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Abstract Quantum mechanics has been one of the most successful theo-
ries in physics, yet its foundation has remained a subject of discussion ever
since it was incepted in the 1920s. While the Copenhagen interpretation rep-
resents the main-stream view, recent years have witnessed revived interest
in the alternative deterministic, or pilot-wave, interpretation, pioneered by
Madelung, de Broglie, and Bohm. It has been argued that these two interpre-
tations are basically equivalent. In this article we show that this is not true.
We exhibit the approximate nature of particle trajectories in Bohm’s quan-
tum mechanics. They follow the streamlines of a superfluid in Madelung’s
reformulation of the Schrödinger wave function, around which the proper par-
ticle trajectories perform their quantum mechanical fluctuations that ensure
Heisenberg’s uncertainty relation between position and momentum. These
fluctuations explain the apparent discrepancy in the double-slit interference
intensities between Bohmian mechanics and observations. They are also the
reason for the non-existence of a possible radiation that would be emitted by
an electron if its physical trajectory were deflected by the Bohmian quantum
potential.
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1 Introduction

In modern work on quantum mechanics (QM), one often reads, as justifica-
tion of the effort, remark made by Richard Feynman in a 1964 lecture [1] that
he thinks “it is safe to say that no one understands quantum mechanics”.
Similarly, Murray Gell-Mann in his lecture at the 1976 Nobel Conference
regrets that “Niels Bohr brainwashed the whole generation of theorists into
thinking that the job (of finding an adequate presentation of quantum me-
chanics) was done 50 years ago” [2]. Thus there is no wonder that even now
reputable scientists are trying to get our deterministic thinking in line with
quantum theory [3].

A theory of this type has been proposed a long time ago. It is based
on an observation made as early as 1926, during the inceptive days of QM,
by Madelung [4,5]. He demonstrated that the Schrödinger equation can
be transcribed into a hydrodynamic form, in which the Schrödinger field
becomes the probability amplitude of the fluid. This was later referred to
as the “Madelung quantum hydrodynamic” interpretation. Around the same
time, de Broglie presented a deterministic interpretation of QM at the 1927
Solvay Conference, which was further developed by Bohm in 1952 to its
present form [6].

It has been long believed by the experts on foundations of quantum me-
chanics that Bohmian mechanics and standard quantum mechanics are ob-
servationally equivalent [6–8,10,9]. They are merely different ontological in-
terpretations on what exactly happens to a quantum particle, say electron,
in a physical process. There are two salient features in Bohmian mechanics.
One, quantum processes are inherently nonlocal, manifested by the quantum
potential that permeates the entire space-time. Two, guided by this quan-
tum potential, a test particle will execute deterministic motion (which Bohm
called causal). That is, the particle’s position and momentum are simultane-
ously specified throughout space-time. This is in drastic contrast to the basic
notion of Heisenberg’s uncertainty principle. It therefore appears meaningful
to investigate the equivalence of these two formulations of QM in some de-
tails.
In this note we want to demonstrate that Bohmian way of doing QM is not
equivalent, but a certain semiclassical approximation to proper Schrödinger
QM. To do this, we invoke the second quantization reformulation of the
Schrödinger equation as an N-body system. Following Madelung’s original
philosophy, we identify this N-body system as a superfluid and characterize
its physical properties by its particle current density Jk and its superfluid
velocity Vs

k. This superfluid embodies de Broglie’s pilot wave that guides
the motion of a single particle. Under this setting, single-particle movements
will be found from fluctuating paths around the superfluid streamlines in
a semi-classical approximation. The fluctuations explain the discrepancy in
the double-slit interference intensities between that derived from Bohmian
mechanics and quantum mechanics. They are also the reason for the non-
existence of a radiation that would have to be emitted by an electron if its
physical trajectory is deflected by the Bohmian quantum potential.
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2 Pilot Wave

In order to elucidate our point, it is useful to invoke the second-quantized re-
formulation of Schrödinger QM [12] as a functional integral over a Schrödinger
field ψ(x, t) via the quantum-mechanical partition function [13]

Z =

∫
DψDψ†Dλei[A+

∫
dtλ(t)(N−N0)]/h̄, (1)

in which

A =

∫
dtd3xψ†(ih̄∂t −H)ψ (2)

is the action and

H =
p̂2

2m
+ V̂ (x) (3)

the Hamiltonian of the system. The integral over the Lagrangian multiplyer
λ guarantees that the particle number

N =

∫
d3xψ†ψ ≡

∫
d3xρ(x, t) (4)

is fixed to render the specific value N0.
In the operator language of QM, the second-quantized theory is formu-

lated in terms of field operators ψ̂(x, t) which are defined from the particle

annihilation operators as ψ̂(x, t) ≡ eiHt/h̄âxe−iHt/h̄. The N -body wave func-
tions arise from this by forming matrix elements of the states |ψ(t)〉 in a Fock
space 〈âx1

, . . . , âxN |:

ΨN (x1, . . . ,xN ; t) = 〈x1 . . . ,xN |ψ(t)〉 (5)

We shall interpret this N -body wave function as de Broglie’s pilot wave of
the particles. Taking the operator version of the action (2) in the N -particle
Fock space it reads

AN =

∫
dt

∫
dXΨ∗N (X, t)(ih̄∂t − ĤN )ΨN (X, t) (6)

where X collects the N -particle positions (x1, . . . ,xN ), and

ĤN = −
∑
ν

[
h̄2

2m
∂2
xν + V (xν)

]
. (7)

The N -body wave function (5) satisfies the Schrödinger equation

ĤNΨN (x1, . . . ,xN ; t) = ih̄∂tΨN (x1, . . . ,xN ; t). (8)

At this point Madelung [4,5] factorized in 1926 the wave function as a
product of a real wave function R and a phase eiS/h̄,

ΨN ≡ ReiS/h̄, (9)
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with R =
√
ρ, and derived from the the Schrödinger equation the classical

Hamilton-Jacobi equation for S, apart from an extra quantum potential 1

Vq = −
N∑
k=1

h̄2

2m

∆kR

R
. (10)

The full equation reads

i∂tR−
1

h̄
R∂tS =

h̄

2m

N∑
k=1

[
R

(
1

h̄
∇kS

)2

−2i∇kR ·
1

h̄
∇kS − iR

1

h̄
∆kS

]
+

1

h̄
(Vc + Vq)R, (11)

where ∆k ≡ ∇2
k is the Laplace operator and Vc ≡

∑N
n=1 V (xn). This is

the way that led Madelung to the interpretation of the Schrödinger field as
a probability amplitude of a quantum fluid. In light of present-day experi-
ments on low-temperature Bose-Einstein condensates (BEC), we shall prefer
to identify this liquid as a superfluid. From the N -particle formulation we
identify the current density of each individual particle as Schrödinger current
density

Jk ≡ −i
h̄

2m
Ψ∗N (Q, t)

↔
∇kΨN (Q, t), (12)

where ∇k = (∂1, . . . , ∂D), and the particle number density

ρN ≡ Ψ∗NΨN . (13)

Here we may identify the superfluid velocity Vs
k by the relation

ρNVs
k ≡ Jk. (14)

By integrating the superfluid velocity over time one obtains the trajectory of
the fluid density element, i.e., the streamline of the superfluid in configuration
space.

3 Bohmian Qauntum Mechanics

Collecting the imaginary parts in (11) yields the continuity equation

∂tR
2 = −

N∑
k=1

∇k(vkR
2), (15)

1 This term was derived in Bohm’s 1952 paper [6], but was already stated in
Madelung’s 1926 paper [4] as a consequence of quantum physics.
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where mvk = pk =∇kS, whereas the real parts give

∂tS +
1

2m

N∑
k=1

[
(∇kS)2

]
+ Vc + Vq = 0. (16)

This is the place where we can make the link between QM and Bohm’s
theory. We observe that one can replace the gradient kinetic term in the field
action (2) by setting [14]

ψ†
p̂2

2m
ψ → m

j2

2ρ
. (17)

where ρ is the fluctuating particle density defined in (4) and

j ≡ 1

2m
ψ†
↔
∇ψ (18)

is the current density of the fluctuating field. Classically, this may be inter-
preted as describing a cloud of particles streaming with a velocity

v =
j

ρ
. (19)

This velocity field can be introduced into the quantum mechanical par-
tition function (1) as a dummy auxiliary velocity variable by rewriting it
as

Z =

∫
DψDψ†DvDλei[A

′+
∫
dtλ(t)(N−N0)]/h̄, (20)

where

A′ =

∫
dtd3xψ†(ih̄∂t −H)ψ+m

∫
dtd3x

ρ

2

(
v− j

ρ

)2

. (21)

If the auxiliary field v is fully integrated out of the partition function, we
recover the correct Schrödinger quantum mechanics.

By integrating v over time along the streamlines, we obtain x(t) =
∫ t

0
dtv

and interprete this as the deterministic position of the quantum particle. On
the basis of the superfluid picture introduced in the previous section, the
Bohmian deterministic QM is based on the assumption that the streamlines
of superfluid velocity may be interpreted as the possible actual trajectories
of the single particle under consideration.
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4 Path Integral Representation of Bohm’s QM

The path integral approach to Bohmian mechanics is not new. Philippidis et
al. [15] invoked it to calculate the interference pattern behind a double-slit.
The reader familiar with the standard path integral representation of QM
[16,17] will recognize that the partition function (1) is simply the second-
quantized version [18] of the canonical path integral:

(xbtb|xata) =

∫ x(tb)=xb

x(ta)=xa

D′x
∫
Dp
2πh̄

eiA[p,x]/h̄. (22)

with the canonical action

A[p,x] =

∫ tb

ta

dt

[
p(t)ẋ(t)− p2(t)

2m
− V (x(t))

]
. (23)

We note that the first term in this action guarantees the validity of Heisen-
berg’s uncertainty relation between p and x. If we integrate out the fluctu-
ating momentum paths, the amplitude takes the form

(xbtb|xata) =

∫ x(tb)=xb

x(ta)=xa

D′x eiAF [x]/h̄ (24)

with the action

AF [x] =
m

2

∫ tb

ta

dt
[
ẋ2(t)− V (x)

]
, (25)

which was used by Feynman [16,17] to calculate quantum mechanical ampli-
tudes via path integrals by summing over all histories of x(t) in x-space.

The Bohmian QM is obtained by approximating the path integrals over
the fluctuating momenta in two steps. First, one rewrites the initial path
integral (22) with the help of a dummy velocity path v(t) as

(xbtb|xata)=

∫ x(tb)=xb

x(ta)=xa

D′x
∫
Dv
∫
Dp
2πh̄

eiA
′[p,v,x]/h̄, (26)

in which the action A[p,x] of (22) has been replaced by

A′[p,v,x] =
m

2

∫ tb

ta

dt

[
v(t)− p(t)

m

]2

+A[p,x]. (27)

The Gaussian path integral over all v(t)’s ensures that (26) is the same
as the amplitude (22). Second, one approximates the path integral over
v(t) in a certain semiclassical way by selecting only the extremum of the
first term in (27), i.e., by assuming the velocity v(t) to be equal to V(t) ≡
p(t)/m at each instant of time, rather than performing its proper harmonic
quantum fluctuations dancing around V(t) [19] to satisfy v(t) = V(t) only
on the average. We note that this approximation destroys the validity of
Heisenberg’s uncertainty relation. By integrating V(t) over time one obtains
functions X(t) which in Bohm’s theory are considered to be the trajectories
of the quantum particle guided by the pilot wave. It is therefore evident that
Bohmian mechanics is not equivalent to proper QM.
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5 Double-Slit Experiment

A commonly invoked gedanken experiment in QM is the scattering of a stream
of particles on a double-slit which gives evidence on the wave-particle dual-
ity. It shows that interference patterns produced by massive particles are
analogous to those produced by light waves in Young’s experiment. Due to
the smallness of the de Broglie wavelength for electrons, the double-slit ex-
periment remained gedanken until 1961 when Claus Jönsson performed it
successfully [20] and found an interference pattern in good agreement with
Young’s formula in the Fraunhofer zone:

I(θ) = I0(sinα/α)2 cos2 β, (28)

where α = (a/λ)π sin θ, β = (d/λ)π sin θ, a is the width of the slit, d the
separation of the two slits, and θ the deflection angle relative to the sym-
metry line between the two slits. As is well-known, the interference pattern
governed by the factor cos2 β is modulated by the square of the cardinal
sine function (sinα/α)2 that governs the single-slit diffraction. Subsequent
double-slit experiments were performed with photons, electrons, neutrons,
atoms, and even molecules, again in good agreement with Young’s formula
[21–25].

In the context of Bohmian mechanics, the pattern of electrons behind
a double-slit was first calculated explicitly by Philippidis et al. [15] using
the physical parameters of Jönsson’s experimental setup as their numerical
example. The associated quantum potential is plotted in Fig. 1, while the
Bohmian particle trajectories are shown in Fig. 2. These calculations have
often been cited and reproduced in the literature (see for example [5,27]) as
a strong argument for Bohmian mechanics. However, the Philippidis et al.
interference deviates significantly from the experimental result, which agrees
perfectly with quantum mechanics [28]. Specifically, the ratio of intensities
between the central primary peak and the second peak according to Bohmian
mechanics, which can be deduced from Fig. 2 by counting the number of
Bohmian trajectories crossing the screen in each corresponding constructive
interference zone, is roughly 26 : 8 ∼ 3.25. Whereas Young’s formula using
the same set of parameters gives the ratio 1 : 0.97 ∼ 1.03: The latter agrees
with QM and experiment.

What could be the origin of this significant discrepancy? In his book,
Holland stressed the fundamental difference between the Feynman paths and
the Bohmian trajectories, which he called quantum paths [5]. “For example,
in the two-slit experiment a path starting in one of the slits and crossing
the axis of symmetry of the apparatus is possible for Feynman but forbidden
for us (Bohmian mechanics).” (p. 267 of [5]). That is, the trajectories for
electrons passing, for example, the left slit will only reach the left side of the
center divide on the screen. As we have recognized, a Bohmian trajectory is a
semiclassical approximation of the fluctuating QM paths that dance around
it. These fluctuating QM paths are not confined to one side of the symmetry
line. This explains why Bohmian trajectories have an excessive probability
at the center and do not produce correct double-slit interference patterns
predicted by QM.
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Fig. 1 Plot of the quantum potential Vq(x) looking back from the screen to double-
slit A & B, taken from [29]. This quantum potential was first calculated in [15].

Fig. 2 Bohmian trajectories in a double-slit experiment [15]. The key parameters
used in [15] follow that in Jönsson’s experiment [28]: slit half-width a/2 = 0.1 ×
10−4cm, slit separation d = 1 × 10−4cm, distance between the slits and the screen
x = 35cm, and the electron de Broglie wavelength λ = 5.5 × 10−10cm.

6 A Spurious Radiation

One other consequence of treating the semiclassical averaged velocity V(t)
as the actual particle velocity v(t) is that such a deterministic motion may
induce a spurious radiation that would be emitted by an electron if its phys-
ical trajectory is deflected by the Bohmian quantum potential. Invoking the
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double-slit experiment as an example, it was shown in [29] that the drastic
variations of the quantum potential (see Fig. 1) in the direction transverse to
electron’s motion from the slits to the screen would inevitably induce radi-
ation if the particle does execute Bohmian deterministic classical trajectory,
with the emission angle following the direction of the canyon where the parti-
cle crosses. This would result in a discrete bright-and-dark stripe pattern on
the screen due to such radiation, which exactly complements the interference
pattern of electrons that eventually all travel on the plateau.

With the realization that the Bohmian trajectories are semiclassical ap-
proximation to the actual fluctuating QM trajectories, we believe that this
spurious radiation effect should not occur. It would be interesting, neverthe-
less, to investigate this spurious radiation experimentally.

7 Multivalued Nature of S

As experimentalists are in the process of investigating detailed properties of
Bohmian quantum mechanics [30], they should be aware that an important
aspect of that theory is still absent in (11) and (16). That is, the function
S is really a multivalued function of configuration space and time [14]. Its
derivatives∇kS(Q, t) are defined only modulo integer multiples of 2πh̄ times
a delta function in some area A to be denoted by δk(Q, A; t). It is defined by
the integral

δk(Q, A; t) ≡
∫
A(t)

d3N−3Q̄

∫
dAk δ(Q− Q̄), (29)

where
∫
d3N−3Q̄ runs only over the configuration space of all q̄i except q̄k,

and the vector q̄k is integrated over the area A [14]. Therefore the Bohm
equation (11) for the pilot wave is correct only if the gradients of S in that
equation are replaced by

∇kS(Q, t)→∇kS(Q, t)− 2πmh̄δk(Q, A; t), (30)

whereA denotes possible surfaces across which the phase jumps by an amount
2πmh̄, with some integer m. In analogy, a charged particle circulating around
an infinitely thin magnetic flux line along the z-axis has a wave function eimφ,
where φ is the azimuthal angle in cylindrical coordinates. The replacement
of (30) in (16) accounts for this effect in general. By analogy with the theory
of plasticity, we shall denote the extra term as SPk = 2πmδk(Q, A; t) and call
it the plastic deformation of the eikonal S,

Similarly we have to replace the time derivative in the first terms of (11)
and (16) as

∂tS(Q, t)→ ∂tS(Q, t)− 2πnh̄δ(t− t(Q))

= ∂tS(Q, t)− SPt (Q, t). (31)

After these replacements the Bohm equation (16) gives a complete description
of the motion of a gas of Bose particles in a zero-temperature condensate if
the gas is sufficiently dilute that there are practically no interactions among
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the particles. In the presence of electromagnetism, the plastic deformations
of the eikonal are modified by the usual minimal replacement rules.

Note that (11) is also the hydrodynamic description of a field Ψ(Q, t)
emerging from a standard Ginzburg-Landau action [33], the only difference
is that here the field depends on all 3N configuration coordinates in Q, rather
than only a single coordinate x, as in the original Ginzburg-Landau action,
which is a mean-field approximation to a second-quantized many-body action
[34].

8 Summary

In this note we have demonstrated that Bohmian mechanics and proper QM
are not equivalent. However this aspect, that is, determinism vs. indetermin-
ism, is independent of the issue of nonlocality [35]. As is demonstrated by the
famous Bell inequality [36], QM is inherently nonlocal. This aspect is partic-
ularly transparent in the Madelung-de Broglie-Bohm formulation manifested
through the superfluid BEC in the multidimensional configuration space.
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11. D. Dürr and S. Teufel, Bohmian Mechanics (Springer, Berlin, 2009). See

also S. Teufel’s lecture https://cast.itunes.uni-muenchen.de/vod/clips/
29SAqIjSLD/flash.html.

12. See Chapter 6 in the textbook by S. S. Schweber, An Introduction to Relativistic
Quantum Field Theory (Harper and Row, N.Y., 1961).

13. See Chapter 2 in H. Kleinert, Particles and Quantum Fields (World Scientific,
Singapore, 2013) [http://klnrt.de/b7].



11

14. H. Kleinert, Multivalued Fields in Condensed Matter, Electromagnetism, and
Gravitation (World Scientific, Singapore, 2009) [http://klnrt.de/b11].

15. C. Philippidis, C. Dewdney and B. J. Hiley, Il Nuovo Cimento 52B, 15 (1979).
16. R. P. Feynman and A. R. Hibbs, Quantum Mechanics and Path Integrals

(McGraw-Hill, New York, 1965).
17. H. Kleinert, Path Integrals in Quantum Mechanics, Statistics, Poly-

mer Physics, and Financial Markets, (World Scientific, Singapore, 2009)
[http://klnrt.de/b5].

18. See Eqs. (2.27) and (2.29) in the textbook [17].
19. See the quotation in the beginning of Chapter 2 of the textbook [17].
20. C. Jönsson, Zeit. Phys. 161, 454 (1961); English translation: Am. J. Phys. 42,

4 (1974).
21. A. Tonomura, J. Endo, T. Matsuda, T. Kawasaki, and H. Ezawa, Am. J. Phys.

57, 117 (1961).
22. F. Shimizu, K. Shimizu, and H. Takuma, Phys. Rev. A 46, R17 (1992).
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