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Path integral and stochastic differential equations
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The statistics of rare events, the so-called black-swan events, is governed by non-Gaussian distributions with
heavy power-like tails. We calculate the Green functions of the associated Fokker-Planck equations and solve the
related stochastic differential equations. We also discuss the subject in the framework of path integration.
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I. INTRODUCTION

Gaussian random walks prove to be a natural and rather
universal starting point for many stochastic processes. In fact,
the famous central-limit theorem shows that many independent
random movements of finite variance σ 2 = 〈x2〉 always pile up
to display a Gaussian distribution [1]. In particular, Gaussian
random walks constitute the basis of the most important tool in
the theory of financial markets, the Black-Scholes option price
theory [2], by which a portfolio of assets hopefully remains
growing steadily through hedging [3].

However, since the last stock market crash and the still
ongoing financial crisis, it has become clear that distributions
which realistically describe the behavior of financial markets
belong to a more general universality class, the so-called Lévy
stable distribution [4–6]. They result from a sum of random
movements of infinite variance [7] and account for the fact
that rare events, the so-called black-swan events [8], which
initiate crashes, are much more frequent than in Gaussian
distributions. These are events in the so-called Lévy tails
∝1/|x|1+λ of the distributions, whose description is based on
a generalized Hamiltonian [9]:

H (p) = const (p2)λ/2. (1)

Such tail events are present in many physical situations, e.g., in
velocity distributions of many-body systems with long-range
forces [10], in the self-similar distribution of matter in the
universe [11–13], and in the distributions of wind gusts [14]
and earthquakes [15], with often catastrophic consequences.

Distributions with Lévy tails are a consequence of rather
general maximal entropy assumptions [16]. In the limit λ → 2,
the Lévy distributions reduce to Gaussian distributions.

The simplest Lévy-type random walk is described by the
stochastic differential equation of the Langevin type,

d

ds
x(s) ≡ ẋ(s) = η(s), (2)

where η(s) is a noise variable as a function of a pseudotime
s with zero expectation value and a probability distribution
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characterized by a parameter λ [17]:

P [η]≡e− ∫
dsH̃ (η) =

∫
Dp exp

{ ∫
ds [ipη − (p2)λ/2]

}
. (3)

Using this, we may solve the stochastic differential equa-
tion (2) in which the noise η(s) has nonzero correlation
functions for even n = 2,4,6, . . .:

〈η(s1) · · · η(sn)〉 ≡
∫

Dη η(s1) · · · η(sn)P [η]. (4)

For λ = 2, the distribution is Gaussian, and η(s) is a standard
white noise variable. If we solve (2) in D dimensions with an
initial condition x(0) = 0, the variable x(s) has a distribution

PG(x,s) = (4πs)−D/2e−x2/4s . (5)

This distribution is the Green function of the Fokker-Planck
equation,

(∂s + p̂2)PG(x,s) = δ(s)δ(D)(x), (6)

where p̂ ≡ i∂x ≡ i∇. For λ �= 2, the distribution is non-
Gaussian, and it solves the fractional Fokker-Planck equation,

[∂s + (p̂2)λ/2]P (x,s) = δ(s)δ(D)(x). (7)

A solution of this equation that evolves from the δ function is

P (x,s) = e−s(p̂2)λ/2
δ(D)(x), (8)

and for s = 1 it coincides with the noise probability,

P (x,1)|x=η = P (η) =
∫

dDp

(2π )D
eip·η−(p2)λ/2

. (9)

Applications of the fractional Fokker-Planck equation are
numerous in non-Brownian diffusion processes. These are
observed in chaotic systems and in the fluid dynamics of
rheology and biology. See [18,19] for an overview. The
mathematics of Eq. (7) with a variable diffusion coefficient
is in [20].

The fractional Fokker-Planck equation (7) can be general-
ized further to the double-fractional Fokker-Planck equation,[

p̂
1−γ

4 + Dλ(p̂2)λ/2
]
P (x,t) = δ(t)δ(D)(x), (10)
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where p̂4 ≡ ∂t , p̂ ≡ i∂x ≡ i∇, and a parameter has been
allowed for that is the analog of the diffusion constant D

in the ordinary diffusion process [21].
We should explain the physical origin of the fractional

powers in the space and time derivatives of the above equation.
Such powers occur naturally in many-particle systems if the
interaction strength or the range becomes very large. As long
as the interaction strength is small and the range is short, such
systems are described by a second-quantized field theory with
a free-particle action,

A0 =
∫

dtd3xψ†(x,t)[i∂t +h̄2∇2/2m−V (x)]ψ(x,t), (11)

and an interaction of the type

Aint = g

4!

∫
dtd3x(ψ†ψ)2 . (12)

The partition function can be calculated from the functional
integral

Z =
∮

DψDψ†ei(A0+Aint)/h̄. (13)

A perturbation expansion leads to an effective action in the
form of a power series of g
†
, where 
 = 〈ψ〉 are the
expectation values of the field. This series is divergent and must
be resummed. For large interaction strength g, this produces
anomalous power behaviors in the field strength as well as
in the momenta [22,23]. The free-field part of the effective
action leads to a field equation of the fractional Fokker-Planck
or Schrödinger type, in which momentum and energy appear
with powers different from λ = 2 and γ = 0, respectively.

In addition, equations of the type of (10) are known to
govern various different phenomena. In chaotic systems, for
example, they describe anomalous diffusion processes with
memory (time nonlocality) [24,25]. In fact, the fractional time
derivatives also arise as the infinitesimal generators of coarse
grained time evolutions [26], or they can be derived from a
random walk model when the mean waiting time of the walker
diverges [27].

It is the purpose of this paper to calculate the Green
functions of general fractional Fokker-Planck equation (10)
and to specify the path integrals solved by them [28,29].

II. DOUBLE-FRACTIONAL FOKKER-PLANCK EQUATION

A convenient definition of the fractional derivatives uses the
same formula as in the dimensional continuation of Feynman
diagrams [30,31],

(p̂2)λ/2 = �[−λ/2]−1
∫

dσσ−λ/2−1eσ p̂2
. (14)

The solution of (10) can be written formally as

P (x,t) = [(p̂4 + ε)1−γ + Dλ(p̂2)λ/2]−1δ(t)δ(D)(x), (15)

where infinitesimal ε > 0 ensures the forward-in-time nature
of the Green function, and its explicit appearance will be
suppressed from now on. Using the representation δ(t) =∫ +∞
−∞

dE
2π

e−iEt , we arrive at

P (x,t) =
∫

dE

2π

e−iEt

(−iE)1−γ + Dλ(p̂2)λ/2
δ(D)(x). (16)
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FIG. 1. (Color online) Function Uγ (t) for Ĥ = 1 and various
values of γ . Dotted blue curve: γ = 0, standard exponential function;
dashed red curve: γ = 0.1; solid yellow curve: γ = 0.5.

Now we expand the fraction into a geometric series and
integrate term by term using the formula [32]∫ +∞

−∞

dE

2π

e−iEt

(−iE + ε)(1−γ )(n+1)
= θ (t)tn(1−γ )−γ

�[(1 − γ )(n + 1)]
, (17)

where θ (t) is the Heaviside step function. The result can be
cast as

P (x,t) = θ (t)t−γ E1−γ,1−γ [−t1−γ Dλ(p̂2)λ/2]δ(D)(x), (18)

where Eα,β (z) = ∑∞
n=0

zn

�(αn+β) is the Mittag-Leffler function
[33,34]. This can be interpreted by writing

P (x,t) = 〈x| Ûγ (t) |0〉 , (19)

with the γ -deformed evolution Ûγ defined by

Ûγ (t) = θ (t)t−γ E1−γ,1−γ (−t1−γ Ĥ ), (20)

with Ĥ ≡ Dλ(p̂2)λ/2 [35] (see Fig. 1). The occurrence of
the Mittag-Leffler function in solutions of the time-fractional
Fokker-Planck equation has been noted previously, for exam-
ple, in the review article by Srokowski [20].

For γ = 0, Eq. (10) reduces to a single (space) fractional
Fokker-Planck equation,

[p̂4 + Dλ(p̂2)λ/2]P (x,t) = δ(D)(x)δ(t), (21)

the Mittag-Leffler function reduces to E1,1(z) = exp(z), and
the evolution operator recovers its standard form Û0(t) =
θ (t) exp(−tĤ ). The solution, which we shall denote by
PX(x,t) for a more specific reference, is the multivariate Lévy
stable distribution [36]:

PX(x,t) =
∫

dDp

(2π )D
e−tDλ(p2)λ/2

e−ip·x. (22)

For λ = 2, it reduces to the standard quantum mechanical
Gaussian expression (5). For λ = 1, the result is

PX(x,t) = [�(D/2 + 1/2)/π (D+1)/2]Dλt

[(Dλt)2 + |x|2]D/2+1/2
, (23)

which is the Cauchy-Lorentz distribution function. In Fig. 2,
we plot PX in D = 1 dimension for λ = 1,1.5,2.

In Appendix B we provide various useful representations
of PX(x,t). It is worth mentioning that this probability can be
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FIG. 2. (Color online) Dotted blue curve: λ = 2, standard Gaus-
sian distribution; dashed red curve: λ = 1.5; solid yellow curve: λ =
1, Cauchy-Lorenz distribution. The length scale is �s = 2(Dλs)1/λ.

written as a superposition of Gaussian distributions PG(σ,x) =
(4πσ )−D/2e−x2/4σ to be specified in Eq. (B1).

A. Smeared-time representation and relation between physical
time t and pseudotime s

If we use in (16) Schwinger’s formula 1/A = ∫ ∞
0 dse−sA,

we can express P (x,t) as an integral:

P (x,t) =
∫ ∞

0
dsPX(x,s)PT (t,s), (24)

where PX solves the space-fractional diffusion equation (21),
with t ≡ s, and PT solves the time-fractional equation[

∂s + p̂
1−γ

4

]
PT (t,s) = δ(t)δ(s), (25)

which encodes the relation between the pseudotime s and
the physical time t . The factorized ansatz (24) has been used
previously in [37] to solve the time-fractional Fokker-Planck
equation.

For γ = 0, PT (t,s) = δ(t − s), and (24) reduces to
P (x,t) = PX(x,t).

For γ > 0, we obtain an asymmetric Lévy stable distribu-
tion [38]

PT (t,s) =
∫ ∞

−∞

dE

2π
e−s(−iE)1−γ

e−iEt . (26)

An important feature is that PT (t,s) vanishes for t < 0. This
can be seen by placing the branch cut of a multivalued function
z1−γ along the negative real axis and calculating (26) as a
complex integral with a contour that follows the real axis and
closes in the upper half plane. See Fig. 3(a), where PT is plotted
as a function of t for the case γ = 0.03 and various values
of s.

It is illustrative to view formula (24) as a smearing of the
distribution PX(x,s) around the time position t , defined by
the probability density function PT (t,s). For this purpose we
plot in Fig. 3(b) PT (t,s) as a function of s, with parameter
t describing the position of the peak in the probability
distribution.

The two plots in Fig. 3 are related through the formula

PT (t,s) = (C/t)PT (C,C1−γ tγ−1s), (27)

PT (t, 0.5)

PT (t, 1)

PT (t, 1.5)

t

(a)

PT (0.5, s)
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PT (1.5, s)

s

(b)
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FIG. 3. (Color online) (a) PT (t,s) as a distribution of t with
increasing values of the pseudotime s = 0.5,1,1.5. (b) PT (t,s) as a
distribution of s with increasing values of the real time t = 0.5,1,1.5.
In both cases γ = 0.03.

which can be deduced from (26) by a simple change of the
integration variable E → (C/t)E. Here C is an arbitrary
constant. The function PT (t,s) as a function of two variables
is shown in Fig. 4.

When γ = 0, PT (t,s) = δ(t − s) is concentrated at point t ;
that is, there is no smearing. For increasing γ the peak around
t broadens, which can be accounted for by derivatives of the δ

function. The action of PT on a test function f (s) is

∫ ∞

0
dsPT (t,s)f (s) =

∞∑
n=0

f (n)(t)

n!

∫ ∞

0
dsPT (t,s)(s − t)n. (28)

We represent f (n)(t) = (−1)n
∫

dτδ(n)(τ − t)f (τ ) and calcu-
late∫ ∞

0
dsPT (t,s)sk =

∫
dE

2π

e−iEt k!

(−iE)(1−γ )(k+1)
= k!θ (t)t (1−γ )k−γ

�[(1−γ )(k+1)]
(29)

to find that

PT (t,s) =
∞∑

n=0

tn

n!
cn(t)δ(n)(s − t), (30)

FIG. 4. (Color online) PT (t,s) as a function of both t and s. Here
γ = 0.1.
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FIG. 5. (Color online) In all cases λ = 2. Dotted blue curve: γ =
0, standard Gaussian distribution; dashed red curve: γ = 0.03; solid
yellow curve: γ = 0.1.

where

cn(t) =
n∑

k=0

(
n

k

)
(−1)k

k!θ (t)t−γ (k+1)

�[(1 − γ )(k + 1)]
. (31)

In view of these relations, Eq, (24) translates into

P (x,t) =
∞∑

n=0

(−t)n

n!
cn(t)∂n

t PX(x,t). (32)

One can easily verify that for γ = 0, cn = δn0, and P (x,t) =
PX(x,t).

B. Fox H function representation of Green function

A solution of the double-fractional equation (10) has been
obtained previously in terms of the Fox H function [39]. We
derive the same result starting from formula (24), where we
consider the representation [Eq. (B4)] of PX(x,s). Integration
over the pseudotime s can be performed, followed by the E

integration, which yields

P (x,t) = t−γ

πD/2|x|D H
2,1
2,3

([ |x|
�t

]λ ∣∣∣∣
(1,1);(1−γ,1−γ )

(1,1),(D/2,λ/2);(1,λ/2)

)
. (33)

Here �t ≡ 2(Dλt
1−γ )1/λ is a t-dependent length scale, and H

2,1
2,3

is the Fox H function [40,41], defined by the contour integral

P (x,t)|x|D
t−γ π−D/2

=
∫
C

dz

2πi

�(1 + z)�
(

D
2 + λ

2 z
)
�(−z)

�
( − λ

2 z
)
�(1−γ + (1−γ )z)

[ |x|λ
�λ

t

]−z

,

(34)

where the contour C runs from −i∞ to +i∞. In Fig. 5 we
show how values of γ > 0 modify the Gaussian distribution
(for which λ = 2, γ = 0).

The large-|x| asymptotics of (33) is governed by the pole
of the integrand at z = 1:

tγ |x|DP (x,t)
|x|→∞≈ �λ

t

|x|λ
−�

(
D+λ

2

)
πD/2�(2 − 2γ )�

( − λ
2

) . (35)

Analysis of the small-|x| behavior is more subtle due to a
richer pole structure of the integrand in (34) (see [42]). If we

0.1 0.2 0.3 0.4 0.5

1.0

0.5

0.5

1.0

1.5

2.0

tγ D
t P (x, t)

|x|/ t

FIG. 6. (Color online) Dotted blue curve: γ = 0,λ = 1, Cauchy-
Lorentz distribution; dashed red curve: γ = 0.1,λ = 1; solid yellow
curve: γ = −0.1,λ = 1, assumes negative values. Here D = 3.

assume only simple poles, we can extract the leading behavior

tγ P (x,t)
|x|→0≈

{
A(t) + B(t)|x|2λ−D, 2λ − D < 2

A(t) + O[|x|2](t), 2λ − D > 2
, (36)

with

A(t)= π1−D/2�−D
t 2/λ

sin
(
π D

λ

)
�

(
D
2

)
�

[ (1−γ )(λ−D)
λ

] , (37)

B(t)=− π−D/2�
(

D
2 − λ

)
�(λ)�(γ − 1)�2λ

t

. (38)

In particular, for 2λ < D the value of P (x,t) tends to either
+∞ or −∞ as |x| → 0. See Fig. 6.

III. PATH-INTEGRAL FORMULATION

We note that the probability (15) may be calculated from the
doubly fractional canonical path integral over fluctuating orbits
t(s), x(s), p4(s), p(s) viewed as functions of some pseudotime
s [43]:

{xbtbsb|xatssa} =
∫

DxDtDpDp4e
A, (39)

with A being the Euclidean action of the paths t(s),x(s):

A =
∫

ds[i(px′ − ip4t
′) − H(p,p4)]. (40)

Here t ′(s) ≡ dt(s)/ds, x′(s) ≡ dx(s)/ds, and H(p,p4) =
p

1−γ

4 + Dλ(p̂2)λ/2. At each s, the integrals over the compo-
nents of p(s) run from −∞ to ∞, whereas those over p4(s)
run from −i∞ to i∞. To obtain the distribution P (x,t), we
finally form the integral

P (x,t) =
∫ ∞

0
ds{x t s|0 0 0}. (41)

This is analogous to prescription (24), which links solutions
of the space- and time-fractional diffusion equations (21)
and (25).

If γ = 0, the path integral over p4(s) yields the functional
δ[t ′(s) − 1], which ensures that dt and ds increments are equal.
This brings (39) to the canonical path integral

(xbtb|xata) =
∫

DxDpeA
′
, (42)
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with

A′ =
∫

dτ [ip · ẋ − Dλ(p̂2)λ/2]. (43)

Now P (x,t) = (xt |0 0) satisfies the ordinary fractional Fokker-
Planck equation

[p̂4 + Dλ(p̂2)λ/2]P (x,t) = δ(t)δ(D)(x), (44)

which has been discussed at length in recent literature [44].

IV. LANGEVIN EQUATIONS AND
COMPUTER SIMULATIONS

In the past, many nontrivial Schrödinger equations (for
instance, that of the 1/r potential) have been solved with path-
integral methods by reformulating them on the pseudotime
axis s, which is related to the time t via a space-dependent dif-
ferential equation t ′(s) = f (x(t)). This method was invented
by Duru and Kleinert [45] to solve the path integral of the
hydrogen atom and has recently been applied successfully
to various Fokker-Planck equations [46,47]. The stochastic
differential equation (47), which connects pseudotime s and
the physical time t , may be seen as a stochastic version of the
Duru-Kleinert transformation that promises to be a useful tool
to study non-Markovian systems.

Certainly, the solutions of Eq. (44) can also be obtained
from the stochastic differential equation

ẋ = η, (45)

whose noise is distributed with a fractional probability

P [η] =
∫
DDpe

∫
dt[ip·η−Dλ(p2)λ/2]. (46)

Simulating this stochastic differential equation on a computer,
we confirm the analytic form (22) of PX(x,s) = P (x,t) for
γ = 0. See Fig. 7(a).

Analogously, the solution of Eq. (25) can also be obtained
from the stochastic differential equation

t ′(s) = ηT (s), (47)

with noise distribution

P [ηT ] =
∫
Dp4e

∫
ds[p4ηT −(p4)1−γ ], (48)

and compared with the result (26) for PT (t,s). See Fig. 7(b).
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1.00

PT (t, 1)

t
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FIG. 7. (Color online) Comparison of analytic (solid red curve)
and numerical (blue circles) results for (a) the distribution function
PX(x,s = 1) in D = 1 dimension and (b) PT (t,s = 1) for γ = 0.3.
In each case an average has been taken over 5000 representative
trajectories of stochastic differential equations (45) and (47), with
10 time steps �s = 0.1.

4 2 0 2 4
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0.4 P (x, 0.2)

P (x, 1)

x

FIG. 8. (Color online) Comparison of computer simulation and
the renormalized exact solution P (x,t) for t = 0.2,1.

The solution of the double-fractional Fokker-Planck equa-
tion (10) can be obtained, in view of relation (41) [or (24)],
by simulating (45) for t ≡ s and (47) and letting the final
value of the pseudotime s be random. This yields a probability
distribution P (x,t). In Fig. 8 we compare the results of a
computer simulation with the analytic form (34) by plotting
P (x,t) as a function of x for various values of time t . Since
the distribution P (x,t) itself is not normalized, but rather∫

dDxP (x,t) =
∫ ∞

0
dsPT (t,s) = θ (t)t−γ

�(1 − γ )
, (49)

we define a renormalized version P (x,t) = P (x,t)/∫
dDxP (x,t).

V. SUMMARY

Summarizing, we have seen that a many-body system
with strong couplings between the constituents satisfies a
more general form of the Schrödinger equation, in which
the momentum and the energy appear with a power different
from λ = 2 and γ = 0, respectively. We have calculated the
associated Green functions and discussed their properties and
their representations. We have pointed out that these Green
functions can be written as path integrals over fluctuating time
and space orbits that are functions of some pseudotime s. This
is a Markovian object but is non-Markovian in the physical
time t . The non-Markovian character is caused by the fact that
function t(s) follows a stochastic differential equation of the
Langevin type.

The particle distributions can also be obtained by solving a
Langevin type of equation in which the noise has correlation
functions whose probability distribution is specified by an
equation like (46).

The Green functions whose theory was presented here will
play an important role in the development of an interacting
theory of fields whose world lines contain non-Gaussian
random walks displaying extremely large deviations from their
averages.
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APPENDIX A

Fractional differential operators that enter the general frac-
tional Fokker-Planck equation (7) are defined through formula
(14). Using e−σ p̂2

δ(x) = (4πσ )−D/2e−x2/(4σ ) and e−σ p̂4δ(t) =
δ(t − σ ), we derive the following relations:

|x|λ = πD/2�
(

λ+D
2

)
2−λ−D�

( − λ
2

) (p̂2)−(λ+D)/2δ(D)(x), (A1)

θ (t)tα = �(α + 1)(p̂4)−α−1δ(t), (A2)

which we can substitute into (33) and (34) in order to verify
that they satisfy Eq. (10). We first obtain

P (x,t) =
∫
C

dz

2πi
�(1 + z)�(−z)Dz

λ(p̂2)λz/2

× (p̂4)(γ−1)(z+1)δ(D)(x)δ(t), (A3)

which can be pole-expanded to yield

∞∑
n=0

(−Dλ)n(p̂2)λn/2(p̂4)(γ−1)(n+1)δ(D)(x)δ(t). (A4)

Summing up this geometric series, we arrive at

P (x,t) = [
p̂

1−γ

4 + Dλ(p̂2)λ/2
]−1

δ(D)(x)δ(t). (A5)

APPENDIX B

We derive several expressions for the solution PX(x,s) of
(21), starting from representation (22).

On expanding the exponential and representing the powers
as (p2)λn/2 = �[−λn/2]−1

∫ ∞
0

dσ
σ

σ−λn/2e−σp2
, the momen-

tum integration yields the superposition of Gaussian expres-
sion:

PX(x,s) =
∫ ∞

0

dσ

σ
fλ(σ )PG

(
x,D

2/λ

λ s2/λσ
)
, (B1)

with weight

fλ(σ ) =
∞∑

n=0

(−1)nσ−λn/2

n!�(−λn/2)
. (B2)

To prove this, we perform the σ integration term by term,
using the formula

∫ ∞
0

dσ
σ

σ−νe−a/σ = �(ν)/aν , and obtain the
large-|x| expansion,

PX(x,s) = 1

πD/2|x|D
∞∑

n=0

(−1)n�
(

λn+D
2

)
n!�(−λn/2)

[
�λ

s

|x|λ
]n

, (B3)

where �s = 2(Dλs)1/λ. The series can also be viewed as a pole
expansion of the contour integral, and hence

PX(x,s) = 1

πD/2|x|D
∫
C

dz

2πi

�
(

λz+D
2

)
�(−z)

�(−λz/2)

[ |x|λ
�λ

s

]−z

,

(B4)

with the contour C running from −i∞ to +i∞. From this,
expansion (B3) arises by enclosing the right complex half plane
and calculating the residua of the integrand, using Res[�(az +
b), − (n + b)/a] = (−1)n/(n!a). A small-|x| expansion of
(B4) is obtained by closing the integration contour in the left
half plane, leading to

PX(x,s) =
∞∑

n=0

(−1)n2/λ

πD/2�D
s

�
(

2n+D
λ

)
n!�

(
D
2 + n

)[ |x|2
�2

s

]n

. (B5)

The series (B3) and (B5) are convergent or asymptotic or even
trivially zero, depending on the parameter λ.
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