzing
cross-correlations in various international stock markets. On a qualitative level, we use 183,308 simultaneously recorded
data points of the eleven stock exchange indices, sampled at a daily (end of trading day) rate to construct the heat maps and
net flows for both Shannon’s and Rényi’s information flows. On a quantitative level, we explicitly discuss time series from
the DAX and S&P500 market indices gathered on a minute-tick basis in the period from December 1990 to November 2009
in the German stock exchangemarket (Deutsche Börse). Presented calculations of Rényi and Shannon transfer entropies are
based on symbolic coding computation with the open source software R. Our numerical results imply that the RTE values
among world markets are typically very asymmetric. For instance, we show that there is a strong surplus of information
flow from the Asia–Pacific region to both Europe and the US. A surplus of information flow can be also observed to exist
from Europe to the US. In this last case, the substantial volume of transferred information comes from the tail part (i.e., the
risky part) of the underlying asset distributions. So, despite the fact that the US contributes more than half of the world’s
trading volume, this is not so with information flow.

Further salient issues, such as the dependence of RTE on Rényi’s q parameter or on the data block length, are also
investigated numerically. In this context we find that the cross-correlation between the DAX and S&P500 indices has a long-
timememory which is around 200–300min. This should be contrasted with the typical memory of stock returns, which are
of the order of seconds or maximally a few minutes. Various remarks and generalizations are proposed in the concluding
section, Section 6. For the reader’s convenience, we give in Appendix A a brief glossary of market indices used in the main
text, and in Appendix B we tabulate explicit values of the effective transfer entropies used in the construction of heat maps
and net information flows.

2. Information-theoretic entropies of Shannon and Rényi

In order to express numerically an amount of information that is shared or transferred between various data sets (e.g.,
two or more random processes), one commonly resorts to information theory, and especially to the concept of entropy. In
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this section, we briefly review some essentials of Shannon’s entropy and Rényi’s entropy that will be needed in the following
sections.

2.1. Shannon’s entropy

The entropy concept was originally introduced by Clausius [12] in the framework of thermodynamics. By analyzing a
Carnot engine, he was able to identify a new state function which never decreases in isolated systems. The microphysical
origin of Clausius’ phenomenological entropy was clarified more than 20 years later in works of Boltzmann and (even later)
Gibbs, who associated Clausius entropy with the number of allowed microscopic states compatible with a given observed
macrostate. The ensuing Boltzmann–Gibbs entropy reads

HBG(P ) = −kB
W
x∈X

p(x) ln p(x), (1)

where kB is Boltzmann’s constant,X is the set of all accessiblemicrostates compatiblewithwhatevermacroscopic observable
(state variable) one controls, andW denotes the number of microstates.

It should be said that the passage from Boltzmann–Gibbs to Clausius entropy is established only when the conditional
extremum Pex of HBG subject to the constraints imposed by observed state variables is inserted back into HBG. Only when
this maximal entropy prescription [13] is utilized does HBG turn out to be a thermodynamic state function and not a mere
functional on a probability space.

In information theory, on the other hand, the interest was in an optimal coding of a given source data. By optimal code is
meant the shortest averaged code fromwhich one can uniquely decode the source data. Optimality of coding was solved by
Shannon in his seminal 1948 paper [14]. According to Shannon’s source coding theorem [14,15], the quantity

H(P ) = −

W
x∈X

p(x) log2 p(x) (2)

corresponds to the averaged number of bits needed to optimally encode (or ‘‘zip’’) the source dataset X with the source
probability distribution P (X). On a quantitative level, (2) represents (in bits) the minimal number of binary (yes/no)
questions that brings us from our present state of knowledge about the system X to the one of certainty [14,16,17]. It should
be stressed that, in Shannon’s formulation, X represents a discrete set (e.g., processes with discrete time), and this will
also be the case here. Apart from the foregoing operational definitions, Eq. (2) also has several axiomatic underpinnings.
Axiomatic approaches have been advanced by Shannon [14,15], Khinchin [18], Feinstein [19] and others [20]. The quantity
(2) has become known as the Shannon entropy.

There is an intimate connection between the Boltzmann–Gibbs entropy and the Shannon entropy. In fact, thermodynam-
ics can be viewed as a specific application of Shannon’s information theory: the thermodynamic entropymay be interpreted
(when rescaled to ‘‘bit’’ units) as the amount of Shannon information needed to define the detailed microscopic state of
the system, which remains ‘‘uncommunicated’’ by a description that is solely in terms of thermodynamic state variables
[21–23].

Among important properties of the SE is its concavity in P ; i.e., for any pair of distributions P and Q, and a real number
0 ≤ λ ≤ 1, it holds that

H(λP + (1 − λ)Q) ≥ λH(P ) + (1 − λ)H(Q). (3)

Eq. (3) follows from Jensen’s inequality and the convexity of x log x for x > 0. Concavity is an important concept since it
ensures that any maximizer found by the methods of the differential calculus yields an absolute maximum rather than
a relative maximum or minimum or saddle point. At the same time it is just a sufficient (i.e., not necessary) condition
guarantying a unique maximizer. It is often customary to denote the SE of the source X as H(X) rather than H(P ). Note
that the SE is generally not convex in X!

It should be stressed that the entropy (2) really represents self-information: the information yielded by a random
process about itself. A step further from self-information offers the joint entropy of two random variables X and Y , which is
defined as

H(X ∩ Y ) = −


x∈X,y∈Y

p(x, y) log2 p(x, y), (4)

and which represents the amount of information gained by observing jointly two (generally dependent or correlated)
statistical events.

A further concept that will be needed here is the conditional entropy of X given Y , which can be motivated as follows.
Let us have two statistical events X and Y and let event Y have a sharp value y. Then the gain of information obtained by
observing X is

H(X |Y = y) = −


x∈X

p(x|y) log2 p(x|y). (5)
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Here, the conditional probability p(x|y) = p(x, y)/p(y). For general random Y one defines the conditional entropy as the
averaged SE yielded by X under the assumption that the value of Y is known; i.e.,

H(X |Y ) =


y∈Y

p(y)H(X |Y = y) = −


x∈X,y∈Y

p(x, y) log2 p(x|y). (6)

From (6), in particular, it follows that

H(X ∩ Y ) = H(Y ) + H(X |Y ) = H(X) + H(Y |X). (7)

Identity (7) is known as the additivity (or chain) rule for the Shannon entropy. In statistical thermodynamics, this rule allows
one to explain, for example, the Gibbs paradox. Applying Eq. (7) iteratively, we obtain

H(X1 ∩ X2 ∩ · · · ∩ Xn) = H(X1) + H(X2|X1) + H(X3|X1 ∩ X2) + · · ·

=

n
i

H(Xi|X1 ∩ X2 ∩ · · · ∩ Xi−1). (8)

Another relevant quantity that will be needed is themutual information between X and Y . This is defined as

I(X; Y ) =


x∈X,y∈Y

p(x, y) log2
p(x, y)
p(x)q(y)

, (9)

and can be equivalently written as

I(X; Y ) = H(X) − H(X |Y ) = H(Y ) − H(Y |X). (10)

This shows that the mutual information measures the average reduction in uncertainty (i.e., gain in information) about X
resulting fromobservation of Y . Of course, the amount of information contained in X about itself is just the Shannon entropy:

I(X; X) = H(X). (11)

Notice also that from Eq. (9) it follows that I(X; Y ) = I(Y ; X), and so X provides the same amount of information on Y as
Y does on X . For this reason, mutual information is not a useful measure to quantify a flow of information. In fact, the flow
of information should be by its very definition directional.

In the following, we will also find useful the concept of conditional mutual entropy between X and Y given Z , which is
defined as

I(X; Y |Z) = H(X |Z) − H(X |Y ∩ Z),

= I(X; Y ∩ Z) − I(X; Y ). (12)

The latter quantifies the averaged mutual information between X and Y provided that Z is known. Applying (12) and (10)
iteratively, we may write

I(X; Y1 ∩ · · · ∩ Yn|Z1 ∩ · · · ∩ Zm) = H(X |Z1 ∩ · · · ∩ Zm) − H(X |Y1 ∩ · · · ∩ Yn ∩ Z1 ∩ · · · ∩ Zm)

= I(X; Y1 ∩ · · · ∩ Yn ∩ Z1 ∩ · · · ∩ Zm) − I(X; Z1 ∩ · · · ∩ Zm). (13)

For further details on the basic concepts of Shannon’s information theory, we refer the reader to classical books, e.g., [17]
and, more recently, Csiszár and Shields [24].

2.2. Rényi’s entropy

Rényi introduced in Refs. [25,26] a one-parameter family of information measures currently known as Rényi entropies
[11,25]. In practice, however, only a singular name – Rényi’s entropy – is used. The Rényi entropy of order q (q > 0) of a
distribution P on a finite set X is defined as

S(R)
q (P ) =

1
1 − q

log2

x∈X

p q(x). (14)

For RE (14), one can also formulate a source coding theorem. While in the Shannon case the cost of a codeword is a linear
function of the length, so the optimal code has a minimal cost out of all codes, in the Rényi case the cost of a codeword is
an exponential function of its length [27–29]. This is, in a nutshell, the essence of the so-called Campbell coding theorem
(CCT). According to this, the RE corresponds to the averaged number of bits needed to optimally encode the discrete source
X with the probability P (X), provided that the codeword lengths are exponentially weighted [30]. From the form (14), one
can easily see that for q > 1 the RE depends more on the probabilities of the more probable values and less on those of the
improbable ones. This dependence is more pronounced for higher q. On the other hand, for 0 < q < 1, marginal events
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Fig. 1. The function pq for event probability p and varying Rényi parameter q. Arrows indicate decreasing values of q for 0 < q < 1 (dark arrow) or
increasing values of q for q > 1 (lighter arrow).
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Fig. 2. A plot of the escort distribution for two-dimensional P : ϱq = p q/(p q
+ (1 − p)q).

are accentuated with decreasing q. In this context, we should also point out that Campbell’s coding theorem for the RE is
equivalent to Shannon’s coding theorem for the SE provided one uses instead of p(x) the escort distribution [29]:

ϱq(x) ≡
p q(x)

x∈X
p q(x)

. (15)

The PDF ϱq(x)was first introduced by Rényi [26] and in the physical context by Beck et al. and others (see, e.g., Refs. [31,32]).
Note (see Fig. 1) that for q > 1 the escort distribution emphasizes the more probable events and de-emphasizes the more
improbable ones. This trend is more pronounced for higher values of q. For 0 < q < 1, the escort distribution accentuates
more improbable (i.e., marginal or rare) events. This dependence is more pronounced for decreasing q. This fact is clearly
seen in Fig. 2. So, by choosing different q, we can ‘‘scan’’ or ‘‘probe’’ different parts of the PDFs involved.

It should be stressed that, apart from the CCT, the RE has yet further operational definitions, e.g., in the theory of
guessing [33], in the buffer overflow problem [34], or in the theory of error block coding [35]. The RE is also underpinned
with various axiomatics [25,26,36]. In particular, it satisfies identical Khinchin axioms [18] as Shannon’s entropy save for
the additivity axiom (chain rule) [11,37,38]:

S(R)
q (X ∩ Y ) = S(R)

q (Y ) + S(R)
q (X |Y ), (16)

where the conditional entropy S(R)
q (X |Y ) is defined with the help of the escort distribution (15) (see, e.g., Refs. [11,31,39]).

For q → 1, the RE reduces to the SE:

S(R)
1 = lim

q→1
S(R)
q = H, (17)

as one can easily verify with l’Hospital’s rule.
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We define the joint Rényi entropy (or the joint entropy of order q) for two random variables X and Y in a natural way as

S(R)
q (X ∩ Y ) =

1
1 − q

log2

x∈X

p q(x, y). (18)

The conditional entropy of order q of X given Y is similarly as in the Shannon case defined as the averaged Rényi entropy
yielded by X under the assumption that the value of Y is known. As shown in Refs. [11,37,40], this has the form

S(R)
q (X |Y ) =

1
1 − q

log2


x∈X,y∈Y

p q(x|y)q q(y)
y∈Y

q q(y)

=
1

1 − q
log2


x∈X,y∈Y

p q(x, y)
y∈Y

q q(y)
. (19)

In this context, it should be mentioned that several alternative definitions of the conditional RE exist (see, e.g., Refs.
[26,35,41]), but the formulation (19) differs from other versions in a few important ways that will be shown to be desirable
in the following considerations. The conditional entropy defined in (19) has the following important properties [11,40]:

– 0 ≤ S(R)
q (X |Y ) ≤ log2 n, where n is the number of elements in X ,

– S(R)
q (X |Y ) = 0 only when Y uniquely determines X (i.e., no gain in information),

– limq→1 S
(R)
q (X |Y ) = H(X |Y ),

– when X and Y are independent, then S(R)
q (X |Y ) = S(R)

q (X).

Unlike in the Shannon case, one cannot, however, deduce that the equality S(R)
q (X |Y ) = S(R)

q (X) implies independence
between events X and Y . Also the inequality S(R)

q (X |Y ) ≤ S(R)
q (X) (i.e., an extra knowledge about Y lessens our ignorance

about X) does not hold here in general [11,26]. The latter two properties may seem to be a serious flaw. We will now argue
that this is not the case and, in fact, it is even desirable.

First, in order to understand why S(R)
q (X |Y ) = S(R)

q (X) does not imply independence between X and Y , we define the
information-distribution function

FP (x) =


− log2 p(z)<x

p(z), (20)

which represents the total probability caused by events with information content H(z) = − log2 p(z) < x. With this we
have

2(1−q)xdFP (x) =


x≤H(z)<x+dx

2(1−q)H(z)p(z) =


x≤H(z)<x+dx

p q(z), (21)

and thus

S(R)
q (X) =

1
1 − q

log2


∞

0
2(1−q)xdFP (x)


. (22)

Taking the inverse Laplace transform with the help of the so-called Post inversion formula [42], we obtain

FP (x) = lim
k→∞

(−1)k

k!


k

x ln 2

k+1
∂k

∂qk


2(1−q)S(R)

q (X)

(q − 1)


q=k/(x ln 2)+1

. (23)

An analogous relation also holds for FP |Q(x) and associated S(R)
q (X |Y ). As a result, we see that when working with S(R)

q of
different orders we receive much more information on the underlying distribution than when we restrict our investigation
to only one q (e.g., to only the Shannon entropy). In addition, Eq. (23) indicates that we need all q > 1 (or equivalently all
0 < q < 1; see Ref. [43]) in order to uniquely identify the underlying PDF.

In view of Eq. (23), we see that the equality between S(R)
q (X |Y ) and S(R)

q (X) at some neighborhood of q merely implies
that FP |Q(x) = FP (x) for some x. This naturally does not ensure independence between X and Y . We need the equality
S(R)
q (X |Y ) = S(R)

q (X) for all q > 1 (or for all 0 < q < 1) in order to secure that FP |Q(x) = FP (x) holds for all x, which would
in turn guarantee that P (X) = P (X |Y ). Therefore, all REs with q > 1 (or all with 0 < q < 1) are generally required to
deduce from S(R)

q (X |Y ) = S(R)
q (X) an independence between X and Y .
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In order to understand the meaning of the inequality S(R)
q (X |Y ) ≤ S(R)

q (X), we first introduce the concept of mutual
information. Themutual information of order q between X and Y can be defined as (see Eq. (10))

I(R)q (X; Y ) = S(R)
q (X) − S(R)

q (X |Y )

= S(R)
q (X) + S(R)

q (Y ) − S(R)
q (X ∩ Y ), (24)

which explicitly reads

I(R)q (X; Y ) =
1

1 − q
log2


x∈X,y∈Y

q q(y)p q(x)
x∈X,y∈Y

p q(x, y)

=
1

1 − q
log2


x∈X,y∈Y

q q(y)p q(x)
x∈X,y∈Y

q q(y)p q(x|y)
. (25)

Note that we have again the symmetry relation I(R)q (X; Y ) = I(R)q (Y ; X) as well as the consistency condition I(R)q (X; X) =

S(R)
q (X). So, similarly as in the Shannon case, Rényi’s mutual information formally quantifies the average reduction in
uncertainty (i.e., gain in information) about X that results from learning the value of Y , or vice versa.

From Eq. (24), we see that the inequality in question, i.e., S(R)
q (X |Y ) ≤ S(R)

q (X), implies that I(R)q (Y ; X) ≥ 0. According to
(25), this can be violated only when

x∈X

p q(x) >

x∈X

⟨P q(x|Y )⟩q for q > 1,
x∈X

p q(x) <

x∈X

⟨P q(x|Y )⟩q for 0 < q < 1. (26)

Here, ⟨. . .⟩q is an average with respect to the escort distribution ϱq(y) (see Eq. (15)).
By taking into account properties of the escort distribution, we can deduce that I(R)q (X; Y ) < 0 when a larger probability

events of X obtain a lower value by learning Y . As for the marginal events of X , these are indeed enhanced by learning Y , but
the enhancement rate is smaller than the suppression rate of large probabilities. For instance, this happens when

P (X) =


1 − ϵ,

ϵ

n − 1
, . . . ,

ϵ

n − 1


→ P (X |Y ) =


1 − ϵ

2
,
1 − ϵ

2
,

ϵ

n − 2
, . . . ,

ϵ

n − 2


, (27)

for

1
1 + log2

 n−1
n−2

 ≤ ϵ < 1, n > 2. (28)

The inequality (28) ensures that I(Y ; X) ≥ 0 holds. The left inequality in (28) saturates when I(Y ; X) = 0; see also Fig. 3.
For 0 < q < 1, the situation is analogous. Here, properties of the escort distribution imply that I(R)q (Y ; X) < 0 when

marginal events of X obtain a higher probability by learning Y . The suppression rate for large (i.e. close-to-peak) probabilities
is now smaller than the enhancement rate of marginal events. This happens, for example, for distributions,

P (X) =


1 − ϵ

2
,
1 − ϵ

2
,

ϵ

n − 2
, . . . ,

ϵ

n − 2


→ P (X |Y ) =


1 − ϵ,

ϵ

n − 1
, . . . ,

ϵ

n − 1


, (29)

with ϵ again fulfilling the inequality (28). This can be also directly seen from Fig. 3 when we revert the sign of I(R)q (Y ; X).
When we set q = 1, then both inequalities (26) are simultaneously satisfied, yielding I(Y ; X) = 0, as it should.

In contrast to the Shannonian case, in which the mutual information quantifies the average reduction in uncertainty
resulting from observing/learning further information, in the Rényi case we should use Campbell’s coding theorem in order
to properly understand the meaning of I(R)q (Y ; X). According to the CCT S(R)

q (X) corresponds to the minimal average cost of
a coded message with a nonlinear (exponential) weighting/pricing of codeword lengths. While according to Shannon we
never increase ignorance by learning Y (i.e., possible correlations between X and Y can only reduce the entropy), in Rényi’s
setting, extra knowledge about Y might easily increase theminimal price of coding X because of the nonlinear pricing. Since
the CCT penalizes long codewords which in Shannon’s coding have low probability, the price of the X |Y code may easily
increase, as we have seen in examples (27) and (29).

In the key context of financial time series, the risk valuation of large changes such as spikes or sudden jumps is of a crucial
importance, e.g., in various risk-reducing formulas in portfolio theory. The rôle of Campbell’s pricing can in these cases be
interpreted as a risk-rating method which puts an exponential premium on rare (i.e., risky) asset fluctuations. From this
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Fig. 3. Example of a typical situation when I(R)q (X; Y ) is negative. Distributions P (X) and P (X |Y ) are specified in (27), and ϵ is chosen so that
correspondingly I(X; Y ) = 0.

point of view, the mutual information I(R)q (X; Y ) represents a rating factor which rates a gain/loss in risk in X resulting from
learning new information, namely information about Y .

The conditional mutual information of order q between X and Y given Z is defined as

I(R)q (X; Y |Z) = S(R)
q (X |Z) − S(R)

q (X |Y ∩ Z). (30)

Note that because of a validity of the chain rule (16), relations (8) and (13) also hold true for the RE.
To close this section, we shall stress that information entropies are primarily important because there are various coding

theorems which endow them with an operational (that is, experimental) meaning, and not because of intuitively pleasing
aspects of their definitions. While coding theorems do exist both for the Shannon entropy and the Rényi entropy, there
are (as yet) no such theorems for Tsallis’, Kaniadakis’, Naudts’ and other currently popular entropies. The information-
theoretic significance of such entropies is thus not obvious. Since the information-theoretic aspect of entropies is of a crucial
importance here, we will in the following focus only on the SE and the RE.

3. Fundamentals of Shannonian transfer entropy

3.1. Shannonian transfer entropy

As seen in Section 2.1, the mutual information I(X; Y ) quantifies the decrease of uncertainty about X caused by the
knowledge of Y . One could be thus tempted to use it as ameasure of an informational transfer in general complex systems. A
major problem, however, is that Shannon’s mutual information contains no inherent directionality, since I(X; Y ) = I(Y ; X).
Some early attempts tried to resolve this complication by artificially introducing the directionality via time-lagged random
variables. In this way one may define, for instance, the time-lagged mutual (or directed Kullback–Leibler) information as

I(X; Y )t,τ =


p(xt , yt−τ ) log2

p(xt , xt−τ )

p(xt)q(yt)
. (31)

The later describes the average gain of information when replacing the product probability Pt × Qt = {p(xt)q(yt); xt ∈

Xt , yt ∈ Yt} by the joint probability Pt ∩ Qt−τ = {p(xt , yt−τ ); xt ∈ Xt , yt−τ ∈ Yt−τ }. So the information gained is due to
cross-correlation effect between random variables Xt and Yt (respectively, Yt−τ ). It was, however, pointed out in Ref. [6] that
prescriptions such as (31), though directional, also take into account some part of the information that is statically shared
between the two random processes X and Y . In other words, these prescriptions do not produce statistical dependences that
truly originate only in the stochastic random process Y , but they do include the effects of a common history (such as, for
example, in the case of a common external driving force).

For this reason, Schreiber introduced in Ref. [6] the concept of (Shannonian) transfer entropy (STE). The latter, apart from
directionality, accounts only for the cross-correlations between statistical time series X and Y whose genuine origin is in the
‘‘source’’ process Y . The essence of the approach is the following. Let us have two time sequences described by stochastic
random variables Xt and Yt . Let us assume further that the time steps (data ticks) are discrete with the size of an elementary
time lag τ and with tn = t0 + nτ (t0 is a reference time).

The transfer entropy TY→X (m, l) can then be defined as

TY→X (m, l) = H(Xtm+1 |Xt1 ∩ · · · ∩ Xtm) − H(Xtm+1 |Xt1 ∩ · · · ∩ Xtm ∩ Ytm−l+1 ∩ · · · ∩ Ytm)

= I(Xtm+1; Xt1 ∩ · · · ∩ Xtm ∩ Ytm−l+1 ∩ · · · ∩ Ytm) − I(Xtm+1; Xt1 ∩ · · · ∩ Xtm). (32)
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The last line of (32) indicates that TY→X (m, l) represents the following.

+ Gain of information about Xtm+1 caused by the whole history of X and Y up to time tm
− Gain of information about Xtm+1 caused by the whole history of X up to time tm
= Gain of information about Xtm+1 caused purely by the whole history of Y up to time tm.

Note that one may equivalently rewrite (32) as the conditional mutual information

TY→X (m, l) = I(Xtm+1; Ytm−l+1 ∩ · · · ∩ Ytm |Xt1 ∩ · · · ∩ Xtm). (33)

This shows once more the essence of Schreiber’s transfer entropy, namely, that it describes the gain in information about
Xtm+1 caused by the whole history of Y (up to time tm) under the assumption that the whole history of X (up to time tm) is
known. According to the definition of the conditional mutual information, we can explicitly rewrite Eq. (33) as

TY→X (m, l) =


p(xt1 , . . . , xtm+1 , ytm−l+1 , . . . , ytm) log2

p(xtm+1 |xt1 , . . . , xtm , ytm−l+1 , . . . , ytm)

p(xtm+1 |xt1 , . . . , xtm)
, (34)

where xt and yt represent the discrete states at time t of X and Y , respectively.
In passing, wemay observe from the first line of (32) that TY→X ≥ 0 (any extra knowledge in conditional entropy lessens

the ignorance). In addition, due to the Shannon–Gibbs inequality (see, e.g., Ref. [23]), TY→X = 0 only when

p(xtm+1 |xt1 , . . . , xtm , ytm−l+1 , . . . , ytm)

p(xtm+1 |xt1 , . . . , xtm)
= 1. (35)

This, however, means that the history of Y up to time tm has no influence on the value of Xtm+1 or, in other words, there is
no information flow from Y to X; i.e., the Y and X time series are independent processes. If there is any kind of information
flow, then TY→X > 0. TY→X is clearly explicitly non-symmetric (directional) since it measures the degree of dependence of
X on Y and not vice versa.

3.2. Effective transfer entropy

The effective transfer entropy (ETE) was originally introduced by Marschinski et al. in Ref. [7], and it was further
substantiated in Refs. [9,10,44]. The ETE, in contrast to the STE, accounts for the finite size of a real data set.

In the previous section, we have defined TY→X (m, l) with the history indicesm and l. In order to view TY→X as a genuine
transfer entropy, one should really include in (33) the whole history of Y and X up to time tm (i.e., all historical data that
may be responsible for cross-correlations with Xtm+1 ). The history is finite only if X or/and Y processes are Markovian. In
particular, if X is aMarkov process of orderm+1 and Y is of order l, then TY→X (m, l) is a true transfer entropy. Unfortunately,
most dynamical systems cannot be mapped to Markovian processes with finite-time memory. For such systems one should
take limits m → ∞ and l → ∞. In practice, however, the finite size of any real data set hinders this limiting procedure. In
order to avoid unwanted finite-size effects, Marschinski proposed the quantity

T eff
Y→X (m, l) ≡ TY→X (m, l) − TYschuffled→X (m, l), (36)

where Yschuffled indicates data shuffling via the surrogate data technique [45]. The surrogate data sequence has the same
mean, the same variance, the same autocorrelation function, and therefore the same power spectrum as the original
sequence, but (nonlinear) phase relations are destroyed. In effect, all the potential correlations between time series X and
Y are removed, which means that TYschuffled→X (m, l) should be zero. In practice, this shows itself not to be the case, despite
the fact that there is no obvious structure in the data. The non-zero value of TYschuffled→X (m, l) must then be a byproduct of
the finite data set. Definition (36) then ensures that spurious effects caused by finitem and l are removed.

4. Rényian transfer entropies

There are various ways in which one can sensibly define a transfer entropy with Rényi’s information measure S(R)
q . The

most natural definition is the one based on a q-analog of Eqs. (32)–(33), i.e.,

T (R)
q;Y→X (m, l) = S(R)

q (Xtm+1 |Xt1 ∩ · · · ∩ Xtm) − S(R)
q (Xtm+1 |Xt1 ∩ · · · ∩ Xtm ∩ Yt1 ∩ · · · ∩ Ytl)

= I(R)q (Xtm+1; Yt1 ∩ · · · ∩ Ytl |Xt1 ∩ · · · ∩ Xtm). (37)

With the help of (25) and (30), this can be written in an explicit form as

T (R)
q;Y→X (m, l) =

1
1 − q

log2


ϱq(xt1 , . . . , xtm)p q(xtm+1 |xt1 , . . . , xtm)

ϱq(xt1 , . . . , xtm , ytm−l+1 , . . . , ytm)p q(xtm+1 |xt1 , . . . , xtm , ytm−l+1 , . . . , ytm)

=
1

1 − q
log2


ϱq(xt1 , . . . , xtm)p q(ytm−l+1 , . . . , ytm |xt1 , . . . , xtm)

ϱq(xt1 , . . . , xtm+1)p q(ytm−l+1 , . . . , ytm |xt1 , . . . , xtm+1)
. (38)
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Here, ϱq is the escort distribution (15). One can again easily check that in the limit q → 1we regain the Shannonian transfer
entropy (34).

The representation (38) deserves a few comments. First, when the history of Y up to time tm has no influence on the
next-time-tick value of X (i.e., on Xtm+1 ), then from the first line in (38) it follows that T (R)

q;Y→X (m, l) = 0, which indicates

that no information flows from Y to X , as should be expected. In addition, T (R)
q;Y→X as defined by (37) and (38) takes into

account only the effect of time series Y (up to time tm), while the compound effect of the time series X (up to time tm) is
subtracted (though indirectly present via correlations that exist between time series X and Y ). In the spirit of Section 2.2 one
may interpret the transfer entropy T (R)

q;Y→X as a rating factor which quantifies a gain/loss in the risk concerning the behavior
of X at the future time tm+1 after we take into account the historical values of a time series Y until tm.

Unlike in Shannon’s case, T (R)
q;Y→X = 0 does not imply independence of the X and Y processes. This is because T (R)

q;Y→X (m, l)

can also be negative on account of nonlinear pricing. Negativity of T (R)
q;Y→X then simplymeans that the knowledge of historical

values of both X and Y broadens the tail part of the anticipated PDF for the price value Xtm+1 more than historical values of
X only would do. In other words, extra knowledge of historical values of Y reveals a greater risk in the next time step of X
than one would anticipate by knowing merely the historical data of X alone.

Note that, with our definition (37), Tq;Y→X is again explicitly directional since it measures the degree of dependence of X
on Y and not the other way around, though in this case we should indicate by an arrow whether the original risk rate about
Xtm+1 was increased or reduced by observing the historical values of Y .

At this stage, one may introduce the effective Rényi transfer entropy (ERTE) by following the same logic as in the
Shannonian case. In particular, one can again use the surrogate data technique to define the ERTE as

T (R,eff)
q;Y→X (m, l) ≡ T (R)

q;Y→X (m, l) − T (R)
q;Yschuffled→X (m, l). (39)

Similarly to the RTE, T (R)
q;Y→X (m, l) also accentuates for q ∈ (0, 1) the flow of information that exists between the tail parts of

distributions; i.e., it describes howmarginal events in the time series Y influence marginal events in the time series X . Since
most of historical data belong to the central parts of distributions (typically with well-behaved Gaussian increments), one
can reasonably expect that for q ∈ (0, 1) the transfer entropy T (R,eff)

q;Y→X (m, l) ∼= T (R)
q;Y→X (m, l), and the surrogate data technique

is not needed. This fact is indeed confirmed in our data analysis presented in the following section.

5. Presentation of the analyzed data

In the subsequent analysis, we use two types of data set to illustrate the utility of Rényi’s transfer entropy. The first data
set consists of 11 stock exchange indices, sampled at a daily (end of trading day) rate. The data set was obtained from Yahoo
financial portal (historical data) with help of the R-code program [46] for the period of time between 2 January 1998 and 31
December 2009. These data will be used to demonstrate quantitatively the statistical coherence of all thementioned indices
in the form of heat maps and net flows.

Because we also wish to illustrate our approach quantitatively, we use as a second data set time series of 183,308
simultaneously recorded data points from twomarket indices, namely from the DAX index and the S&P500 index, gathered
on a minute-tick basis in the period from 2 April 2008 to 11 September 2009. In our analysis, we use complete records,
i.e., minute data where only valid values for both the DAX index and the S&P500 index are admitted: periods without
trading activity (weekends, nighttime, holidays) in one or both stock exchanges were excluded. This procedure has the
obvious disadvantage that records substantially separated in real time may become close neighbors in the newly defined
time series. Fortunately, relatively the small number of such ‘‘critical’’ points compared to the regular ones prevents a
statistically significant error. In addition, due to computer data massification one may reasonably expect that the trading
activity responds almost immediately to external stimuli. For this reasonwehave synchronized the data series to an identical
reference time, a master clock, which we take to be Central European Time (CET).

5.1. Numerical calculation of transfer entropies

In order to find the PDF involved in definitions (34) (respectively, (36)) and (38) (respectively, (39)) we use the relative-
frequency estimate. For this purposewedivide the amplitude (i.e., stock index) axis intoN discrete amplitude bins and assign
to every bin a sample data value. The number of data points per bin divided by the length of the time series then constitutes
the relative frequency which represents the underlying empirical distribution. In order to implement the R-code in ETE and
ERTE calculations we partition the data into disjoint equidistant time intervals (blocks), which serve as a coarse-graining
grid. The number of data points we employ in our calculations is constant in each block. In each block only the arithmetic
mean price is considered in block-dependent computations.

It is clear that the actual calculations depend on the number of bins chosen (this is also known as the alphabet length).
In Ref. [7], it was argued that, in large data sets such as our time series, the use of alphabets with more than a few symbols
is not compatible with the amount of data at one’s disposal. In order to make a connection with existing results (see Refs.
[7,8]), we conduct calculations at fixed alphabet length N = 3 (see Tables 1–3).
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Table 1
Numerical data for the ETE that are used to generate Figs. 5 and 6.

Table 2
Numerical data for the ERTE that are used to generate Figs. 7 and 8; q = 1.5.

Table 3
Numerical data for the ERTE that are used to generate Figs. 9 and 10; q = 0.8.

For a given partition, i.e., fixed l, TY→X (m, l) is a function of the block lengthm. The parameterm is to be chosen as large
as possible in order to find a stable (i.e., largem independent) value for TY→X (m, l); however, due to the finite size of the real
time series X , it is required to find a reasonable compromise between unwanted finite sample effects and a high value form.
This is achieved by substituting TY→X (m, l)with the effective transfer entropy. Surrogate data that are needed in definitions
of the ETE (36) and the ERTE (39) are obtained bymeans of standard R routines [46]. The effective Rényi and Shannon transfer
entropies themselves are explicitly calculated and visualized with the help of the open-source statistical framework R and
its related R packages for graphical presentations. The calculations themselves are also coded in the R language.

5.2. Analyzing the daily data—heat maps versus net information flows

The effective transfer entropies T eff
Y→X and T (R,eff)

q;Y→X are calculated between 11 major stock indices (see the list in
Appendix A). The results are collected in three tables in Appendix B and applied in the constructions of heat maps and net
information flows in Figs. 4–10. In particular, Shannon’s information flow is employed in Figs. 5 and 6, while Rényi’s transfer
entropy is used in construction of Figs. 7–10. The histogram-based heat map in Fig. 4 represents the overall run of the 11
aforementioned indices after the filtering procedure. We have used the RColorBrewer package [47] from the R statistical
environment which employs a color-spectrum visualization for asset prices. In this case the color runs from the green, for
higher prices, to dark purple, for low price values.

The heat map in Fig. 5 shows that among the 11 selectedmarkets a substantial amount of information flows between the
Asia–Pacific region (APR) and the US. One can also clearly recognize the strong information exchanges between the APR and
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Fig. 4. Histogram-based (i.e., non-entropic) heat map between the 11 stock indices listed in Appendix A.
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Fig. 5. Heat map of Shannon’s effective entropy between the 11 stock indices listed in Appendix A. Alphabet size N = 3.

Europeanmarkets and the subdominant information flow between the US and Europe. There is comparably less information
flowing among Europeanmarkets themselves. This can be credited to the fact that the internal Europeanmarket is typically
liquid and well equilibrated; similarly, a system in thermal equilibrium (far from critical points) has very little information
flow among various parts. An analogous pattern (save for the NY index) can also be observed among the US markets. In
contrast, the markets within the APR mutually exchange a relatively large volume of information. This might be attributed
to a lower liquidity and consequently less balanced internal APR market.

The heat maps in Figs. 7 and 9 bring further understanding. Notably, we can see that the information flow within APR
markets is significantly more imbalanced between wings of the asset distributions (larger color fluctuations) than between
the corresponding central parts. This suggests low liquidity risks. A similar though subordinate imbalance in the information
transfer can also be observed between the US and APR markets.

Understandably more revealing are the net information flows presented in Figs. 6, 8 and 10. The net flow FY↔X is defined
as FY↔X ≡ TY→X−TX→Y . This allows one to visualizemore transparently the disparity between the Y → X andX → Y flows.
For instance, in Fig. 6 we see that substantially more information flows from the APR to the US and Europe than vice versa.
Figs. 8 and 10 then demonstrate more specifically that the APR → Europe flow is evenly distributed between the central
and tail distribution parts. From the net flow in Figs. 6, 8 and 10 we can also observe an important yet comparably weaker
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Fig. 6. Net flow FY↔X of effective Shannon transfer entropies between the 11 stock indices listed in Appendix A. Alphabet size N = 3.
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Fig. 7. Heat map of Rényi’s effective entropy between the 11 stock indices listed in Appendix A; q = 1.5. Alphabet size N = 3.

surplus of information flow from Europe towards the US. This interesting fact will be further addressed in the following
subsection.

Note also that T (R)
1.5;SP&500→NY, T

(R)
0.8;SP&500→NY and T (R)

0.8;NY→DJ have negative values. These exceptional behaviors can be partly
attributed to the fact that both the SP&500 and DJ indices are built from indices that are also present in the NY index and
hence one might expect unusually strong coherence between these indices. From Section 4 we know that negative values
of the ERTE imply a higher risk involved in a next-time-step asset-price behavior than could be predicted (or expected)
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Fig. 8. Net flow FY↔X of effective Rényi transfer entropies between the 11 stock indices listed in Appendix A; q = 1.5. Alphabet size N = 3.

without knowing the historical values of the source time series. The observed negativity of T (R)
0.8;X→Y thus means that when

some of the ignorance is elevated by observing the time series X a higher risk reveals itself in the nearest-future behavior of
the asset price Y . Analogously, negativity of T (R)

1.5;X→Y corresponds to a risk enhancement of the non-risky (i.e. close-to-peak)
part of the underlying PDF.

5.3. Minute-price information flows

Here we analyze the minute-tick historic records of the DAX and S&P500 indices collected over the period of 18 months
from 2 April 2008 to 11 September 2009. The coarse-grained overall run of both indices after the filtering procedure is
depicted in the histogram-based heat map in Fig. 4.

Without any a prior knowledge about theMarkovian (or non-Markovian) nature of the data series, we consider the order
of theMarkov process for both the DAX and S&P500 stocks to be identical, i.e., the pricememory of both indices is considered
to be the same. The latter may be viewed as a ‘‘maximally unbiased’’ assumption. At this stage we eliminate the surrogate
data and consider the RTE alone. The corresponding RTEs for q = 1.5 and q = 0.8 as functions of block lengths are shown in
Figs. 11 and 12, respectively. There we can clearly recognize that for m ∼ 200–300 minutes there are no new correlations
between the DAX and S&P500 indices. So, the underlying Markov process has order (or memory) roughly 200–300 min.

The aforementioned result is quite surprising in view of the fact that autocorrelation functions of stock market returns
typically decay exponentially with a characteristic time of the order of minutes (e.g., ∼4 min for the S&P500 [48,49]), so the
returns are basically uncorrelated random variables. Our result, however, indicates that twomarkets can be intertwined for
much longer. This situation is actually not so surprisingwhenwe realize that empirical analysis of financial data asserts (see,
e.g., Ref. [50]) that autocorrelation functions of higher-order correlations for asset returns have longer decorrelation time,
whichmight span up to years (e.g., a fewmonths in the case of volatility for the S&P500 [49]). It is indeed a key advantage of
our approach that the nonlinear nature of the RTE naturally allows one to identify the existing long-time cross-correlations
between financial markets.

In Fig. 13, we depict the empirical dependence of the ERTE on the parameter q. Despite the fact that the RE itself is a
monotonically decreasing function of q (see, e.g., Ref. [26]) this is generally not the case for the ERTE (nor for the conditional
RE). Indeed, the ERTE represents a difference of two REs with identical q (see Eq. (37)), and as such it may be neither
monotonic nor decreasing. The functional dependence of the ERTE on q nevertheless serves as an important indicator of
how quickly the REs involved change with q.
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Fig. 9. Heat map of Rényi’s effective entropy between the 11 stock indices listed in Appendix A; q = 0.8. Alphabet size N = 3.
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Fig. 10. Net flow FY↔X of the effective Rényi transfer entropies between the 11 stock indices listed in Appendix A; q = 0.8. Alphabet size N = 3.

The results reproduced in Fig. 13 quantitatively confirm the expected asymmetry in the information flow between the
US and European markets. However, since the US contributes more than half of the world’s trading volume, it could be
anticipated that there is a stronger information flow from big US markets towards both European and APR markets. Yet,
despite the strong US trading record, our ERTE approach indicates that the situation is not so straightforward when the
entropy-based information flow is considered as a measure of market cross-correlation. Indeed, from Figs. 6, 8 and 10 we
could observe that there is a noticeably stronger information flow from the European and APR markets to the US markets
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Fig. 11. Effective Rényi transfer entropy T (R)
1.5;SP&500→DAX(m,m) for a 3-letter alphabet as a function of the block length m. DAX and SP&500 min prices are

employed. The correlation time is between 200–300 minutes.
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Fig. 12. Effective Rényi transfer entropy T (R)
0.8;SP&500→DAX(m,m) for a 3-letter alphabet as a function of the block length m. DAX and SP&500 min prices are

employed. The correlation time is between 200–300 minutes.

than vice versa. Fig. 13 extends the validity of this observation to short time scales of the order of minutes. In particular,
from Fig. 13 we clearly see that flow from the DAX to the S&P500 is stronger than the reverse flow. It is also worth noting
that this Europe–US flow is positive for all values of q, i.e., for all distribution sectors, with a small bias towards tail parts of
the underlying distribution.
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Fig. 13. The ERTE as a function of q. The alphabet size is set to N = 3. DAX and SP&500 min prices are employed. The red curve corresponds to
T (R,eff)
q;SP&500→DAX(m,m) while the green curve denotes T (R,eff)

q;DAX→SP&500(m,m). (For interpretation of the references to colour in this figure legend, the reader
is referred to the web version of this article.)

6. Concluding remarks

Transfer entropies have been repeatedly utilized in the quantification of statistical coherence between various time
series with prominent applications in financial markets. In contrast to previous works in which transfer entropies have
been exclusively considered only in the context of Shannon’s information theory, we have advanced here the notion of
Rényi’s (i.e. non-Shannonian) transfer entropy. The latter is defined in a close analogy with Shannon’s case, i.e., as the
information flow (in bits) from Y to X ignoring static correlations due to the common historical factors such as external
agents or forces. However, unlike Shannon’s transfer entropy, where the information flow between two (generally cross-
correlated) stochastic processes takes into account the whole underlying empirical price distribution, the RTE describes the
information flow only between certain pre-decided parts of two price distributions involved. The distribution sectors in
question can be chosen when Rényi’s parameter q is set in accordance with Campbell’s pricing theorem. Throughout this
paper we have demonstrated that the RTE thus defined hasmany specific properties that are desirable for the quantification
of an information flow between two interrelated stochastic systems. In particular, we have shown that the RTE can serve as
an efficient rating factor which quantifies a gain or loss in the risk that is inherent in the passage from Xtm to Xtm+1 when new
information, namely historical values of a time series Y until time tm, is taken into account. This gain/loss is parameterized by
a single parameter, the Rényi q parameter, which serves as a ‘‘zooming index’’ that zooms (or emphasizes) different sectors
of the underlying empirical PDF. In this way one can scan various sectors of the price distribution and analyze the associated
information flows. In particular, the fact that onemay separately scrutinize information fluxes between tails or central-peak
parts of asset price distributions simply by setting q < 1 or q > 1, respectively, can be employed, for example, by financial
institutions to quickly analyze the global (across-the-border) information flows and use them to redistribute their risk. For
instance, if an American investor observes that a certain market, say the S&P500, is going down and he/she knows that the
corresponding NASDAQ ERTE for q < 1 is low, then he/she does not need to relocate the portfolio containing related assets
rapidly, because the influence is in this case slow. Slow portfolio relocation is generally preferable, because fast relocations
are always burdened with excessive transaction costs. Let us stress that this type of conduct could not be deduced from
Shannon’s transfer entropy alone. In fact, the ETE suggests a fast (and thus expensive) portfolio relocation as a best strategy
(see Figs. 6, 8 and 10).

Let us stress that applications of transfer entropies presented quantitatively support the observation that more
information flows from the Asia–Pacific region towards the US and Europe than vice versa, and this holds for transfers
between both peak parts and wing parts of asset PDFs; i.e., the US and European markets are more prone to price shakes
in the Asia–Pacific sector than the other way around. Besides, information-wise the US market is more influenced by the
European one than in reverse. This interesting observation can be further substantiated by our DAX versus S&P500 analysis,
in which we have seen that the influx of information from Europe is to a large extent due to a tail-part transfer. The peak-
part transfer is less pronounced. So, although the US contributes more than half of the world’s trading volume, our results
indicate that this is not the case with information flow. In fact, the US markets seem to be prone to reflect a marginal (i.e.,
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risky) behavior in both European and APS markets. Such a fragility does not seem to be reciprocated. This point definitely
deserves further closer analysis.

Finally, one might be interested in how the RTE presented here compares with other correlation tests. The usual
correlation tests take into account either the lower-order correlations (e.g., time-lagged cross-correlation test and Arnhold
et al. interdependence test) or they try to address the causation issue between bivariate time series (e.g., Granger causality
test or Hacker and Hatemi-J causality test). Since the RTE allows one to compare only certain parts of the underlying
distributions it alsoworks implicitlywith high-order correlations, and for the same reason it cannot affirmatively answer the
causation issue. Inmany respects such correlation tests bring complementary informationwith respect to the RTE approach.
More detailed discussion concerning multivariate time series and related correlation tests will be presented elsewhere.
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Appendix A

In this appendix we provide a brief glossary of the indices used in the main text. The notation presented here conforms
with the notation typically listed in various on-line financial portals (e.g., Yahoo financial portal).

Indices Description Country
GSPC (S&P500) Standard and Poor 500 (500 stocks actively traded in the US). USA
GDAXI (DAX) Dax Indices (stock of 30 major German companies). Germany
ATX The Austrian Traded Index is the most important stock market index of the

Wiener Börse. The ATX is a price index and currently consists of 20 stocks.
Austria

SSMI The Swiss Market Index is a capitalization-weighted index of the 20 largest
and most liquid stocks. It represents about 85% of the free-float market
capitalization of the Swiss equity market.

Swiss

AORD All Ordinaries represents the 500 largest companies in the Australian
equities market. Index constituents are drawn from eligible companies listed
on the Australian Stock Exchange.

Australia

BSESN The BSE Sensex is a market capitalized index that tracks 30 stocks from the
Bombay Stock Exchange. It is the second largest exchange of India in terms of
volume and first in terms of shares listed.

India

HSI The Hang Seng Index denoted in Hong Kong stock market. It is used to record
and monitor daily changes of the largest companies of the Hong Kong stock
market. It consist of 45 Companies.

Hong
Kong

N225 Nikkei 225 is a stock market index for the Tokyo Stock Exchange. It is a
price-weighted average (the unit is yen), and the components are reviewed
once a year. Currently, the Nikkei is the most widely quoted average of
Japanese equities, similar to the Dow Jones Industrial Average.

Japan

DJA (DJ) The Dow Jones Industrial Average, also referred to as the Industrial Average,
the Dow Jones, the Dow 30, or simply as the Dow; it is one of several US
stock market indices. First published in 1887.

USA

NY iShares NYSE 100 Index is an exchange trading fund, which is a security that
tracks a basket of assets, but trades like a stock. NY tracks the SE US 100; this
equity index measures the performance of the largest 100 companies listed
on the New York Stock Exchange (NYSE).

USA

IXIC (NASDAQ) The Nasdaq Composite is a stock market index of all of the common stocks
and similar securities (e.g., ADRs, tracking stocks, limited partnership
interests) listed on the NASDAQ stock market, it has over 3000 components.

USA

Appendix B

In this appendix we specify explicit values of effective transfer entropies that are employed in Section 5. These are
calculated for alphabet with N = 3 (see Tables 1–3).
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