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1. Introduction

Optical lattices are gases of ultracold atoms trapped in periodic potentials created
by periodically arranged intersecting standing waves of laser light. The interest in
experimental and theoretical investigations of these artificial crystals is caused by the
following two factors [1].

(1) Neutral atoms in these optical lattices have several attractive features that make them
interesting candidates for use in the realization of a quantum computer [2].

(2) They may be used to simulate various lattice models of fundamental importance in
condensed matter physics, since they permit controlled studies of solid-state physics in
which one can fine-tune the interaction strength for various geometries of the lattices.
In particular, it is possible to control the Hamiltonian parameters and study various
regimes of system parameters.
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The lattice of bosons with short-range repulsive pair interaction trapped in an optical
lattice may be described by a Hamiltonian of Bose–Hubbard type:

H = −J
∑
〈i,j〉

b̂†i b̂j +
U

2

Ns∑
i

b̂†i b̂
†
i b̂ib̂i +

Ns∑
i

(εi − µ)b̂†i b̂i, (1)

where: b̂i
†

and b̂i are the bosonic creation and annihilation operators on the site i ; the
sum over 〈i, j〉 includes only pairs of nearest neighbors; J is the hopping amplitude, which
is responsible for the tunneling of an atom from one site to another neighboring site; U is
the on site repulsion energy; and Ns is the number of sites.

At zero temperature with an integer filling factor ν ≡ N/Ns, where N is the total
number of atoms, a system of bosons described by the Hamiltonian (1) could be in a
superfluid (SF) or in a Mott insulator (MI) phase. Clearly the quantum phase transition
(QPT) between these two phases is ruled by the dimensionless interaction strength
parameter u = U/J . For small u, the hopping term dominates the system, favoring it being
in the SF phase. For large u� 1, on the other hand, the system exhibits a MI phase.

A critical interaction strength ucrit = 29.34 was found for d = 3 by Monte Carlo
calculations [3] at a filling factor of ν = 1, and this agrees well with the experimental
data [4].

To make for easier reading, we summarize some specific features of these two phases.
The SF phase is characterized by a long-range correlation, a continuous (gapless)
excitation spectrum and a finite compressibility. Since there exists a condensate with a
finite number of particles, n0, the gauge symmetry is spontaneously broken in accordance
with theorems of Bogoliubov and Ginibre. In contrast, in the MI phase, there is no long-
range correlation or breaking of the gauge symmetry. The excitation spectrum has a
gap and the system is incompressible, since the number of atoms per site is fixed. The
mobilities of the atoms are completely different in the two phases. In the SF phase they
can easily move from one site to another site by tunneling, whereas in the MI phase, they
are localized.

Finite-temperature phases of optical lattices have been studied by means of quantum
Monte Carlo (QMC) calculations as well as experimentally for d = 3. As expected, the
system behaves as a normal fluid (NF) at T > Tc. A most interesting observation was made
in [3, 4]: in contrast to the case for a system of dilute Bose gases, the critical temperature
is downshifted at the transition to the MI phase.

Theoretical approaches based on the Bose–Hubbard model, which is not exactly soluble
even in one dimension, have been summarized recently in textbooks [5]–[7]. Most of them
use perturbative expansions in powers of J/U and give qualitatively a good description of
the phase transition boundary [8, 9]. As to the nonperturbative approaches, they mainly
exploit the Gutzwiller ansatz, where the wavefunction is expanded in local Fock states
with variational coefficients. Although such an approach is good even in the description of
the dynamics of the system [10]–[13], since it is exact for d→∞, its reliability decreases
dramatically for d = 1.

Among the various kinds of existing mean-field theories in the literature, the bosonic
dynamical mean-field theory (B-DMFT) seems to be the most powerful. Originally
proposed by Byczuk and Vollhardt [14] and further developed by Anders et al [15], the
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B-DMFT maps the Bose–Hubbard model onto the self-consistent solution of a bosonic
impurity model with coupling to a reservoir of normal and condensed bosons. The net
output of this procedure is excellent. It gives us an accurate description of the phase
diagrams, the condensate order parameter and other observables of the cubic lattice
Bose–Hubbard model, as obtained by QMC calculations. However, although the B-DMFT
is numerically exact and flexible, it is computationally expensive, since one has to use
continuous time QMC evaluations in order to solve its equations. Moreover, strictly
speaking, the Hugenholtz–Pines theorem (see section 2.2 below) does not hold in B-DMFT
(see figure 10 of [15]).

The application of nonperturbative renormalization group theory has revealed new
scaling properties of optical lattices. Rancon and Dupuis [16] have recently shown that
thermodynamic quantities of the Bose–Hubbard model can be expressed using universal
scaling functions of the dilute Bose gas universality class.

As to the Bogoliubov theory, it provides an accurate description of the excitation
spectrum for the SF phase, but fails to describe the SF → MI transition. In fact, the
first application of a mean-field approach was made in the Hartree–Fock–Popov (HFP)
approximation to optical lattices by Stoof et al [17]. By studying the dependence of the
condensate number n0 on u, i.e. n0(U/J), they observed that n0 never reaches zero, even in
the strong-coupling limit (u→∞), implying that this approximation is unable to predict
a QPT of SF → MI. In contrast to this, the two-loop approximation given by the present
authors in [18] suggests the existence of such a QPT, but the critical value of ucrit was
found to be rather small: ucrit(two loops) ≈ 6 for d = 3. So, the question of the power of an
approximation, based on mean-field theory, other than B-DMFT, to adequately describe
phase diagrams of optical lattices remains open. It is, therefore, desirable to develop a
nonperturbative approach which would be suitable for dimensions d = 1, 2, 3.

An alternative approach to the treatment of dilute Bose gases has recently been
proposed by Cooper et al [19, 20] under the name of leading-order auxiliary field
theory (LOAF). They found a way of fixing the degeneracy in the elimination of the
interaction by auxiliary collective pair and density fields by choosing a special form of
a generalized Hubbard–Stratonovich transformation. Although their approach gives no
QPT for a homogeneous Bose gas at zero temperature, it predicts a desirable second-
order BEC transition at finite temperatures and exhibits a positive shift in the critical
temperature Tc that is consistent with Monte Carlo and other calculations [21, 22]. One
of the novel features of those calculations is that for T > Tc it predicts a novel type of
superfluid phase that does not have a condensate [23]. Although such a phase has not
been observed yet, it was justified by the existence of a nonzero anomalous density δ,
in the region Tc < T ≤ T ∗, where T ∗ is the temperature of transition to the normal
phase.

In the present work we shall formulate a similar theory with two collective quantum
fields for discrete systems such as optical lattices and ask the following questions.

• Does it predict a SF → MI quantum phase transition?

• Does it predict the suppression of Tc at large u?

• Does it predict a new phase, mentioned above, for optical lattices too?

doi:10.1088/1742-5468/2014/01/P01003 4
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Our results will be compared with those from another well-known mean-field
approximation, the Hartree–Fock–Bogoliubov (HFB) approximation, which is widely
used to describe BEC in homogeneous Bose gases and in triplons [24, 25] in magnetic
insulators, and will also be extended here to optical lattices. Below we use ~ = kB = 1.

The paper is organized as follows. In sections 2 and 3 we shall derive collective
quantum field theory and HFB approaches for optical lattices, respectively. The results and
discussions will be presented in section 4, and the conclusions will be stated in section 5.

2. Collective quantum field theory of the 3D Bose–Hubbard model

In the Wannier representation, the Euclidean action corresponding to the Bose–Hubbard
Hamiltonian is given by [18]

A(ψ∗, ψ) =

∫ β

0

dτ

{∑
i

ψ∗(xi, τ)[∂τ − µ]ψ(xi, τ)− J
∑
〈i,j〉

ψ∗(xi, τ)ψ(xj, τ)

+
U

2

∑
i

ψ∗(xi, τ)ψ∗(xi, τ)ψ(xi, τ)ψ(xi, τ)

}
, (2)

where µ is the chemical potential and β = 1/T . The lattice points lie at the positions [26]

xi = i a, (3)

where a is the lattice spacing, and

i ≡ (i1, i2, . . . , id), (4)

are integer-valued vectors.
The partition function Z, and the grand thermodynamic potential Ω, can be found

from

Z =

∫
Dψ∗Dψe−A(ψ∗,ψ), (5)

Ω = −T lnZ. (6)

The ground state expectation value of an operator Ô(ψ∗, ψ) can be expressed as a
functional integral:

〈Ô〉 =
1

Z

∫
Dψ∗DψÔ(ψ∗, ψ)e−A(ψ∗,ψ). (7)

With the help of a Hubbard–Stratonovich transformation, the interaction term in (2) can
be eliminated by adding to the action in the exponent of (5) a dummy action [27]:

Apair[ψ
∗, ψ,∆,∆∗] =

∫ β

0

dτ
∑
i

{
1

2U
|∆(xi, τ)− Uψ(xi, τ)ψ(xi, τ)|2

}
(8)

doi:10.1088/1742-5468/2014/01/P01003 5
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containing a pair field ∆. After this we form the path integral
∫
D∆D∆∗e−Apair[ψ

∗,ψ,∆,∆∗],
and integrate out the pair field. This produces a multiplication of the partition function
Z by a trivial constant factor.

It has been emphasized in [27] and the textbook [28] that this procedure is highly
degenerate. Actually, instead of (8), one could just as well have introduced a plasmon
field ϕ(x, τ) by adding to the action in the exponent of (5) a dummy action

Apl[ψ
∗, ψ, ϕ] =

∫ β

0

dτ
∑
i

{
− 1

2U
[ϕ(xi, τ)− Uψ∗(xi, τ)ψ(xi, τ)]2

}
, (9)

and forming a functional integral
∫
Dϕe−Apair[ψ

∗,ψ,ϕ], which again multiplies Z by a trivial
constant.

Diagrammatically, the degeneracy is caused by the fact that the sum of all collective
field diagrams will always produce the same result if evaluated to all orders in perturbation
theory. Each of these collective fields reproduces all effects of the interaction if it is
integrated functionally. A difference appears if the evaluation is restricted to a mean-field
approximation. Then it depends on the dominance of certain dynamical effects which field
is preferable.

In principle, we can also add a combination of Apair and Apl, and still leave the
physical properties of the system unchanged—for instance Apl cosh2 θ − Apair sinh2 θ.
Diagrammatically, however, the degeneracy cannot be easily verified since a calculation
of the diagrams to all orders is really impossible. It can only be done to some finite order,
for instance in a loop expansion, so the mathematical equivalence is initially of little use.

One method for avoiding the degeneracy and making the collective field approach
unique was pointed out a long time ago [29]. It is based on an extension of the standard
effective action Γ[Ψ∗,Ψ], whose functional expansion terms are the one-particle irreducible
vertex functions of the theory. The symbol Ψ denotes the expectations of the field ψ(x ,
τ). A unique version of collective fields can be introduced by going to a higher effective
action A[Ψ∗,Ψ,∆,∆∗,Φ]. While the ordinary effective action Γ[Ψ∗,Ψ] is derived from a
Legendre transformation of the generating functional of the theory, W [η, η∗], in which
additional source terms ηψ∗ + η∗ψ have been added to the action, the higher effective
action is obtained from the Legendre transformation of a generating functional W [η, η∗, j,
K,K∗] in which additional sources have been added to the action coupled to the density
and the pair fields. The higher effective action will depend on the expectations of the
fields ψ, ψ∗, ρ ∝ ψ∗ψ,∆ ∝ ψψ and ∆∗ ∝ ψ∗ψ∗. At the end, it must merely be extremized,
and no extra functional integrals can cause any double counting of Feynman diagrams.
The expansion terms in the higher effective action are the two-particle irreducible vertex
functions of the theory.

Another method that also abandons the fluctuations of the collective fields in favor
of a collective classical field has been developed in recent years from a generalization of
a variational approach to path integrals [30] to all orders in perturbation theory. It was
extremely successful and has led to the most accurate theory of critical phenomena [31]
so far, named variational perturbation theory (VPT) (for a review paper see [32]).

A third method which has recently been proposed and applied [19, 20] uses the
combination of both fully fluctuating collective fields implied by the above dummy action

doi:10.1088/1742-5468/2014/01/P01003 6
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Apl cosh2 θ − Apair sinh2 θ for the particular value sinh θ = 1. This choice is preferable if
we want the mean-field approximation to exhibit excitations that have no energy gap, to
comply with the Nambu–Goldstone theorem. After a trivial change of the normalization
of plasmon and pair fields in the total action A+Apl cosh2 θ−Apair sinh2 θ one arrives at

A = Aψ[ψ∗, ψ] +Aϕ[ϕ] +A∆[∆,∆∗], (10)

with

Aψ[ψ∗, ψ] =

∫ β

0

dτ
∑
i

{
ψ∗(xi, τ)[∂τ − µ+ ϕ(xi, τ) cosh θ]ψ(xi, τ)

− 1

2
sinh θ[∆ψ∗(xi, τ)ψ∗(xi, τ) + ∆∗ψ(xi, τ)ψ(xi, τ)]

}
− J

∫ β

0

dτ
∑
i,j

ψ∗(xi, τ)ψ(xj, τ), (11)

Aϕ[ϕ] = −
∫ β

0

dτ
∑
i

ϕ2(xi, τ)

2U
, A∆[∆,∆∗] =

∫ β

0

dτ
∑
i

∆(xi, τ)∆∗(xi, τ)

2U
. (12)

At the level of the fully fluctuating fields ϕ, ∆, ∆∗, the parameter θ is still arbitrary;
this will be fixed in section 2.1.

Now we consider separately two regions, with and without a condensed phase.

2.1. The condensed phase

In this phase, the U(1) gauge symmetry is spontaneously broken. It can be studied after
a Bogoliubov shift of the field [33]

ψ(xi, τ) = ψ0 + ψ̃(xi, τ), (13)

with

ψ0 =
√
νn0, (14)

where the n0 = N0/N is the condensate fraction. It is a constant in the absence of a
magnetic trap. The fluctuating field ψ̃(x, τ) must satisfy the condition∫ β

0

dτ
∑
i

ψ̃(xi, τ) = 0. (15)

Substituting (13) into (11), and decomposing the quantum field ψ̃(xi, t) into its real and
imaginary parts ψ1(xi, t) and ψ2(xi, t) as follows:

ψ̃(xi, t) =
1√
2

(ψ1(xi, t) + iψ2(xi, t)),

ψ̃∗(xi, t) =
1√
2

(ψ1(xi, t)− iψ2(xi, t)),
(16)

doi:10.1088/1742-5468/2014/01/P01003 7
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we may separate the action as follows:

A = A0 +A2 +A∆ +Aϕ, (17)

with

A0 = −Nsβνn0(µ+ Jz0)

+ νn0

∑
i

∫ β

0

dτ
[
cosh θϕ(xi, τ)− 1

2
sinh θ (∆(xi, τ) + ∆∗(xi, τ))

]
, (18)

A2 = 1
2

∑
i

∫ β

0

dτ
∑

a,b=1,2

[
iεabψ̃a(xi, τ)∂τ ψ̃b(xi, τ) + ψ̃a(xi, τ)Xaψ̃b(xi, τ)δab

]
− J

2

∫ β

0

dτ
∑
〈i,j〉

∑
a

ψ̃a(xi, τ)ψ̃a(xj, τ), (19)

where A∆ and Aϕ are given in equation (12), εab is an antisymmetric tensor with ε12 =
−ε21 = 1, z0 = 2d, and

X1 = −µ+ ϕ(xi, τ) cosh θ − 1
2

sinh θ (∆∗(xi, τ) + ∆(xi, τ)) ,

X2 = −µ+ ϕ(xi, τ) cosh θ + 1
2

sinh θ (∆∗(xi, τ) + ∆(xi, τ)) .
(20)

For a homogeneous system the condensate is uniform and it is convenient to decompose
the fluctuations into a Fourier series as follows [34, 35]:

ψ̃a(xi, τ) =
1

β
√
Nd

s

∑
q,ωn

′
∫ β

0

ψa(q, ωn)e−iωnτ exp [ixipq] (21)

where the ωn = 2πnT are Matsubara frequencies, and pq ≡ {q1, q2, . . . , qd} 2π/Nsa, with
qi running from 1 to Ns − 1, are the discrete-valued momentum vectors in the Brillouin
zone. The momentum sum is explicitly

1

Ns

∑
q

′ ≡ 1

Nd
s

Ns−1∑
q1=1

Ns−1∑
q2=1

· · ·
Ns−1∑
qd=1

. (22)

The prime on the symbol indicates that the p = 0-mode is omitted since it is contained in
the subtracted ψ0. This will be useful for avoiding possible infrared divergencies, especially
for d < 3.

In momentum space, the quadratic term A2 reads

A2 = 1
2

∑
q,q′,m,n

ψa(q, ωn)G−1
ab (q, ωn; q′, ωm)ψb(q

′, ωm), (23)

with the propagator

G(ωn,q) =
1

ω2
n + E2(q)

(
ε(q) +X2 − Jz0 ωn

−ωn ε(q) +X1 − Jz0

)
, (24)

doi:10.1088/1742-5468/2014/01/P01003 8
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where the bare dispersion ε(q) and phonon dispersion E(q) are given by

ε(q) = 2J

(
d−

d∑
α=1

cos(2πqα/Ns)

)
, (25)

E(q) =
√

(X1 + ε(q)− Jz0)(X2 + ε(q)− Jz0). (26)

In the long-wavelength limit, ε(q) behaves like

ε(q) ≈ J
4π2

N2
s

q2 = Ja2p2 + · · · . (27)

By comparison with the usual momentum dependence of a free single-particle energy
p2/(2M), we identify the particle mass M = 1/(2Ja2).

Note that in coordinate space the Green function is defined by

Gab(xi, τ ; xj, τ
′) ≡ Gab(xi − xj, τ − τ ′)

= 〈ψa(xi, τ)ψb(xj, τ
′)〉

=
1

Nsβ

∑
n

∑
q

eiωn(τ−τ ′)eiq(xi−xj)Gab(ωn,q). (28)

The thermodynamics of the system can be calculated from the partition function Z, which
is a functional integral over all fields ψ1, ψ2, ϕ, and the ∆ and ∆∗:

Z =

∫
Dψ1Dψ2DϕD∆D∆∗e−A0−A2−A∆−Aϕ . (29)

The first integrations by ψ1 and ψ2 are Gaussian and may be evaluated easily by using
well-known formula∫
Dψ1Dψ2 exp

[
− 1

2

∑
a,b=1,2

∫
ψa(x)G−1

ab (x, y)ψb(y) dx dy

−
∫
j1(x)ψ1(x)dx−

∫
j2(x)ψ2(x) dx

]

=
√

DetG exp

[ ∑
a,b=1,2

∫
ja(x)Gab(x, y)jb(y) dx dy

]
. (30)

The integrations over the fluctuating collective fields, however, cannot be performed
exactly, since they are nontrivially contained in

√
DetG. As usual in these circumstances,

we resort to the saddle point approximation [27]3. In the absence of a trap, we may assume
the saddle point to lie at constant values of ϕ(xi, τ) and ∆(xi, τ):

ϕ(xi, τ) = ϕ0, ∆(xi, τ) = ∆∗(xi, τ) = ∆0. (31)

3 See section 4.3 in [36].
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Then the integrals over ψa become trivial and we may use the formula DetG = eTr lnG in
equations (29) and (30) to derive the following effective potential:

Ω =
T

2

∑
q

∑
n

ln(ω2
n + E2(q)) +Nsνn0(ϕ′ −∆) +

Ns∆
2

2U sinh2 θ
− Ns(ϕ

′ + µ+ Jz0)2

2U cosh2 θ
, (32)

with

∆ ≡ ∆0 sinh θ, ϕ′ = ϕ0 cosh θ − µ− Jz0. (33)

The spectrum of density fluctuations is now, from (26),

E2(q) = (ε(q) + ϕ′ −∆)(ε(q) + ϕ′ + ∆). (34)

The sum over p may be calculated for d = 3 by approximating (22) as follows:

1

Ns

∑
q

f(ε(q))→
∫ 1

0

dq1 dq2 dq3 f(εq), (35)

with the lattice dispersion:

εq = 2J
3∑

α=1

[1− cosπqα] . (36)

Note that on lattices, the momentum integrals are always finite, so there is no need
for renormalizing the coupling constant. This is in contrast to the case for atomic gases.
However, if we want to express the coupling constant in terms of the scattering length as

that is observable for low-energy atomic gases, where the quadratic coupling constant
g must be renormalized to a finite value gR by the addition of a diverging integral
1/gR = 1/g +

∫
d3p/(2π)3ε(p), the relation as = MgR/4π can be employed only after

a corresponding addition of a finite sum (see the remarks after equation (93)).
Another remark concerns the frequency sum in (32), which is initially divergent. In

fact, to evaluate a frequency sum such as
∑∞

n=−∞ ln(a2 + ω2
n) with ωn = 2πnT , one must

first differentiate it with respect to a, perform the summation over n, and integrate the
result over a [36]. This procedure gives an additional divergent constant, which may be
removed by an additive renormalization of the energy [37]. The subtraction can actually
be justified by calculating the path integral as a product of individual integrals for each
slice of a sliced time axis, as introduced originally by Feynman [36].

Therefore, in the thermodynamic potential Ω, one subtracts from Ω the one for the
‘ideal’ case:

Ω(U = T = 0) = 1
2

∑
q

(ε(q)− µ− Jz0) = 1
2

∑
q

(ε(q) + ϕ′), (37)

and deals only with the subtracted expression

Ωren = Ω(U, T )− Ω(U = 0, T = 0) = 1
2

∑
q

(E(q)− ε(q)− ϕ′) +Nsνn0(ϕ′ −∆)

+
Ns∆

2

2U sinh2 θ
− Ns(ϕ

′ + µ+ Jz0)2

2U cosh2 θ
+ T

∑
q

ln(1− e−βE(q)), (38)
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where we have performed summation via the Matsubara frequency by using formula

∞∑
n=−1

ln(ω2
n + a2) = aβ + 2 ln(1− e−βa) + divergent const. (39)

For brevity, we shall suppress writing down the subtraction in Ωren.
In equilibrium, the thermodynamic potential reaches a minimum with respect to

parameters n0, ϕ
′ and ∆. Thus we minimize Ω with respect to n0:

∂Ω

∂n0

= Nsν(ϕ′ −∆) = 0, (40)

and get

ϕ′ = ∆. (41)

Inserting this into (34) leads to the well-known Bogoliubov phonon dispersion

E(q) =
√
ε(q)

√
ε(q) + 2∆, (42)

which is linear in q for small momentum, thus respecting the Nambu–Goldstone theorem.
Minimizing the thermodynamic potential Ω with respect to ∆ gives the equation

∆ = U sinh2 θ

[
νn0 +

∆

Ns

∑
q

cq
E(q)

]
, (43)

where cq stands for

cq = 1
2

+ fβ(E(q)) = 1
2

coth (βE(q)/2), fβ(ω) = 1/(eβω − 1). (44)

Minimizing Ω with respect to ϕ′, thereby taking into account the relation ∂E(q)/∂ϕ′ =
(ε(q) + ϕ′)/E(q), gives the following equation:

Nsνn0 +
∑
q

[
(ε(q) + ϕ′)cq
E(q)

− 1

2

]
− Ns(ϕ

′ + µ+ Jz0)

U cosh2 θ
= 0. (45)

This will serve for determining the uncondensed fraction nu.

2.2. Normal and anomalous densities

According to the general rules of statistical mechanics, the total number of particles N is
conjugate to the chemical potential:

N = −
(
∂Ω

∂µ

)
T,V

. (46)

Applying this to (38) gives

N =
Ns(ϕ

′ + µ+ Jz0)

U cosh2 θ
. (47)
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Using (47) in (45), we obtain

N = Nsνn0 +
∑
q

[
(ε(q) + ϕ′)cq
E(q)

− 1

2

]
≡ N0 +Nu. (48)

Here N0 is a total number of condensed atoms, and n0 = N0/Nsν is the condensate
fraction. The uncondensed atoms have a fraction

nu =
Nu

N
=

1

νNs

∑
q

[
(ε(q) + ϕ′)cq
E(q)

− 1

2

]
. (49)

It satisfies the trivial relation n0 + nu = 1.
Note that the term −1

2
in the square bracket of (49) is due to the renormalization

procedure (38), and guarantees that at T = 0 all particles of the ideal gas (which has
U = 0 and ∆ = 0) are condensed, so nu(U = 0, T = 0) = 0.

When the U(1) gauge symmetry is broken, a Bose system is characterized not only
by the expectation values of the fluctuating part of the ψ-field with the normal density
nu = 〈ψ̃∗ψ̃〉, but also with an anomalous density, defined by

δ(xi, τ, xj, τ
′) = 〈ψ̃(xi, τ)ψ̃(xj, τ

′)〉. (50)

Clearly, for a homogeneous system in equilibrium, and in particular, for periodic optical
lattices without a magnetic trap, δ does not depend on the coordinates, i.e. δ(xi, τ, xj,
τ ′) = const as was emphasized in [38]. Omission of the anomalous averages makes all
calculations not self-consistent, the dynamics non-conserving, and the thermodynamics
incorrect. It ruins the order of the phase transition and renders the system unstable.
It was also shown in [38] that a δ = 0 type of mean-field approach referred to in the
literature as Hartree–Fock–Popov (HFP) approximations [24] leads to a discontinuity in
the magnetization curve for antiferromagnetic material with the triplon BEC. Thus we
must always allow for δ 6= 0.

Let us calculate this expectation value from the formula

δ =
1

ν
〈ψ̃(xi, τ)ψ̃(xi, τ)〉 =

1

2ν
[〈ψ̃1(xi, τ)ψ̃1(xi, τ)〉 − 〈ψ̃2(xi, τ)ψ̃2(xi, τ)〉]

1

2ν
[G11(0)−G22(0)]. (51)

In momentum space, the propagator can be rewritten as

Gab(ωn,q) =
1

ω2
n + E2(q)

(
ε(q) + 2∆ ωn
−ωn ε(q)

)
, (52)

where we used equations (20), (24), and (42). Using in (51) the equations (28) and (52),
one obtains

δ =
1

2νNsβ

∑
n

∑
q

2∆

ω2
n + E2(q)

=
∆

νNs

∑
q

cq
E(q)

=
∆

νNs

∑
q

1

E(q)

(
1

2
+

1

eβE(q) − 1

)
. (53)
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In terms of δ, the ∆-equation (43) may be rewritten in the following compact form:

∆ = Uν(n0 + δ) sinh2 θ, (54)

with n0 = 1− nu, and nu given by (49).
It is well known that the Goldstone theorem for a dilute Bose gas with a spontaneous

broken symmetry is equivalent to the celebrated Hugenholtz–Pines theorem [39], according
to which the self-energy Σcl and the anomalous self-energy ∆cl satisfy

Σcl −∆cl = µ. (55)

In appendix A we shall show that a similar equation holds for optical lattices:

Σcl −∆cl = µ+ Jz0, (56)

with Σcl = ϕ0 cosh θ, ∆cl = ∆.
The only parameter that so far remains free in the initial action (11) is θ. It may be

chosen such that the quasiparticle energy E(q) reduces, in the one-loop approximation [18],
to the gapless Bogoliubov dispersion

E(q)one loop =
√
ε(q)

√
ε(q) + 2Uν. (57)

Indeed, in this approximation we get from (54), ∆ ≈ Uν sinh2 θ, and from (42), E(q) ≈√
ε(q)

√
ε(q) + 2Uν sinh2 θ. This is the place where we fix the θ to satisfy

sinh2 θ = 1, cosh2 θ = 2, (58)

as was announced earlier.
Summarizing this section, we present the full expression for Ω:

Ω =
1

2

∑
q

[E(q)− ε(q)−∆] +
Ns∆

2

2U
− Ns(∆ + µ+ Jz0)2

4U
+ T

∑
q

ln(1− e−βE(q)), (59)

with

µ = 2νU −∆− Jz0. (60)

The last equation follows from (47). The self-energy ∆ in (59) and (60) is defined through
the following set of nonlinear algebraic equations:

∆ = Uν(n0 + δ), n0 = 1− nu,

nu =
1

νNs

∑
q

[
cq(ε(q) + ∆)

E(q)
− 1

2

]
,

δ =
∆

νNs

∑
q

cq
E(q)

, (61)

where cq is given in (44) and U, J, ν, T are input parameters.
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2.3. The symmetric phase

When n0 = 0, the Hamiltonian (1) is symmetric under the transformation ψ → eiαψ and
equation (40) makes no sense. Then ϕ′ 6= ∆, and the energy spectrum has a gap with the
dispersion

E(q) =
√

(ε(q) + ϕ′ −∆)(ε(q) + ϕ′ + ∆). (62)

The main equations in this regime with T > Tc are

∆ = Uνδ, δ =
∆

νNs

∑
q

cq
E(q)

, ν =
1

Ns

∑
q

[
(ε(q) + ϕ′)cq
E(q)

− 1

2

]
. (63)

The set of equations (63) with the energy spectrum equation (62) may have a solution
∆ 6= 0, ϕ′ > ∆, leading to an exotic state with no condensate but with a finite anomalous
density: n0 = 0, δ 6= 0. It was shown in [23] that this phase has a nonzero SF fraction.
The upper boundary of such a state was denoted by T ∗, and was determined by solving
the equations (63) with ∆ = 0, ϕ′ > 0. Thus it was theoretically predicted that ultracold
dilute atomic gases possess a superfluid state at Tc < T ≤ T ∗ without Bose condensation
in the one-body channel [23]. However, to date, such states have not been observed
experimentally. In section 4 we shall investigate the possible existence of such a state
for optical lattices, with a negative outcome.

3. Variational perturbation theory in optical lattices

It is interesting to compare our result with those of variational perturbation theory [31].
To lowest order, this is equivalent to the HFB approximation used in the operator
formalism [40]. To do this, let us formulate the HFB approximation for optical lattices in
the functional integral framework.

The starting point is again (2) in which we perform the Bogoliubov shift (13) and
separate the action as follows:

A = A(0) +A(1) +A(2) +A(3) +A(4), (64)

where

A(0) = βNsνn0

[
U

2
νn0 − µ− Jz0

]
,

A(1) =
√
νn0[−µ− Jz0 + Uνn0]

∫
dτ
∑
i

(ψ̃(xi, τ) + ψ̃∗(xi, τ)),

A(2) =

∫ β

0

dτ

∑
i

ψ̃∗(xi, τ)[∂τ − µ]ψ̃(xi, τ) +
U

2
νn0

×
∑
i

[
ψ̃2(xi, τ) + 4ψ̃∗(xi, τ)ψ̃(xi, τ) + ψ̃∗(xi, τ)ψ̃∗(xi, τ)

]
− J

∑
〈i,j〉

ψ̃∗(xi, τ)ψ̃(xj, τ)

 ,

(65)
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A(3) = U
√
νn0

∫ β

0

dτ
∑
i

[ψ̃∗(xi, τ)ψ̃2(xi, τ) + ψ̃∗(xi, τ)ψ̃∗(xi, τ)ψ̃(xi, τ)],

A(4) =
U

2

∫ β

0

dτ
∑
i

[ψ̃∗(xi, τ)ψ̃(xi, τ)]2.

After this we add and subtract the following terms:

A(Σ) =

∫ β

0

dτ
∑
i

{
Σclψ̃

∗(xi, τ)ψ̃(xi, τ) + 1
2
∆cl[ψ̃

∗(xi, τ)ψ̃∗(xi, τ) + ψ̃(xi, τ)ψ̃(xi, τ)]
}
,

(66)

with variational parameters Σcl and ∆cl. The subscripts cl emphasize that these are
variational parameters which, in contrast to the earlier fields ϕ and ∆, are not meant
to be functionally integrated.

Using again real and imaginary parts of the complex fields ψ̃, ψ̃∗ as in (16), we rewrite
A as

A = A(0) +Afree +Aint, (67)

where

Afree = 1
2

∫ β

0

dτ
∑
i

∑
a,b=1,2

ψa(xi, τ)[iεab∂τ + Yaδab]ψb(xi, τ),

Aint = A(2)
int +A(3)

int +A(4)
int ,

A(2)
int = 1

2

∫ β

0

dτ
∑
i

{ψ2
1(xi, τ)[3Uνn0 − Σcl −∆cl]

+ ψ2
2(xi, τ)[Uνn0 − Σcl + ∆cl]},

A(3)
int = 1

2
U
√

2νn0

∫ β

0

dτ
∑
i

[ψ3
1(xi, τ) + ψ1(xi, τ)ψ2

2(xi, τ)],

A(4)
int = 1

8
U

∫ β

0

dτ
∑
i

[ψ2
1(xi, τ) + ψ2

2(xi, τ)]2,

(68)

where

Y1 = −µ− Jz0 + Σcl + ∆cl, Y2 = −µ− Jz0 + Σcl −∆cl. (69)

The free part of the action, Afree in equation (68), gives rise to the propagator to be used
in the perturbation expansion. In the momentum representation of the field equation (21),
the propagator is given by

G(ωn,q) =
1

ω2
n + E2(q)

(
εq + Y2 ωn
−ωn εq + Y1

)
, (70)

with E2(q) = (εq + Y1)(εq + Y2). One obtains, to lowest order,

Ω = −T lnZ = −T lnZ0 − T lnZfree + T 〈Aint〉, (71)
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where Z0 = e−A(0) , Zfree =
∫
Dψ1Dψ2e−Afree = 1/

√
DetG−1, 〈Aint〉 = {

∫
Dψ1Dψ2Aint

e−Afree}/Zfree.
Now we evaluate

〈ψ2
a(xi, τ)〉 = Gaa(0) =

σa
Ns

, 〈ψ4
a(xi, τ)〉 =

3σ2
a

N2
s

,

〈ψ2
1(xi, τ)ψ2

2(xi, τ)〉 =
σ1σ2

N2
s

, 〈A(3)
int〉 = 0,

(72)

with

σ1 = T
∑
q,n

εq + Y2

ω2
n + E2(q)

, σ2 = T
∑
q,n

εq + Y1

ω2
n + E2(q)

, (73)

and find the following thermodynamic potential:

Ω = Nsνn0

(
−µ− Jz0 +

U

2
νn0

)
+

1

2

∑
q

[E(q)− εd(q) + µ+ Jz0]

+ T
∑
q

ln(1− e−βE(q)) +
Uν

8N
[3σ2

1 + 3σ2
2 + 2σ1σ2]

+ 1
2
σ1(3Uνn0 − Y1 − Jz0 − µ) + 1

2
σ2(Uνn0 − Y2 − Jz0 − µ), (74)

where we have again subtracted Ω(T = 0, U = 0).
The parameters Σcl and ∆cl are now determined variationally by requiring that they

minimize the thermodynamic potential, i.e., we require ∂Ω/∂Σcl = 0 and ∂Ω/∂∆cl = 0 [41],
or equivalently

∂Ω

∂Y1

= 0,
∂Ω

∂Y2

= 0. (75)

These equations yield

Y1 = 3Uνn0 − µ− Jz0 +
U

2Ns

(3σ1 + σ2),

Y2 = Uνn0 − µ− Jz0 +
U

2Ns

(σ1 + 3σ2).
(76)

The gaplessness of the energy spectrum is now imposed by hand. In fact, by requiring the
relation (56), we get from (69) Y2 = 0, which leads to the dispersion

E(q) =
√
ε(q)

√
ε(q) + 2∆, (77)

where ∆ = Y1/2. This leads to the equations

∆ = Uνn0 +
U

2Ns

(σ1 − σ2), µ+ Jz0 = Uνn0 +
U

2Ns

(σ1 + 3σ2). (78)

Here, we draw the reader’s attention to the self-consistency of the HFB approximation as
far as the chemical potential is concerned. In fact, the stationary condition ∂Ω/∂n0 = 0
with Ω given by (74) leads to the following equation for µ:

µ+ Jz0 = Uνn0 +
U

2Ns

(3σ1 + σ2), (79)

which is in contrast to equation (78).
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To make the theory self-consistent, Yukalov and one of the authors [42] proposed
introducing two chemical potentials: namely, µ0, which corresponds to the equation (79),
and µ1, corresponding to equation (78). Being responsible for subsystems of condensed
and uncondensed particles respectively they, naturally, coincide in the normal phase,
where Y1 = Y2 = 0. In the present work, however, we follow the standard procedure
of identifying µ in (78) as a chemical potential from which we determine the particle
densities by differentiation of Ω.

3.1. The fractions nu and δ in VPT

Applying the well-known relation N = −∂Ω/∂µ to Ω in (74) gives

N = Nsνn0 +
∑
q

[
(ε(q) + ∆)cq
E(q)

− 1

2

]
≡ N0 +Nu, (80)

and hence

nu =
Nu

Ns

=
1

νNs

∑
q

[
(ε(q) + ∆)cq
E(q)

− 1

2

]
, (81)

where the E(q) is Bogoliubov’s dispersion given in (77).
For the anomalous density δ we obtain

δ =
1

ν
〈ψ̃(xi, τ)ψ̃(xi, τ)〉 =

1

2Nsβν
[G11(0)−G22(0)] =

(σ1 − σ2)

2Nsν
= − ∆

νNs

∑
q

cq
E(q)

, (82)

where we used equations (70) and (73).
Using now (82) in (78) gives the equation

∆ = Uν(n0 + δ), (83)

which is formally the same as the one before (54) with (58). The only difference between
these two approximations is in the sign of the anomalous density; we have, in general,
δ > 0 in the collective quantum field theory and δ < 0 in the HFB case.

Summarizing, we collect here the main equations in both approximations:

∆ = Uν(n0 + δ), n0 = 1− nu, (84)

δ = ξ
∆

νNs

∑
q

cq
E(q)

, (85)

E(q) =
√
ε(q)

√
ε(q) + 2∆, (86)

cq =
1

2
+

1

eβE(q) − 1
, (87)

µ = 2Uν −∆− Jz0, (88)

ξ =

{
−1, HFB
+1, two collective quantum fields and LOAF,

(89)

where nu is given by (81).
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Table 1. Critical parameters of Bose–Hubbard model versus filling factor ν in the
approach using two collective quantum fields. uc = (U/J)c is given in the second
row. The critical temperatures of ideal optical lattices for d = 3 are listed in units
of J in the third row. The fourth row presents approximated values of t0c (see
equation (96)).

ν 1 2 3 4 5
uc = (U/J)c 56.08 95.4 134.3 173 211.7
t0c = T 0

c /J 5.6 9.69 13.70 17.70 21.67
t0c in small q approximation 5.06 10.07 15.2 20.25 25.32

Note that similar relations hold for atomic gases. A difference occurs for the T > Tc

phase. There one may use replacements listed in appendix B. In fact, in the normal phase,
n0 = 0, HFB theory gives

∆ = Uνδ = −U∆

νNs

∑
q

cq
E(q)

. (90)

Since the right-hand side of this equation is negative, while the left-hand side is positive,
at least for optical lattices, equation (90) has only the solution ∆ = 0. This means that
in the normal phase n0 = 0 and δ = 0 (see equation (85)) simultaneously. Therefore HFB
theory does not predict a superfluid phase without a condensate, thus being in contrast
to the results obtained by Cooper et al in [23] at the mean-field level.

From the above discussions it is easy to understand that VPT gives no shift in Tc due
to interaction. In fact, when T → Tc, the condensed fraction n0 → 0, and hence ∆ → 0.
The expression for nu will coincide with that for the ideal gas, i.e., equation (81) becomes

ν =
1

Ns

∑
q

1

eβε(q) − 1
≡ 1

Ns

∑
q

1

eε(q)/T 0
c − 1

, (91)

which means that Tc = T 0
c for the HFB case and, hence, ∆Tc = Tc − T 0

c = 0.

4. Results and discussion

4.1. The quantum phase transition in the theory with two collective quantum fields and
VPT

First we discuss the existence of QPT in optical lattices for two collective quantum fields
at the mean-field level and for the HFB approximation. It has been shown that for dilute
atomic Bose gases the collective quantum field approximation does not predict a QPT [20]
while the HFB case does [38]. Below we show that in the case of d = 3 optical lattices the
situation is vice versa. This can be understood in the following way. Let us rewrite the
main equation at T = 0 as

n0(∆) =
∆

Uν
− δ(∆). (92)
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Figure 1. The condensed fraction n0 at zero temperature as a function of u = U/J
for various filling factors, ν. It is seen that n0 goes to zero smoothly and vanishes
at ucrit. This may be compared with the following results from Gutzwiller’s
approximation: ucrit(ν = 1) = 34.97, ucrit(ν = 2) = 59.39, ucrit(ν = 3) = 83.56,
ucrit(ν = 4) = 107.66.

It is clear that for an interacting system, U 6= 0 and ∆ 6= 0. Since in the collective quantum
field theory δ(∆) > 0, equation (92) may have the solution n0(∆) = 0 with ∆ 6= 0 (see
table 1). However, in the HFB approximation δ(∆) < 0, and n0(∆) in (92) may have
as the only solution n0 > 0 for ∆ 6= 0. Note that in the case of dilute atomic gases at
T = 0 [43]

δ(∆) =

−8ρ
√
γ/π < 0 two collective quantum fields

+8ρ
√
γ/π > 0 HFB,

(93)

with the dimensionless gas parameter γ = a3
sρ that characterizes the interaction strength

of the gas after renormalization. It is formed from the s-wave scattering length as and the
particle density ρ. This sign change is responsible for the dilute atomic gases having a
QPT in the HFB approximation, but not in the theory with two collective quantum fields
at the mean-field level. In figure 1, the condensed fraction n0 as a function of u = U/J
is presented for ν = 1, 2, 3, 4. This may be compared with ucrit = 6(

√
ν +
√
ν + 1)2 given

in Gutzwiller’s approximation. It is seen that although the theory with two collective
quantum fields predicts a rather large value for ucrit (see table 1), it gives a desirable
second-order phase transition.

4.2. The critical temperature T 0
c for ideal cases

Before we study the shift of Tc, let us estimate the critical temperature T 0
c for the free

optical lattice with U = 0. Assuming ∆ = 0 in equation (63), we obtain the well-known
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formula

ν =

∫ 1

0

dq1 dq2 dq3
1

eεq/T 0
c − 1

. (94)

Introducing dimensionless parameters t0c = T c0/J, ε̂q = εq/2J =
∑3

α=1(1 − cosπqα), we
may rewrite (94) as

ν =

∫ 1

0

dq1 dq2 dq3
1

e2ε̂q/t0c − 1
(95)

which can be considered as a nonlinear equation for t0c at a given filling factor ν. Our
numerical estimations for t0c are given in table 1. It is seen that for ν = 1, T 0

c = 5.6J ,
which is in consistent with other estimates given in [3, 33].

Note that T 0
c can be approximated as T 0

c = 5.6Jν0.825 in the range ν ∈ (1, 5) including
also non-integer values. In the third row of table 1, approximated values of t0c are presented.
The approximation, say, the spherical approximation at small momentum, is obtained by
making the following replacements in (95):∫ 1

0

dq1 dq2 dq3 f(q)→ π

2

∫ qd

0

q2dq f(q), ε̂q →
π2

2
q2, (eεq/T

0
c − 1)−1 → T 0

c

ε(q)
, (96)

where the Debye momentum qD defined by the equation

1 =

∫ 1

0

dq1 dq2 dq3 =
π

2

∫ qd

0

q2dq, (97)

equals qd = (6/π)1/3 ≈ 1.24 for d = 3. This gives T 0
c /J = 2νπ(π/6)1/3. It is seen that this

approximation works with roughly 10% accuracy for ν ≤ 3.

4.3. The shift in Tc caused by the interaction

We are now prepared for estimating the shift ∆Tc/T
0
c = (Tc−T 0

c )/T 0
c analytically. Above

we have shown that the shift ∆Tc/T
0
c = 0 for VPT or equivalently for the HFB case. For

LOAF, the integrals in the main equations are dominated by small momenta. At T → Tc

for n0 = 0, nu = 1 they are given by

∆ = U∆

∫ 1

0

dq1 dq2 dq3
fB(E(q))

E(q)
, (98)

1 =
1

ν

∫ 1

0

dq1 dq2 dq3
(εq + ∆)

E(q)
fB(E(q)), (99)

with E(q) =
√
εq
√
εq + 2∆, fB(E(q)) = 1/(eβcE(q) − 1), βc = 1/Tc.

Note that in (98) we may assume ∆ 6= 0 and divide both sides of (98) by ∆. The
critical temperature of ideal gas T 0

c is the solution of equation (99) with ∆ = 0, i.e.,

1 =
1

ν

∫ 1

0

dq1 dq2 dq3

eεq/T 0
c − 1

. (100)
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Now we introduce dimensionless variables:

∆ = u2κ2T 0
c , Tc = T 0

c α, T 0
c = Jt0c, εq = 2Jε̂q, E(q) = 2J Ê(q), (101)

with ε̂q =
∑

α(1 − cosπqα), Ê(q) =
√
ε̂q
√
ε̂q + u2κ2t0c,∆Tc/T

0
c = α − 1 and t0c given in

the third row of table 1.
The scaled equations can be rewritten as follows:

0 = 1− u

2

∫ 1

0

fB(Ê(q))dq1 dq2 dq3

Ê(q)
, (102)

0 = 1− 1

ν

∫ 1

0

dq1 dq2 dq3
ε̂q + u2κ2t0c/2

Ê(q)
fB(Ê(q)), (103)

with fB(Ê(q)) = 1/(e2Ê(q)/αt0c − 1).
Bearing in mind (100), we may rewrite (103) as∫ 1

0

dq1 dq2 dq3

{
1

e2Ê(q)/t0c − 1
− ε̂q + u2κ2t0c/2

Ê(q)(e2Ê(q)/αt0c − 1)

}
= 0. (104)

The nonlinear equations (102) and (104) should be solved with respect to κ and α
with given numbers u = U/J and t0c. To do this we make replacements (96). Then
equations (102) and (104) can be rewritten as

1− uαt0c
4
√

2π2

∫ εD

0

dε√
ε(ε+ u2κ2t0c)

= 0, (105)∫ εD

0

dε√
ε

{
1− α(ε+ u2κ2t0c/2)

ε+ u2κ2t0c

}
= 0, (106)

where εD = π2q2
D/2 = (π2/2)(6/π)2/3.

The integrations in (105) and (106) are easily done and yield

0 =
√

2(6π2)1/3(1− α) + uακ
√
t0c arctan θ̃ (107)

0 = 4π2κ−
√

2α
√
t0c arctan θ̃, (108)

where θ̃ =
√

2(6π2)1/3/(2κu
√
t0c). Excluding α from (108) and inserting it into (107) gives

α =
2
√

2π2κ√
t0c arctan θ̃

, (109)

0 = 4κπ8/361/3 −
√

2t0c[(6π2)1/3 + 2uκ2π2] arctan θ̃. (110)

Now we consider separately two regimes:

(1) The weakly interacting regime. Expanding (109) and (110) in linear order of u we get

α =
4π2κ

√
2√

t0c
+

8κ2u

3

(
6

π

)2/3

, (111)
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Figure 2. Behavior of Tc (in units of J ) as a function of U/J in the saddle point
approximation for the theory with two collective fields for ν = 1. The circles show
experimental values given in [4], and the solid diamonds are from the Monte Carlo
calculations of [3]. Note the initial rise that was found also in atomic gases in [22].

κ =

√
2t0c

8π
. (112)

Now inserting κ into (111) we finally obtain

α = 1 +
ut0c
12

(
6

π4

)2/3

+O(u2), (113)

and hence

∆T

T 0
c

= α− 1 =
ut0c
12

(
6

π4

)2/3

+O(u2), (114)

which means that for small coupling constant, i.e. (U/J) < 1, the shift is positive and
increases with U/J .

(2) The strongly interacting regime. In this region, ∆/u2 and, hence, κ is small, so we
may use a linear approximation in κ in equations (109), (110):

α =
4π2κ

√
2√

t0c
, (115)

0 =

√
2t0c(6π5)1/3

2
− κ[2ut0c + 4(6π8)1/3]. (116)

This leads to the following equation:

α =
2π8/361/3

ut0c + 2π8/361/3
=
Tc

T 0
c

, (117)
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Figure 3. The same curves as in figure 1 but for ν = 1, 2, 3, 4, 5.

Figure 4. The critical ∆c versus u for various filling factors ν.

from which one may conclude that Tc decreases with increasing u, i.e.

∆Tc

T 0
c

= α− 1 = − ut0c
ut0c + 2π8/361/3

< 0. (118)

Thus, our analytical estimate shows that the critical temperature Tc as a function of
the coupling constant U, i.e. the function T (u), first increases and then decreases with
increasing u for optical lattices. The suppression of Tc at large coupling constant is in
agreement with experimental measurements [4].

In figure 2 we present Tc (in units of J ) versus u for ν = 1. The solid line corresponds to
the exact numerical calculation, i.e., the numerical solutions of equations (98), (99). The
experimental points (circles) are taken from [4], and solid diamonds are from Monte Carlo
calculations taken from [3]. The suppression of Tc at large coupling constant is found for
integer ν ≥ 1 also, as is seen in figure 3.
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In figure 4 we present the critical values of the self-energy ∆c = ∆(T = Tc) in units of
J versus (U/J). Observe that when J is fixed, ∆c increases with increasing u and ν. On
the other hand we observed that ∆c in units of T 0

c (ν), i.e. ∆c(T = Tc)/T
0
c (ν) versus u, is

almost independent of ν, e.g., (∆c/T
0
c )|ν=1 = 7.656 and (∆c/T

0
c )|ν=4 = 7.780 at u = 42.0.

Now we consider the behavior of ∆ for T > Tc. It was suggested by Cooper et al [23]
that in the temperature range T ∈ (Tc, T

∗) there exists a U(1) symmetric phase with n0 = 0
but δ 6= 0. This would imply the existence of a superfluid state without a condensate.
However, in solving (63) for ∆ and ϕ′, we could not find, for optical lattices, any solution
with ∆ 6= 0, ϕ′ 6= 0. Instead, the equations for T > Tc have a solution with ∆ = 0,
ϕ′ = 2Uν − Jz0 − µ. In this normal state with δ = 0, the filling factor that characterizes
the particle density is determined by the well-known equation

ν =
1

Ns

∑
q

1

eβ(εq−2Uν−Jz0−µ) − 1
=

∫ 1

0

dq1 dq2 dq3
1

eβ(εq−2Uν−Jz0−µ) − 1
, (119)

with the bare dispersion εq = 2J
∑3

α=1(1− cosπqα).
The chemical potential of interacting bosons in T > Tc may be evaluated self-

consistently from equation (119) with input parameters ν, J, U , and T, or given by
an external field (pumping) as in the case of triplons [24, 25].

5. Conclusion

In this paper we have developed a collective quantum field theory and variational
perturbation theories for d = 3 optical lattices at very low temperatures. Both
approximations satisfy the Hugenholtz–Pines theorem. We have shown that a treatment
with two collective quantum fields in the saddle point approximation predicts a second-
order quantum phase transition that is missed in the VPT [44]. Unfortunately, the
predicted critical value of (U/J)c, e.g. for ν = 1, is nearly twice as large as the experimental
one. Note that the main equations of the previously mentioned approximation LOAF [19]
(recall section 1) and VPT are formally the same. The difference is in the sign of the
anomalous density δ, as is seen from equations (84)–(89). We obtained an analytical
estimation for the shift of the critical temperature Tc due to the point interaction,
for both weak and strong interactions. It is zero for VPT, while it has a nontrivial
dependence on the coupling strength (U/J) in the collective quantum field treatment as
well as in the LOAF approximation. The general behavior of the phase diagram compares
qualitatively well with existing experimental and ab initio quantum Monte Carlo results.
Similar behaviors, e.g. suppression of the critical temperature at large gas parameter
for homogeneous interacting Bose gases, have also been found in path-integral Monte
Carlo simulations [45]. As to the dependence of the critical temperature on the filling
factor, Tc/T

0
c increases with increasing ν at fixed U/J . From figures 1 and 2 one may

conclude that in order to describe the phase transitions in optical lattices more accurately,
the present theory should be extended beyond the saddle point approximation used in
equation (31), or in the spirit of B-DMFT [15]. We have found no exotic superfluid
state with finite anomalous density but zero condensate. Therefore, the temperatures T ∗

and Tc introduced by Cooper et al [23] coincide. The system is in a superfluid state for
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0 ≤ T ≤ Tc, and in a normal state for T > Tc. It is natural that the condensation will
always be present in the one-body channel (see equation (13)).
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Appendix A

Below we derive the Hugenholtz–Pines theorem

Σcl −∆cl = µ+ Jz0, (A.1)

of section 2 for optical lattices. The normal, Σcl, and anomalous, ∆cl, self-energies
in (A.1) correspond to the normal, Gn(r, r′) = 〈Tτ ψ̃(r)ψ̃+(r′)〉, and anomalous, Gan(r,
r′) = −〈Tτ ψ̃(r)ψ̃(r′)〉, Green functions respectively. In the Cartesian parameterization of
the quantum field (16) we have

Σcl = 1
2
[Π11 + Π22], (A.2)

∆cl = 1
2
[Π22 − Π11], (A.3)

where the Πab are defined by Dyson–Beliaev equations [46]:

(Ĝ−1)ab − (Ĝ−1
0 )ab = Πab, (A.4)

and the Green function Ĝ0 corresponds to the noninteracting situation:

G−1
0 (ωn,q) =

(
ε(q)− µ− Jz0 −ωn

ωn ε(q)− µ− Jz0

)
. (A.5)

The interacting Green function Ĝ−1 is defined in equation (24). Using (20), (33), (24), (A.5)
in (A.4) gives

Π11 = X1 + µ = cosh θϕ0 −∆, Π22 = X2 + µ = cosh θϕ0 + ∆,

Π12 = Π21 = 0. (A.6)

Inserting (A.6) into (A.2) and (A.3), one derives

Σcl = ϕ0 cosh θ, ∆cl = ∆, (A.7)

and hence

Σcl −∆cl = ϕ0 cosh θ −∆ = ϕ′ + µ+ Jz0 −∆, (A.8)

where we have used equation (33). As has been shown in section 2, in the condensed phase
ϕ′ = ∆, and equation (A.8) becomes equivalent to the Hugenholtz–Pines theorem, i.e. to
equation (A.1).

The relation (A.1) in the HFB approximation can be proved in a similar way.
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Appendix B

Here we present the formal equivalence between the Bose–Hubbard Hamiltonian (1) in
the Wannier representation and the standard Hamiltonian for homogeneous dilute atomic
gases:

H =

∫
dr Ψ†(r)

[
−
~∇2

2m
− µ

]
Ψ(r) +

g

2

∫
dr [Ψ†(r)Ψ(r)]2, (B.1)

where g is the constant of contact interatomic interaction. Using the replacements listed
in table B.1 we obtain for Ω and the extremality equations for dilute atomic gases versus
optical lattices the relevant quantities as derived in sections 2 and 3. Of course, an
appropriate renormalization procedure is implied for dilute atomic gases.
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