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The tricritical point, which separates first and second order phase transitions in three-dimensional
superconductors, is studied in the four-dimensional Coleman–Weinberg model, and the similarities as
well as the differences with respect to the three-dimensional result are exhibited. The position of the
tricritical point in the Coleman–Weinberg model is derived and found to be in agreement with the
Thomas–Fermi approximation in the three-dimensional Ginzburg–Landau theory. From this we deduce
a special role of the tricritical point for the Standard Model Higgs sector in the scope of the latest
experimental results, which suggests the unexpected relevance of tricritical behavior in the electroweak
interactions.
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1. Introduction

Ever since the formulation in 1964 of the electroweak spon-
taneous symmetry breaking mechanism [1–5] to explain how ele-
mentary particles acquire mass, superconductivity and high-energy
physics became intimately connected. For instance, the Ginzburg–
Landau (GL) theory [1], proposed in 1950 to provide a local macro-
scopic description of superconductivity, makes use of a quartic
potential of the same type that reappeared in the Higgs model.1 In
fact, the GL theory is the three-dimensional predecessor of what
is now called (3 + 1)-dimensional scalar quantum electrodynamics,
that was studied in detail by Coleman and Weinberg [6,7]. Before
the work of Ginzburg and Landau, the London theory explained
the existence of a finite penetration depth of magnetic fields into
a superconductor, the Meissner–Ochsenfeld effect [8]. GL extended
this theory by a local complex scalar order field φ(x), whose gra-
dient terms in the energy density produces a finite length scale
of fluctuations of the order field, the so-called coherence length ξ .
In their theory, the Meissner–Ochsenfeld effect was explained by a
local mass term of the vector potential, whose size is proportional
to |φ|2.

The GL theory possesses two length scales, the London pen-
etration depth λL , and the coherence length ξ . The competition
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between the two is ruled by the GL parameter κ ≡ λL/
√

2ξ . This
serves to distinguish two types of superconductors, type-I with
κ > 1/

√
2 and type-II with κ < 1/

√
2. The second type, possess

bundles of vortices which confine magnetic flux in tubes of radius
λL [9]. In this way, the GL theory has become what may be called
the Standard Model of superconductive phenomenology.

A similar Ginzburg–Landau-like scalar field theory with quartic
interaction is successful in unifying the weak and the electromag-
netic interactions, so that it has become the Standard Model of
particle physics, also called the Higgs Model.

An important new aspect that arises at the transition from the
three-dimensional GL theory to the (3+1)-dimensional scalar elec-
trodynamical Higgs model is that the field possess canonical com-
mutation rules. These call for the existence of a particle associated
with each field. After all, this is the logic which led to the dis-
covery of pions as the quantum of the forces of nuclear physics.
In particle physics, it induced an intensive search for a Higgs par-
ticle for many years. The recent discovery of a new signal in the
124–126 GeV mass region by the ATLAS and CMS Collaborations at
the Large Hadron Collider [10,11] is a hopeful candidate for such a
particle.

In this Letter we want to put this mass value into context with
a known fact in superconductivity, that the superconductive phase
transition may occur in two different orders: a second order if the
GL parameter κ lies deep in the type-II regime, and a first order in
the type-I regime. For a long time, this issue was a matter of theo-
retical controversy after it had been argued by Halperin, Lubensky,
and Ma (HLM) [12] that superconductors should really arise in a
first-order transition. The issue was finally settled by the calcula-
tion of a tricritical point near the dividing line between type-II to
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type-I superconductivity. The approximate value of κ where this
happens was predicted to be κtr ≈ 0.81/

√
2 [13–15], a value later

confirmed by Monte Carlo simulations to lie at κ = 0.76/
√

2±0.04
[16]. The important point in the theory was that the mass term of
the electromagnetic potential was reliable only as long as it was
big, which is the case in the type-I regime. If it is small, the mass
is destroyed by fluctuating vortex lines [17,18]. The precise posi-
tion of the tricritical point is unknown and should be determined
by Monte Carlo simulations as described in [19].

The calculation of HLM had an interesting parallel in (3 +
1)-dimensional scalar QED, where Coleman and Weinberg2 calcu-
lated that a massless field would acquire a mass from the fluctua-
tions of the electromagnetic field. In the language of superconduc-
tive, this implies that scalar QED has a first-order phase transition.3

After the calculation of the tricritical point in superconductive it
was proposed that a similar tricritical point should come up in
(3 + 1)-dimensional QED [20]. The Coleman–Weinberg result was
derived without considering the fluctuating vortex sheets which
are the (3 + 1)-dimensional analogs of the vortex lines in super-
conductors. These should modify the CW-result in the small e2

regime. One should therefore expect a tricritical value of κ also in
(3 + 1)-dimensional scalar QED, and the present Letter gives fur-
ther support for this expectation with experimental consequences.
Moreover, the tricritical point is predicted and interpreted in the
Standard Model as the absolute stability boundary of the Higgs
potential, by analogy with superconductivity. The latest theoreti-
cal predictions on the meta-stability and instability boundaries up
to the Planck scale of the Standard Model Higgs potential are dis-
cussed in the context of the recent results on the observed signal
at the LHC.

2. Quartic interaction and tricritical point

The Ginzburg–Landau theory of superconductivity is character-
ized by the following energy density:

H(ψ,∇ψ,A,∇A) = 1

2
(∇ + ieA)ψ∗(∇ − ieA)ψ

+ τ

2
|ψ |2 + g

4
|ψ |4 + 1

2
(∇ × A)2, (1)

with the order parameter ψ(x) = ρ(x)eiθ(x) , where ρ(x) and θ(x)
are real fields. The vector field is represented by A, e is the electric
charge of the Cooper pairs,4 and the real constants τ and g give
the strength of the quadratic and quartic terms, respectively. If the
mass parameter τ drops below zero, the ground state of the po-
tential, V (ψ) = 1

2 τ |ψ |2 + g
4 |ψ |4, is obtained for an infinite number

of degenerate states satisfying:

〈ψ〉2 = ρ2
0 = −τ

g
, (2)

and corresponds to a second-order phase transition. After the
spontaneous symmetry breaking, i.e. fixing the gauge to θ(x) = 0,
the Hamiltonian becomes,

H(ψ,∇ψ,A,∇A) = 1

2
(∇ρ)2 + V (ρ) + e2ρ2

2
A2

+ 1

2
(∇ × A)2. (3)

2 Their work was done almost simultaneously with [12] on the same floor at
Harvard University.

3 On a hiking excursion into the mountains near Geneva with Sid Coleman, H.K.
once asked him whether this was really what they proved, he said “yes, but we
foolishly did not put it that way”.

4 The Euler number is represented by e, and shall not be confused with the elec-
tric charge e.
Fig. 1. Potential for the order parameter ρ with cubic term. A new minimum devel-
ops around ρ1 causing a first-order transition for τ = τ1.

The mass term of the vector field, mA = eν , which appeared with
the spontaneous symmetry breaking, and the scalar field mass
term, can be associated with two characteristic lengths of a su-
perconductor, the London penetration length, λL = 1/mA = 1/eρ0,
and the coherence length, ξ = 1/

√−2τ , respectively.
The first-order phase transition can be achieved in the Ginz-

burg–Landau theory by considering quantum corrections, which in
the Thomas–Fermi approximation [21], neglecting fluctuations in
ρ , leads to an additional cubic term in the potential,

V (ρ) = 1

2
τ 2ρ2 + g

4
ρ4 − c

3
ρ3, c = e3

2π
. (4)

As shown in Fig. 1, the cubic term generates a second minimum
for τ < c2/4g , at the minimum,

ρ̃0 = c

2g

(
1 +

√
1 − 4τ g

c2

)
. (5)

At the specific point τ1 = 2c2/9g , the minimum lies at the same
level as the origin for ρ1 = 2c/3g , where the phase transition be-
comes of first-order (tricritical point). Therefore, in this point, the
coherence length of the ρ-field fluctuations becomes,

ξ1 = 1√
τ + 3gρ2

1 − 2cρ1

= 3

c

√
g

2
, (6)

which is the same as the fluctuations around ρ = 0. Finally, the
Ginzburg parameter at the tricritical point is,

κ = 1

2

√
g

e2
. (7)

3. Tricritical point in the Coleman–Weinberg model

The intriguing question now is how this result changes in
the four-dimensional version of the Ginzburg–Landau theory, the
Coleman–Weinberg model. The effective potential of the Coleman–
Weinberg model at one-loop level is [7],

V (φc) = 1

2
m2φ2

c + λ

4
φ4

c + 3e4

64π2
φ4

c

(
log

φ2
c

M2
− 25

6

)
, (8)

where the corrected scalar (spin-0) field is represented by φc(x),
with a mass term m2. Here λ gives the strength of the quartic
term, and M is the value of φc at which the renormalizations are
done. Note that we assumed λ to be of the same order of e4, and
therefore, in the one-loop approximation, the scalar loop diagrams
were neglected, since they are of the same order of magnitude
as the diagrams with two photon loops. For convenience, a new
variable μ can be defined as,

λ = 3e4

2

(
log

M2

2
+ 11

)
, (9)
4 64π μ 3
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which turns the effective potential into,

V (φc) = 1

2
m2φ2

c + 3e4

64π2
φ4

c

(
log

φ2
c

μ2
− 1

2

)
. (10)

As described in [7], for a positive m2, the effective potential has a
maximum and minimum, for m2 < 3e4μ2e−1/16π2. In particular,
the minimum of the potential lies at the same level as the origin
if m2 = 3e4μ2e−1/2/32π2, for 〈φc〉2 = μ2e−1/2. The mass of the
scalar field in the tricritical point is, therefore,

m2(φc) = ∂2 V

∂φ2
c

∣∣∣∣
φc=〈φc〉

= m2 + e4〈φc〉2

16π2

(
6 + 9 log

〈φc〉2

μ2

)

= 3e4μ2

16π2
e−1/2 = λ

α
〈φc〉2, (11)

where α = (log M2

μ2 + 11
3 ) gives the size of the renormalization

scale. Consequently, at the tricritical point, the Ginzburg param-
eter becomes,

κ = 1√
2

1/e〈φc〉
1/m(φ)

= 1√
2α

√
λ

e2
. (12)

The result has the same form as the previously obtained 3-dim-
ensional result, and becomes the same with an appropriate choice
of the renormalization scale. Even though these results were com-
puted using only the stability boundary of the corrected quartic
potential, without making any use of the dual disorder field the-
ory [21,13], the position of the tricritical point does not change
from 3 to 3 + 1 dimensions, thus justifying the applicability of the
Thomas–Fermi approximation in the tricritical regime.

For the Standard Model Higgs potential, the relation between
the boundary of absolute stability and the tricritical point will be
discussed in the next section.

4. Higgs boson mass and vacuum stability

On 4th July 2012, the CMS and ATLAS experiments announced
the discovery of a new boson, compatible with the SM Higgs bo-
son, with global statistical significances of 5.8 sigma (CMS) and
5.9 sigma (ATLAS). The observed signal currently lies at 125.3 ±
0.4(stat.)±0.5(sys.) GeV (CMS) and 126±0.4(stat.)±0.4(sys.) GeV
(ATLAS), and no significant deviations from the predicted SM Higgs
boson properties were observed to the present date.

Assuming the Standard Model to be valid up to the Planck
scale, the Higgs potential develops a new local minimum for a
positive value of the running quartic coupling with the renormal-
ization scale. However, for a negative quartic coupling, the poten-
tial becomes unbounded from below and, therefore, unstable. Thus
the absolute stability of the electroweak vacuum has its boundary
where the quartic coupling flips sign. This feature of the SM Higgs
potential corresponds precisely to the previously discussed tricriti-
cal point in a quartic interaction, which separates first and second
order phase transitions in superconductors. The phenomenology
associated with the two physical situations is, of course, quite
different. While in superconductivity, the spontaneous symmetry
breaking appears as a result of the radiative corrections overcom-
ing the effect of a positive mass term in the Coleman–Weinberg
model, the SM Higgs potential is characterized by the existence of
two non-zero vacua. Nevertheless, it is clear that the vanishing of
the quartic coupling and the degeneracy of the vacuum states cor-
respond to a tricritical behavior in the two scenarios.

The determination of the SM vacuum stability has been stud-
ied in detail in the past two decades [22]. The latest and most
precise next-to-next-to-leading-order (NNLO) prediction of the ab-
solute stability boundary was established by Degrassi et al. [23],
using two-loop renormalization-group equations, one-loop thresh-
old corrections at the electroweak scale (possibly improved with
two-loop terms in the case of pure QCD corrections), and one-
loop improved effective potential. Assuming a top quark mass of
mt = 173.1 ± 0.7 GeV [24], and the strong coupling constant at
αs(M Z ) = 0.1184 ± 0.0007 [25], the absolute stability boundary up
to the Planck scale was predicted for a Higgs boson mass,

mH [GeV] = 129.4

± 1.4

(
mt[GeV] − 173.1

0.7

)

± 0.5

(
αs(M Z ) − 0.1184

0.0007

)

± 1.0 (theoretical). (13)

By combining in quadrature the theoretical and experimental un-
certainties, the result becomes mH = 129.4 ± 1.8 GeV, distanced
by roughly 2 sigma from the LHC results. Therefore, one cannot
state that the Higgs boson lies precisely on the tricritical point of
the electroweak interactions, nor exclude that possibility. The al-
lowed regions, up to 3 sigma, on the top quark and Higgs boson
masses measurements, seem to indicate a significant preference
for meta-stability of the SM potential when compared with the
latest experimental results from the Tevatron and LHC. This tells
us there is a non-zero probability of quantum tunneling into the
global minimum, lying deeper than the electroweak vacuum. As
the new vacuum appears at a very high-energy scale, the proba-
bility of tunneling is very small, with a mean lifetime larger than
the age of the Universe. Nonetheless, the absolute stability bound-
ary strongly depends on the Higgs boson and top quark masses:
slight variations may have dramatic implications. The possible im-
provement of the precision of these observables at the LHC and in
future linear colliders, and further progress on the theoretical un-
derstanding of the vacuum stability, may provide further insights
into the nature of the Higgs boson mass.

All of this assumes, of course, that the Standard Model is valid
all the way up to the Planck scale. So far, the observed data at
the LHC has been found to be in agreement with the Standard
Model predictions. However, there is no obstacle that would pre-
vent the existence of new physics contributing at higher energy
scales, beyond the current reach of the LHC, and this could well
have an impact on the stability of the Higgs potential. These new
physics effects, above the electroweak symmetry breaking scale,
can be parameterized in a model-independent way by an effective
Lagrangian [26],

L = LSM +
∑ Cx

Λ2
O x + · · · , (14)

where O x are dimension-six operators invariant under the SM
gauge symmetry, Cx are the dimensionless operator coefficients,
and Λ is the new physics scale. The effect of such operators has
been studied in the past [27] and shown to have a significant in-
fluence on the stability and triviality of the Higgs potential. For
instance, new physics contributions at an energy scale of a few
TeV could be enough to ensure the stability of the electroweak
vacuum. Perhaps the quest for anomalous contributions to the top
quark and Higgs boson SM couplings at the LHC may bring us in-
teresting surprises in the years ahead [28].

5. Summary

In this Letter, we argue that the tricritical point, obtained for
the three-dimensional Ginzburg–Landau theory with the help of
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a duality transformation to a disorder version, is not expected
to significantly change when analyzed in the context of the
(3 + 1)-dimensional Coleman–Weinberg model. This leads us to
conclude that the absolute stability boundary of the Higgs poten-
tial is a tricritical point of the electroweak interaction, by analogy
with superconductivity. The recently obtained result on the NNLO
prediction of the absolute stability boundary, up to the Planck
scale, at a Higgs boson mass of mH ≈ 129.4 ± 1.8 GeV, compat-
ible with the observed signals at LHC in the 124–126 GeV mass
region, suggests that the electroweak interactions make use of the
tricritical behavior as its natural working point. To validate this
statement, we must wait for a greater precision of the experimen-
tal measurements and theoretical predictions. Finally, and more
strategically, this interpretation may enhance the bridge between
the physics of elementary particles and superconductivity, that has
led to many important insights since Nambu’s pioneering work on
the chiral phase transition.
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