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Abstract Free and weakly interacting particles are described by a second-quantized
nonlinear Schrödinger equation, or relativistic versions of it. They describe Gaussian
random walks with collisions. By contrast, the fields of strongly interacting particles
are governed by effective actions, whose extremum yields fractional field equations.
Their particle orbits perform universal Lévy walks with heavy tails, in which rare
events are much more frequent than in Gaussian random walks. Such rare events are
observed in exceptionally strong windgusts, monster or rogue waves, earthquakes,
and financial crashes. While earthquakes may destroy entire cities, the latter have the
potential of devastating entire economies.

Keywords Quantum field theory · Improbable events · Financial crahes · Monster
waves

1 Introduction

Since the bestselling book “The Black Swan” by N.N. Taleb,1 the “disproportion-
ate role of high-profile, hard-to-predict, and rare events that are beyond the realm of
normal expectations in history, science, finance, and technology”, has moved into
public awareness,2 thereby contrasting previous bestsellers focusing on Gaussian
distributions.3 Since the last financial crash and the recent “flash crash”4 that has

1See http://en.wikipedia.org/wiki/Black_swan_theory.
2See http://www.nytimes.com/2007/04/22/books/chapters/0422-1st-tale.html?pagewanted=all.
3Contrasting the 1994 book by R.J. Herrnstein and C. Murray entitled “The Bell Curve” http://de.
wikipedia.org/wiki/The_Bell_Curve.
4See http://en.wikipedia.org/wiki/2010_Flash_Crash.
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appeared in 2010 (see footnote 4) with the approach of nanosecond-trading in stock-
markets, the dangers of such events for the world economy have become so worri-
some that also politicians begin to get worried.

2 Quantum Field Theory

The purpose of this lecture is to incorporate them into our present description of
particle physics. The quantum-mechanical phenomena of fundamental particles is
explained with high accuracy by Schrödinger theory. The wave equation for many
particles can conveniently be reformulated as a second-quantized field theory, with
an action that is the sum of quadratic and an interacting term

A = A2 +Aint, (1)

where the term A2 has typically the form

A2 =
∫

dDxdtψ∗(x, t)
[
i∂t + �

2∇2/2m − V (x)
]
ψ(x, t), (2)

with D being the space dimension, m the mass, and V (x) some external potential.
The interaction term Aint may be approximated in molecular systems by a fourth-
order term in the field

Aint = 1

2

∫
dDxdDx′dtψ∗(x′, t

)
ψ∗(x, t)V12

(
x,x′)ψ(x, t)ψ

(
x′, t

)
, (3)

where V12(x,x′) is some two-body potential.
If relativistic velocities are present, the field is generalized to a scalar Klein-

Gordon field, or a quantized Dirac field. In molecular physics, the fourth-order term
is due to the exchange of a minimally coupled quantized photon field and is pro-
portional to e2, where e is the electric charge. The field equations may be studied
with any standard method of quantum field theory, and corrections can be derived
using perturbation theory in powers of α ≡ e2/� ≈ 1/137. Since α is very small, this
approach is quite successful.

If time is continued analytically to imaginary values t = iτ , one is faced with
the so-called Euclidean version of quantum field theory. Then perturbation theory
may be understood as developing a theory of particle physics from an expansion
around Gaussian random walks. Indeed, the relativistic scalar free-particle propagator
of mass m in D + 1-dimensional Euclidean energy-momentum space pμ = (p,p4),
has the form

G(p) = 1

p2 + p2
4 + m2

=
∫ ∞

0
ds e−sm2

e−s(p2+p2
4), (4)

where the energy has been continued analytically to p4 = −iE. The Fourier trans-
form of e−s(p2+p2

4) is the distribution of Gaussian random walks of length s in D + 1
Euclidean dimensions

P(x, x4) = (4πs)−(D+1)/2e−(|x|2+x2
4 )/4s , (5)

which makes the propagator (4) a superposition of such walks with lengths distributed
like e−sm2

[1–4]. This propagator is the relativistic version of the free-field propagator
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of the action (2). The second-quantized field theory described by (1) accounts for
grand-canonical ensembles of orbits with their two-body interactions [5].

Gaussian random walks are a natural and rather universal starting point for many
stochastic processes. For instance, they form the basis of the most important tool
in the theory of financial markets, the Black-Scholes option price theory [6] (No-
bel Prize 1997), by which a portfolio of assets is hoped to remain steadily growing
through hedging. In fact, the famous central-limit theorem permits us to prove that
many independent random movements of finite variance always pile up to display a
Gaussian distribution [7, 8].

However, since the last stock market crash and the still ongoing financial crisis
it has become clear that realistic distributions belong to a more general universality
class, the so-called Lévy stable distribution. They are the universal results of a pile
up of random movements of infinite variance.5 They account for the fact that rare
events, which initiate crashes, are much more frequent than in Gaussian distributions.
These are events in the so-called Lévy tails ∝ 1/|x|1+λ of the distributions, whose
description requires a Hamiltonian [4]

H = const
(
p2)λ/2

. (6)

Such tail-events are present in the self-similar distribution of matter in the universe
[9–12], in velocity distributions of many body systems with long-range forces [13],
and in the distributions of windgusts [14] and earthquakes [15], with often catas-
trophic consequences. They are a consequence of rather general maximal entropy
assumptions [16]. In the limit λ → 2, the Lévy distributions reduce to Gaussian dis-
tributions.

3 Strong-Coupling Quantum Field Theory

At this point we observe that such distributions occur quite naturally also in many-
particle systems, provided the interactions are very strong [17]. They have been ob-
served in numerous experiments at second-order phase transitions. The most accurate
measurement of this type was done in a satellite (the so called Infrared Astronomi-
cal Satellite IRAS) by studying the singularity of the specific heat of superfluid 4He
near the critical temperature [18, 19]. The observation agreed extremely well with the
theoretical strong-coupling prediction [20, 21].

The field of a strongly interacting N -body system is usually a multivalued func-
tion. Singularities perforate the space via vortex lines (for instance in type II super-
conductors or in superfluid 4He), or via line-like defects in the displacement field of
a world-crystal formulation of Einstein(-Cartan) gravity [22]. If the positions of two
particles are exchanged, one obtains a factor +1 for bosons or −1 for electrons. In
two dimensions, one may even obtain a general phase eiφ (anyons).6

5A travelling pedestrian salesman is a Gaussian random walker, as a jetsetter he becomes a Lévy random
walker.
6In two dimensions, a sequence of critical exponents have been tabulated in [23].
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A strongly interacting field system has a conformally invariant Green function
[24–26] (see footnote 6)

G(p,p4) = [
p

1−γ

4 φ
(
p2/pz

4

)]−1
. (7)

If the dimension D differs only by a very small amount ε from the critical dimension
Dc, where the theory is scale-invariant, i.e., D = Dc + ε, then γ is of order ε and z

differs from unity by a similar amount. Such a power behavior is assured near Dc if
the Gell-Mann-Low function [27] has an infrared-stable fixed point in the renormal-
ization flow of the coupling constant. Very close to the critical dimension, a lowest
approximation to G(p,p4) is

G(p,p4) = {
p

1−γ

4

[
1 + Dλ

(
p2/pz

4

)λ/2]}−1
, (8)

where λ is close to 2, and Dλ is a generalization of the diffusion constant in the
Fokker-Planck equation.

Time-independent propagators involve the limit p4 → 0, where the correlation
function behaves like

G(p,0) ∝ |p|−2+η. (9)

The index η is the anomalous dimension of the field, which is also of order ε. The
existence of this limit in (8) fixes the scaling relation

λ = (2 − γ )/z = 2 − η. (10)

See the Appendix for the calculation of the exponents to order ε. The Green func-
tion (8) determines the probability distribution of particle after a time t via the double
fractional Fokker-Planck equation

[
p̂

1−γ

4 + Dλ

(
p̂2)λ/2]

P(x, t) = δ(t)δ(D)(x), (11)

where p̂4 ≡ ∂t , p̂ ≡ i∂x ≡ i∇. A convenient definition of the fractional derivatives
uses the same formula as in the dimensional continuation of Feynman diagrams
(−∇2)λ/2 = Γ [λ/2]−1

∫
dσσ−λ/2−1eσ∇2/2.7,8 The solution of (11) is given in the

literature [31] and reads

t−γ

πD/2|x|D/2
H

2,1
2,3

( |x|λ
2λDλt1−γ

∣∣∣∣
(1,1);(1−γ,1−γ )

(1,1),(D/2,λ/2);(1,λ/2)

)
, (12)

where H
2,1
2,3 is a Fox H-function [32].

7For the so-called Riesz fractional derivative see [28, 29]. For the so-called Weyl derivative see [30]:

p̂
1−γ
4 f (t) ≡ Γ −1[1 − γ ]∫ ∞

t dt ′(t − t ′ + iε)−2+γ f (t ′).
8The relevant functional matrix is 〈x|(−∇2)λ/2|x′〉 = Γ [−λ/2]−1 ∫

dσ σ−λ/2−1(4πσ)−D/2eR2/4σ =
DcλR−λ−D , where Dcλ = 2λΓ ((D + λ)/2)/πD/2Γ (−λ/2), and R ≡ |x − x′|. If λ is close to an
even integer, it needs a small positive shift λ → λ+ ≡ λ + ε and we can replace εRε−1/2 by δ(R) =
SDRD−1δ(D)(R). For A > 0 we have |x′|−A = Dc−1

λA
〈x′|(−∇2)λA/2|0〉 with λA ≡ A − D, so that we

find
∫

dDx′〈x|(−∇2)λ/2|x′〉|x′|−A = Dc−1
λA

〈x|(−∇2)(λ+A−D)/2|0〉 = Dcλ+A−D
Dc−1

λA
|x|−A−λ.
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In the limits γ = 0 and λ = 2, this reduces to the standard quantum mechanical
Gaussian expression (4πDλt)

−D/2e−|x|2/4Dλt . For γ = 0, λ = 1, the result is

P(x, t) = Dλt

π(D+1)/2|x|D+1
H

1,1
1,1

(
D2

λt
2

|x|2
∣∣∣∣
(1/2−D/2,1)

(0,1)

)
, (13)

which is simply the Cauchy-Lorentz distribution function
[
Γ (D/2 + 1/2)/π(D+1)/2]Dλt/

[
(Dλt)

2 + |x|2]D/2+1/2
.

The probability (11) may be calculated from the doubly fractional canonical path
integral over fluctuating orbits t (s),x(s) p4(s),p(s) viewed as functions of some
pseudotime s:9

{xbtbsb|xatssa} =
∫

DxDtDpDp4e
−A, (14)

where A is the Euclidean action of the paths t (s),x(s):

A =
∫

ds
[
i
(
px′ − ip4t

′) −H(p,p4)
]
. (15)

Here t ′(s) ≡ dt (s)/ds, x′(s) ≡ dx(s)/ds, and H(p,p4) = p
1−γ

4 + Dλ(p̂2)λ/2. At
each s, the integrals over the components of p(s) and p4(s) run from −∞ to ∞,
whereas those over p4(s) run from −i∞ to i∞. At the end we obtain P(x, t) from
the integral

∫ ∞
0 ds{xts|0 0 0}.

If γ = 0, the path integral over p4(s) yields the functional δ[t ′(s) − 1], which
brings (14) to the canonical path integral

(xbtb|xata) =
∫

DxDpe−A′
, (16)

with

A′ =
∫

dt
[
ipẋ − Dλ

(
p̂2)λ/2]

. (17)

Now P(x, t) = (xt |0 0) satisfies the ordinary fractional Fokker-Planck equation
[
p̂4 + Dλ

(
p̂2)λ/2]

P(t,x) = δ(t)δ(D)(x). (18)

This has been discussed at length in recent literature [33–38].
At this place it is worth mentioning that the probability can be written as a

superposition
∫ ∞

0 (dσ/σ)fλ(σ t−2/λ)PG(σ,x) of Gaussian distributions PG(σ,x) =
(4πσ)−D/2e−x2/4σ with weight

fλ(σ ) = SD

∞∑
n=1

(−1)nσ−nλ/2

(n + 1)!Γ (D − 1 − nλ/2)
D

n/λ
λ , (19)

where SD = 2πD/2/Γ (D/2) is the surface of a sphere in D dimensions.

9This technique is explained in Chaps. 12 and 19 of Ref. [4]. The pseudotime s resembles the so-called
Schwinger proper time used in relativistic physics.
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4 Stochastic Duru-Kleinert Transformation

If γ �= 0, the above functional δ-function is softened, and the relation between the
pseudotime s and the physical time becomes stochastic. It is governed by the proba-
bility distribution that solves the path integral the

{tbsb|tasa} =
∫

DtDp4 exp

{∫
ds

[
p4t

′ − p
1−γ

4

]}
. (20)

For imaginary p4 = −iE, we define a noise Hamiltonian H̃ (η) which has the prop-
erty that (see footnote 9)10

e−p
1−γ

4 =
∫ ∞

−∞
dηe−p4η−H̃ (η). (21)

The inverse of the Fourier integral yields the noise probability P(η) =∫ i∞
−i∞ dp4e

p4η−p
1−γ

4 , and a probability functional:11

P [η] ≡ e− ∫
dsH̃ (η) =

∫
Dp4 exp

[∫
ds

(
p4η − p

1−γ

4

)]
. (22)

Using this we may solve the stochastic differential equation of the Langevin type

t ′(s) = η(s), (23)

in which the noise η(s) has a zero expectation value for each s, and the correlation
functions for n = 2,4,6, . . . :

〈
η(s1) · · ·η(s2n)

〉 ≡
∫

Dη η(s1) · · ·η(s2n)P [η]. (24)

If γ = 0, the solution of (22) is P [η] = δ[η(s) − 1], implying that η(s) ceases to
fluctuate, and (23) becomes t ′(s) ≡ 1, so that t ≡ s.

In the past, many nontrivial Schrödinger equations (for instance that of the 1/r-
potential) have been solved with path integral methods by re-formulating them on
the pseudotime axis s, that is related to the time t via a space-dependent differential
equation t ′(s) = f (x(t)). This method, invented by Duru and Kleinert [39, 40] to
solve the path integral of the hydrogen atom, has recently been applied successfully
to various Fokker-Planck equations [41–43]. The stochastic differential equation (23)
may be seen as a stochastic version of the Duru-Kleinert transformation that promises
to be a useful tool to study non-Markovian systems.

Certainly, the solutions of Eq. (18) can also be obtained from a stochastic differ-
ential equation

ẋ = η, (25)

whose noise is distributed with a fractional probability

P [η] =
∫

DDxe
∫

dt (ip·η−Dλ(p2)λ/2). (26)

10There should be no danger of confusing the fluctuating noise variable η in this equation with the constant
critical exponent η in (9).
11See Eq. (29.165) in Ref. [4].
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5 Experimental Consequences

Experimentally, a system with in the strong-coupling limit can be produced by form-
ing a Bose-Einstein condensate (BEC) in a magnetic field whose strength is tuned to
a Feshbach resonance12 of the two-particle interaction. In a BEC, the four-field term
in the interaction (3) is local and parametrized by V12(x,x) ∝ gδ(x−x′). At the Fesh-
bach resonance, the bare coupling strength g goes to infinity,13 and the renormalized
coupling gR , multiplied by 6μ−ε/(4π)2, converges to a fixed point g∗ ≈ 0.503 (see
Fig. 17.1 in Ref. [26]), where μ is some mass scale.

The theoretical tool to describe the physics in this regime is the effective ac-
tion Γ [Ψ,Ψ ∗]. This a functional of the classical expectation values of the quan-
tum fields Ψ (t,x) ≡ 〈ψ(t,x)〉, and contains all information of the full quantum
theory [26].14 It is the Legendre transform of the generating functional Z[η,η∗] =∫
DψDψ∗e−A−η∗ψ−ηψ∗

of the full quantum theory, and is extremal on the physical
field expectation. All its vertex functions can be found from the functional derivatives
of Γ [Ψ,Ψ ∗]. In the strong-coupling limit, the effective interaction changes the inter-
action (3) to an anomalous power law Γ int[Ψ,Ψ ∗] = (gc/2)

∫
dtdDx |Ψ (t,x)|δ+1.

The power δ is a critical exponent that is measured experimentally by the relation
B = |Ψ |δ . Its value is determined by η via the so-called hyperscaling relation15

δ = (D+2−η)/(D−2+η). The value of gc is related to the critical value g∗ ≈ 0.503
by gcμ

−ηD/(D−2+η) = (2g∗)(δ−1)/2(4π)2/24 ≈ 6.7. As a possible application we
may study the behavior of a triangular lattice of vortices which form in a rotating
Bose-Einstein condensate [47], and letting the magnetic field approach a Feshbach
resonance.

The results may then be compared with a calculation based on a new field equation
that generalizes the famous Gross-Pitaevskii equation [48, 49][

Ê − 1

2m
p̂2 − g

∣∣Ψ (t,x)
∣∣2

]
Ψ (t,x) = 0. (27)

The new equation is obtained by extremizing the effective action Γ [Ψ,Ψ ∗] =
Γ0[Ψ,Ψ ∗] + Γ int[Ψ,Ψ ∗], where

Γ0 ≡
∫

dtdDxΨ †(t,x)
[
Ê1−γ − Dλ

(
p̂2)λ/2]

Ψ (t,x). (28)

By forming δAeff/δΨ †(t,x), we obtain what may be called the fractional Gross-
Pitaevskii equation:[

Ê1−γ − Dλ

(
p̂2)1−η/2 − δ + 1

4μη
gc

∣∣Ψ (t,x)
∣∣δ−1

]
Ψ (t,x) = 0. (29)

The fractional Schrödinger equation has many problems, such as the nonvalidity
of the quantum superposition law, the violation of unitarity of the time evolution, and

12For a pedagogical discussion see [44].
13We ignore the problem that near the resonance it is hard to confine the particles to the trap. See [45].
14For the universal use of this functional see [46].
15See Eq. (1.35) in Ref. [26].
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the violation of probability conservation which can produce nonsensical probabilities
>1 [33–38]. However, these problems exist only if we restrict ourselves to the free
effective action (28), but this is meaningless, since the entire theory is only defined
by the effective action in the strong-coupling limit—and this contains necessarily
additional nonquadratic terms. Hence it does not possess free quasiparticles as in the
time-honored Landau theory of Fermi liquids [50]. There is always an interaction
that invalidates the standard discussion of Schrödinger equations. In fact, the theory
of high-Tc superconductivity must probably be built as a true strong-coupling theory
of this type with electrons being non-Fermi liquids [50].

The relativistic version of the entire discussion is simpler since it is based on the
Euclidean Green function (9) in which p denotes the D − 1-dimensional vectors
(p,p4). The Fourier transform is the distribution fulfilling the Fokker-Planck equa-
tion

[
∂s + (

p̂2)1−η/2]
P(s, x̂) = δ(s)δ(D+1)(x) (30)

and possessing the path integral representation

P(s, x̂) =
∫

DxDpe
∫

ds[ipẋ−(p̂2)1−η/2]. (31)

The ε-expansion is now around Dc = 4 in powers of ε = −(D − Dc). The critical
exponent η is small of order ε2: η = ε2/50 + · · · ≈ 0.04. It can be ignored for ε = 1.
The power δ in the interaction is 3 + ε + 23ε2/50 + · · · ≈ 4.76.16

The time-independent fractional Gross-Pitaevskii equation reads now
[(

p̂2)1−η/2 + δ + 1

4μη
gc

∣∣Ψ (x)
∣∣δ−1

]
Ψ (x) = 0, (32)

with gc ≈ 27. For a d = D − 1-dimensional vortex in D = 3 dimensions, it is solved
by Ψ̃ (x) = a|x⊥|−A with A = (2−η)/(δ−1) = D/2−1+η/2 ≈ 1/2 and for μ = 1:
[(δ + 1)aδ−1/4]gc = −dcλ+A−d

dc−1
A−d ≈ 0.2, λ = 2 − η (see footnote 8).

Let us study the appearance of a reduced mass m̂2 ∝ −(1 − r2) in the trap.
In the effective action, it will appear in (32) in the form μ2−η(m̂2)ν(2−η) ×
f (|Ψ |2/(m̂2)2β) with a Taylor series of f (x) (note that ν(2 − η) = 1 + ε

5 + · · · ≈
1.3). For small m̂2, this may be resummed to a Widom type expression [(δ +
1)/4μη]gc|Ψ |δ−1w(m̂2/|Ψ |1/β) [26]. This explains the earlier-stated steeper falloff
|Ψ |2 ∝ (m̂2)2β of the density profiles in Fig. 1. The Widom function w(m̂2/|Ψ |1/β)

can be expanded as 1 plus a power series in (m̂2)ω/2ν ∝ ξ−ω which contains the
Wegner critical exponent ω ≈ 0.8 that governs the approach to scaling.17 Thereby
the interaction term |Ψ |δ−1 is modified to |Ψ |δ−1(1 + const × ξ−ω|Ψ |−ων/β). Sim-
ilarly, the kinetic term (p̂2)1−η/2 in (27), (32) will receive ω-dependent correc-
tion terms and become (p̂2)1−η/2[1 + ξ−ω/η∗

m(p̂2)ω/2 + · · ·] (see footnote 15), with
η∗

m = 1 − 1/2ν ≈ 1/4.

16The decimal numbers are from seven-loop calculation in D = 3 dimensions in Table 20.2 of Ref. [26].
17See Eq. (10.191) in Ref. [26] and expand f (t/M1/β ) ∼ f̃ (ξΦ2/(D−2+η)) like f̃ (x) = 1 + cx−ω +· · · .
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Fig. 1 Condensate density from Gross-Pitaevskii equation (27) (GP, dashed) and its fractional version
((29) (FGP)), both in Thomas-Fermi approximation where the gradients are ignored. The FGP-curve shows
a marked depletion of the condensate. On the right hand, a vortex is included. The zeros at r ≈ 1 will be
smoothened by the gradient terms in (32), as indicated in the left-hand figure

To compare our theory with experimental data, we must study the BEC in the
scale-invariant strong-coupling limit. This is reached either by going to the temper-
ature Tc of the second-order phase transition, or by raising the magnetic field B to-
wards the field strength Bc of a Feshbach resonance [51]. Then the coherence length
ξ grows like ξ ∝ |t |−ν where ν ≈ 2/3 [26, 52], and t ≡ 1 − T/Tc or t ≡ 1 − B/Bc

(see footnote 12). If the BEC is enclosed in a weak harmonic trap, this adds in the
brackets of (27) a term ∝ |x|2 = R2. This is normally observed by the condensate
density going to zero linearly like 1 − r2 ≡ 1 − R2/R2

b near the border Rb (in the
Thomas-Fermi approximation) [53, 54]. For B near Bc (or T near Tc), however,
the anomalous power δ will lead to the steeper approach to zero (1 − r2)2β where
2β ≡ ν(D − 2 + η) = 1 − 3ε/10 + · · · ≈ 0.7, plotted in Fig. 1, as will be shown
immediately. In addition, the central region is depleted.

6 Summary

Summarizing we have seen that a many-body system with strong couplings between
the constituents satisfies a more general form of the Schrödinger equation, in which
the momentum and the energy appear with a power different from λ = 2 and γ = 0,
respectively. The associated Green function can be written as a path integral over
fluctuating time and space orbits that are functions of some pseudotime s. This is
a Markovian object, but non-Markovian in the physical time t that is related to s

by a stochastic differential equation of the Langevin type. The particle distributions
can also be obtained by solving a Langevin type of equation in which the noise has
correlation functions whose probability distribution is specified.
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Appendix

The lowest-order critical exponents can be extracted directly from the one-loop-
corrected inverse Green function G−1(E,p) in D = 2+ε dimensions after a minimal
subtraction of the 1/ε -pole at [55]:

E − p2 + a

(
1

3
p2 − E

)D−1

. (33)

For p = 0, this has a power −(−E)1−aε , so that γ = aε. For E = 0, on the other
hand, we obtain (−p2)1−aε/3, so that (1 − γ )/z − 1 ≈ γ /3.

Note added in proof While this lecture was in the printing process, the theory was advanced in the
paper:

H. Kleinert, “Effective action and field equation for BEC from weak to strong couplings”, J. Phys. B
46, 17401 (2013) (http://klnrt.de/403).
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