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The Purely Geometric Part of “Dark Matter”–
A Fresh Playground for “String Theory”
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Abstract: We argue that part of “dark matter” is not made of matter, but of the singular

world-surfaces in the solutions of Einstein’s vacuum field equation Gμν = 0. Their Einstein-

Hilbert action governs also their quantum fluctuations. It coincides with the action of closed

bosonic “strings” in four spacetime dimensions, which appear here in a new physical context.

Thus, part of dark matter is of a purely geometric nature, and its quantum physics is governed

by the same string theory, whose massless spin-2 particles interact like the quanta of Einstein’s

theory.
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Dark matter was postulated by F. Zwicky in 1933 to explain the “missing mass” in the

orbital velocities of galaxies in clusters. Later indications came from measurements of the

orbital motion of stars inside a galaxy, where a plot of orbital velocities versus distance

from the center was attributed to large amounts of invisible matter. The Friedmann

model of the evolution of the universe indicates that dark matter constitutes a major

percentage of the mass energy of the universe, and there are many speculations as to its

composition. In this note we want to propose the simplest possible explanation of a part

of it.

As a warm-up, let us remember that all static electric fields in nature may be consid-

ered as originating from the nontrivial solutions of the Poisson equation for the electric

potential φ(x):

Δφ(x) = 0. (1)
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The simplest of them has the form e/r, and is attributed to a pointlike electric charges,

whose size e can be extracted from the pole strength of the singularity. This becomes

visible by performing a spatial integral over Δφ(x), which yields −4πe, after applying

Gauss’s integral theorem. Hence the right-hand side of the Poisson equation is not strictly

zero, but should more properly be expressed with the help of a Dirac-delta function δ(3)(x)

as

Δφ(x) = −4πeδ(3)(x). (2)

For celestial objects, the situation is quite similar. The Einstein equation in the

vacuum, Gμν = 0, possesses simple nontrivial solutions in the form of the Schwarzschild

metric defined by

ds2 = gμνdx
μdxν = (1− rS/r)c

2dt2 − (1− rS/r)
−1dr2

− r2(dθ2 + sin2 θdϕ2), (3)

with rS ≡ 2GM/c2 being the Schwarzschild radius, or its rotating generalization, the

Kerr metric. Also here we may calculate the spacetime integral over the homogeneous

Einstein equation, to find a nonzero result, namely
∫

d3xG0
0 = κcM, (4)

where κ is the gravitational constant defined in terms of Newton’s constant GN, or the

Planck length lP, as

κ ≡ 8πl2P/� = 8πGN/c
3. (5)

From (4) we identify the mass of the object as being M .

If the mass point moves through spacetime along a trajectory parametrized by xμ(τ),

it has an energy-momentum tensor

T μν(y) = M

∫ ∞

−∞
dτ ẋμ(τ)ẋν(τ)δ(4)(y − x(τ)), (6)

where a dot denotes the τ -derivative. We may integrate the associated solution of the

homogeneous Einstein equation Gμν = 0 over spacetime, and find, using ẋ2 = 1, that

that its Einstein-Hilbert action

AEH = − 1

2κ

∫
d4x
√−gR, (7)

is proportional to the classical action of a point-like particle:

Aworldline
EH ∝ −Mc

∫
ds. (8)

A slight modification of (8), that is the same classically, but different for fluctuating

orbits, describes also the quantum physics of a spin-0 particle [1] in a path integral over
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all orbits. Thus Einstein’s action for a singular world line in spacetime can be used to

define also the quantum physics a spin-0 point particle.

In addition to pointlike singularities, the homogeneous Einstein equation will also

possess singularities on surfaces in spacetime. These may be parametrized by xμ(σ, τ),

and their energy-momentum tensor has the form

T μν(y) ∝
∫ ∞

−∞
dσdτ(ẋμẋν−x′μx′ν)δ(4)(y − x(σ, τ)), (9)

where a prime denotes a σ-derivative. In the associated Einstein tensor, the δ-function

on the surface leads to a volume integral [4]:
∫

d4x
√−g Gμ

μ∝
∫
d2a ≡ 1

2

∫
dσdτ(ẋ− x′2). (10)

By analogy with the line-like case we obtain for such a singular field an Einstein-Hilbert

action (7)

Aworldsurface
EH ∝ − 1

2κ

∫
d2a = − �

16πl2P

∫
d2a. (11)

Apart from a numerical proportionality factor of order one, this is precisely the Nambu-

Goto action of a bosonic closed string in four spacetime dimensions:

ANG = − �

2πl2s

∫
d2a, (12)

where ls is the so-called string length ls, related to the slope parameter α′ = dl/dm2 in

the string tension T ≡ 1/2πα′�c by ls = �c
√
α′. Note that in contrast to the world lines,

there is no extra mass parameter M .

After these observations we are prepared to propose the following procedure for quan-

tizing Einstein’s theory of gravitation. Rather than following the method that was suc-

cessful in quantizing electrodynamics where a sum over all fluctuations of the gauge

potential Aμ led to the desired result, we perform a sum over all configurations of pos-

sible closed world surface singularities of the Einstein tensor Gμν . For each of these

configurations we calculate the classical field configuration, and the associated Einstein

action AEH. Then we form the functional integral over the exponential eiAEH/�, and this

leads to a finite quantum field theory, as we know from the abundant work on fluctuating

strings.

Remember that the original string model was proposed to describe color-electric flux

tubes and their Regge trajectories whose slopes α′ lie around 1 GeV−2. However, since the
tubes are really fat objects, as fat as pions, only very long flux tubes are approximately

line-like. Short tubes degenerate into spherical “MIT-bags” [5]. The flux-tube role of

strings was therefore abandoned, and the action (12) was re-interpreted in a completely

different fashion, as describing the fundamental particles of nature, assuming lS to be of

the order of lP. Then the spin-2 particles of (12) would interact like gravitons and define

Quantum Gravity. But also the ensuing “new string theory” [2] has been criticized by
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many authors [6]. One of its most embarrassing failures is that it has not produced any

experimentally observable results. The particle spectra of its solutions have not matched

the existing particle spectra. The proposal of this note evades this problem. If “strings”

describe “dark matter”, there is no need to reproduce the spectra of particle observed so

far. Instead, their celebrated virtue, that their spin-2 quanta interact like gravitons, can

be used to fix the proportionality factor between the Einstein action action (11), and the

string action (12).

It must be kept in mind that just as −Mc
∫
ds had to be modified for fluctuating paths

[1], also the Nambu-Goto action (12) needs a modification, if the surfaces fluctuate. That

was found by Polyakov when studying the consequences of the conformal symmetry the

theory. He replaced the action (12) by a new action that is equal to (12) at the classical

level, but contains in D �= 26 dimensions another spin-0 field with a Liouville action.

Since the singularities of Einstein’s fields possess only gravitational interactions, their

identification with “dark matter” seems very natural. All visible matter consists of sin-

gular solutions of the Maxwell equations and the field equations of the standard model.

A grand-canonical ensemble of these and the smooth wave solutions of the standard

model explain an important part of the matter in the Friedmann model of cosmological

evolution.

But the main contribution to the energy comes from the above singularities of Ein-

stein’s equation. Soon after the universe was created, the temperature was so high that

the configurational entropy of the surfaces overwhelmed completely the impeding Boltz-

mann factors. Spacetime was filled with these surfaces in the same way as superfluid

helium is filled with the world-surface of vortex lines. In hot helium, these lie so densely

packed that the superfluid behaves like a normal fluid [7, 8]. The Einstein-Hilbert action of

such a singularity-filled turbulent geometry behaves like the action of a grand-canonical

ensemble of world surfaces of a bosonic closed-string model. Note that here these are

two-dimensional objects living in four spacetime dimensions, and there is definite need

to understand their spectrum by studying the associated Polyakov action, without cir-

cumventing the accompanying Liouville field by escaping into unphysical dimensions

It should be noted that in the immediate neighborhood of the singularities, the cur-

vature will be so high, that Einstein’s linear approximation −(1/2κ)R to the Lagrangian

must break down and will have to be corrected by some nonlinear function of R, that

starts out like Einstein’s, but continues differently. A possible modification has been

suggested a decade ago [9], and many other options have been investigated since then

[10].

After the big bang, the universe expanded and cooled down, so that large singular

surfaces shrunk by emitting gravitational radiation. Their density decreased, and some

phase transition made the cosmos homogeneous and isotropic on the large scale [11]. But

it remained filled with gravitational radiation and small singular surfaces that had shrunk

until their sizes reached the levels stabilized b quantum physics, i.e., when their fluctuat-

ing action decreased to order �. The statistical mechanics of this cosmos is the analog of

a spacetime filled with superfluid helium whose specific heat is governed by the zero-mass
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phonons and by rotons. Recall [12], that in this way Landau discovered the fundamental

excitations called rotons, whose existence he deduced from the temperature behavior of

the specific heat. In the universe, the role of rotons is played by the smallest surface-like

singularities of the homogeneous Einstein equation, whose existence we deduce from the

cosmological requirement of dark matter.

The situation can also be illustrated by a further analogy with a many-body system.

The defects in a crystal whose “atoms” have a lattice spacing lP simulate precisely the

mathematics of a Riemann-Cartan spacetime, in which disclinations and dislocations

define curvature and torsion [8, 13, 14]. Thus we may imagine a model of the universe

as a “floppy world crystal” [15], a liquid-crystal-like phase [16] in which a first melting

transition has led to correct gravitational 1/r-interactions between disclinations. The

initial hot universe was filled with defects—it was a “world-liquid”. After cooling down

to the present liquid-crystal state, there remained plenty of residual defects around, which

form our “dark matter”.

We know that the cosmos is filled with a cosmic microwave background (CMB) of

photons of roughly 2.725 Kelvin, the remnants of the big bang. They contribute to

the Friedmann equation of motion a constant Ωradh
2 = (2.47 ± 0.01) × 10−5, where

h = 0.72 ± 0.03 is the Hubble parameter, defined in terms of the Hubble constant H

by h ≡ H/(100 km/Mpc sec). The symbol Ω denotes the energy density divided by

the so-called critical density ρc ≡ 3H2/8πGN = 1.88 × 10−26h2 kg/m3 [17]. The baryon

density contributes Ωradh
2 = 0.0227 ± 0.0006, or 720 times as much, whereas the dark

matter contributes Ωdarkh
2 = 0.104±0.006, or 4210 as much. If we assume for a moment

that all massive strings are frozen out, and that only the subsequently emitted gravitons

form a thermal background [18] then, since the energy of massless states is proportional

to T 4, the temperature of this background would be TDMB ≈ 42101/4 ≈ 8TCMB ≈ 22K. In

general we expect the presence of also the other singular solutions of Einstein’s equation

to change this result.

There is an alternative way of deriving the above-described properties of the fluc-

tuating singular surfaces of Einstein’s theory. One may rewrite Einstein’s theory as a

gauge theory [8, 14], and put it on a spacetime lattice [19]. Then the singular surfaces

are built explicitly from plaquettes, as in lattice gauge theories of asymptotically-free

nonabelian gauge theories [20]. In the abelian case, the surfaces are composed as shown

in Ref. [21], for the nonablian case, see [22]. An equivalent derivation could also be given

in the framework of loop gravity [23]. But that would require a separate study beyond

this letter.

Summarizing we have seen that the Einstein-Hilbert action governs not only the

classical physics of gravitational fields but also, via the fluctuations of its line- and surface-

like singularites, the quantum physics of dark matter. A string-like action, derived from it

for the fluctuating surface-like singularites, contains interacting spin-2 quanta that define

a finite Quantum Gravity.
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