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The GIMP Nature of Dark Matter
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Abstract: We conjecture that dark matter consists of purely gravitational field singularities of

spacetime. These do not couple to any of the standard elementary particles via the gauge fields of

strong, electromagnetic, or weak interactions, but are subject only to gravitational interactions.

Thus, instead of searching in vane forWIMPs by means of ordinary particle-physics experiments,

one should try to detect GIMPs (Gravitationally Interacting Massive Particles). Their purely

gravitational nature explains their invisibility in ordinary elementary-particle experiments.
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Almost hundred years ago, in 1919, Einstein published a remarkable paper entitled

“Do Gravitational Fields Play a Significant Role in the Composition of Material Ele-

mentary Particles?” [1]. He thus asked this question long before any of the numerous

elementary particles was discovered. After their discovery, physicists thought for a long

time that the answer is negative. However, as we understand increasingly well the struc-

ture of the universe, the answer is rather an “almost yes”. Moreover, if we restrict his

title to the dark-matter part of the universe, which makes up about one third of the

universe, the answer seems to be “yes”.

Indeed, in 1933, Fritz Zwicky [2] plotted the orbital velocities of stars in the galaxy as

a function of their distance from the center and encountered an unexpected surprise: the

velocities do not decrease with distance in a way expected from the visible masses. This

made him postulate the existence of dark matter. In fact, the observed velocity curves

ask for large amounts of invisible matter in each galaxy. The presently best theoretical

fits to the data [3] are shown in Figs. 1 and 2.

If a Friedmann model [4] is used to explain the evolution of the universe, one needs
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a large percentage of dark matter, roughly 27% of the mass energy of the universe. If

dark matter is added to the so-called dark energy, which accounts for roughly 70% of the

energy, one finds that the visible matter is practically negligible (see Fig. 3). This is the

reason for ignoring visible atoms completely in the most extensive computer simulations

of the evolution of cosmic structures [5], the so-called Millennium Simulation.

In Fig. 4 we show the decomposition of matter when the universe became first trans-

parent to light. The largest chunk is that of dark matter. There are many speculations as

to what particles it may consist of. It is the purpose of this note to give the simplest pos-

sible explanation [6]. We argue that it is not made of any standard elementary particles.

Instead it consists of singular worldlines and worldsurfaces in the solutions of Einstein’s

vacuum field equation Gµν = 0. Their energy quanta appear as massive particles. If this

is done à la Feynman via functional integrals, the Einstein-Hilbert action which governs

spacetime also governs the fluctuations of these singular configurations of worldlines and

worldsurfaces.

Figure 1 (a) Velocity of stars in our Galaxy as a function of the distance from the center. Filled
triangles refer to the northern half, open squares to the southern half of the galaxy. Straight
lines are the best linear fits for R ≥ 25 arcmin to all data shown, once to the northern and once
to the southern data set. (b) The straight line is the best linear fit to all unbinned data for
R > 25 arcmin for the M33 rotation curve: Filled circles are from data displayed in (a), open
circles follow Newton’s theory, for comparison.

Let us remember that all static electric fields in nature may be considered as originat-

ing from nontrivial solutions of homogeneous Poisson equation for the electric potential

ϕ(x) as a function of x = (t,x):

∆ϕ(x) ≡ ∇ ·∇ϕ(x) = 0. (1)

The simplest of them has the form e/r, where r = |x|. It is attributed to pointlike electric

charges, whose size e can be extracted from the pole strength of the singularity of the

electric field E which points radially outward and has a strength e/r2. This becomes
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Figure 2 Velocity curve (points) of the galaxy M33 and comparison with a best fit model
calculation (continuous line). Also shown is the halo contribution (dashed-dotted line), the
stellar disk (short dashed line), and the gas contribution (long dashed line).

Figure 3 Various types of energy in the universe, (Credit NASA/WMAP Science Team).

Figure 4 Various gravitational sources when the Universe became transparent, Credit: same as
previous figure).

explicitly visible by performing an area integral over the E field around the singular-

ity.We apply the famousGauss integral theorem,∫
V

d3x∇ · E =

∫
A

d2a · E, (2)

and use the fact that the area integral is equal to the volume integral over∇·E = −∆ϕ(x).

Inserting this we see that the field which solves the homogeneous Poisson equation can

have a nonzero volume integral (2):
∫
V
d3x∆ϕ(x) = −4πe. This fact can be formulated

in a local way with the help of a Dirac delta-function δ(3)(x) as

∆ϕ(x) = −4πe δ(3)(x). (3)
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In the sequel, it will be useful to re-express the Gauss theorem (2) in a one-dimensional

form as ∫ R

dr∂rr
2Er(r) = R2Er(R). (4)

This is valid for all R, in particular for small R, where Er(R) = 4πe/R2. Then we can

express the combination of Eqs. (2) and (4) in radial form as∫
d3x∇·E=−4π

∫ R

dr r2∇·∇e/r=4πe

∫ R

dr ∂rδ(r). (5)

This implies that we can find the electric charge e from the integral over the radial Pois-

son equation:

e

∫ R

dr ∂rδ(r) = e. (6)

The integrand displays once more the homogeneous Maxwell equation in the presence of

a pointlike singularity ∇ · E = 4πe δ(3)(x) in a radial form.

For gravitational objects, the situation is quite similar. The Einstein equation in the

vacuum, Gµν = 0, possesses simple nontrivial solutions in the form of the Schwarzschild

metric defined by

ds2 = B(r)c2dt2 − A(r)dr2 − r2(dθ2 + sin2 θdφ2), (7)

with B(r) = 1− rS/r, A(r) = 1/B(r), where rS ≡ 2GNM/c2 is the Schwarzschild radius

and GN Newton’s gravitational constant. Its Einstein tensor has the component

Gt
t = A′/A2r − (1− A)/Ar2, (8)

which vanishes in the vacuum.

Let us now allow pointlike singularity in spacetime and calculate the volume integral∫
V
d3x

√
−gGt

t. Inserting (8) we find
∫
V
d3x

√
B/A[A′/Ar−(1−A)/r2]. If this is evaluated

with the gravitational singularities in the same way as in the electromagnetic case in

Eqs. (2)–(5), we find that it is equal to
∫ R

dr∂r(r − r/A) = (2GN/c)M
∫ R

dr∂rδ(r) =

(2GN/c)M . Thus we obtain the nonzero integral∫
V

d3x
√
−g Gt

t = κcM, (9)

where κ is defined in terms of the Planck length lP, as

κ ≡ 8πl2P/~ = 8πGN/c
3. (10)

From (9) we identify the mass of the object as being M .

If the mass point moves through spacetime along a trajectory parametrized by τ ≡∫
dt
√

(dx/dt)2/c2 as xµ(τ), it has an energy-momentum tensor concentrated on a world-

line

m

T
µν(x) = Mc

∫ ∞

−∞
dτ ẋµ(τ)ẋν(τ)δ(4)(x− x(τ)), (11)
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where a dot denotes the τ -derivative.

We may integrate the associated solution of the homogeneous Einstein equation Gµν =

0 over spacetime, and find that its Einstein-Hilbert action

AEH = − 1

2κ

∫
d4x

√
−gR (12)

vanishes. The situation is quite different, however, if we allow spacetime to be perforated

by singularities. For line-like singularities, the integral (12) in the Einstein-Hilbert action

looks as if it contains a δ-function-like source obeying Gµν = κ
m

Tµ
µ(x). If we insert here

the equation of motion of a point particle ẋ2(τ) = 1, we arrive from the field equation

R = −G = −κ
m

Tµ
µ(x) = −Mc

∫
dτ ẋ(τ)2δ(4)(x− x(τ)) at an action which is proportional

to the classical action of a point-like particle:

Aworldline
EH ∝ −Mc

∫
dτ. (13)

A slight modification of this, which is the same at the classical level but different

for fluctuating orbits, describes also the quantum physics of a spin-0 particle via a path

integral over all orbits2. Thus Einstein’s action for a singular world line in spacetime can

be used to define also the quantum physics of a spin-0 point particle.

In addition to pointlike singularities, the homogeneous Einstein equation will possess

also surface-like singularities in spacetime. These may be parametrized by xµ(σ, τ), and

their energy-momentum tensor has the form

T µν(x) ∝
∫ ∞

−∞
dσdτ(ẋµẋν−x′µx′ν)δ(4)(x− x(σ, τ)), (14)

where a prime denotes a σ-derivative. In the associated vanishing Einstein tensor, the

δ-function on the surface manifests itself in the nonzero spacetime integral [9]∫
d4x

√
−g Gµ

µ∝
∫

d2a ≡
∫
A

dσdτ
√

(ẋx′)2 − ẋ′2x′2. (15)

By analogy with the line-like case we obtain, for such a singular field configuration,

that the Einstein-Hilbert action (12) gives no longer zero, but reduces to a worldsurface

integral

Aworldsurface
EH ∝ − 1

2κ

∫
A

d2a = − ~
16πl2P

∫
A

d2a. (16)

The prefactor on the right-hand side has been expressed in terms of the Planck length

lP.

The important observation is now that, apart from a numerical proportionality factor

of order unity, the right-hand side of Eq. (16) is precisely the Nambu-Goto action [10, 11]

of a bosonic closed string in the true physical spacetime dimension four

ANG = − ~
2πl2s

∫
A

d2a. (17)

2 See the discussion in Section 19.1 of the textbook [8], in particular Eq. (19.10).



6 Electronic Journal of Theoretical Physics 13, No. 36 (2016) 1–12

In this formula, ls is the so-called string length parameter ls. It measures the string

tension, and corresponds in spacetime to a certain surface tension of the worldsurface.

This length scale can be related to the rather universal slope parameter α′ = dl/dm2 of

the Regge-trajectories [12]. These are found in plots of the angular momenta against the

squares of the meson masses m2. The relation between the string length parameter ls and

the slope parameter of the Regge theory is ls = ~c
√
α′. Note that now there is no extra

mass parameter M , this being in contrast to the situation in world lines. The masses of

elementary particles come from the eigenmodes of string vibrations.

The original string model was proposed to describe color-electric flux tubes and their

Regge trajectories whose slopes α′ lie around 1 GeV−2. However, since the tubes are

really fat objects, as fat as pions, only very long flux tubes are approximately line-like.

Short tubes degenerate into spherical “MIT-bags” [13]. The flux-tube role of strings was

therefore abandoned, and the action (17) was re-interpreted in a completely different

fashion, as describing the fundamental particles of nature, assuming lS to be of the order

of lP. Then the spin-2 particles of (17) would interact like gravitons and define Quantum

Gravity. However, the ensuing “new string theory” [14] has been criticized by many

authors [15]. One of its most embarrassing failures is that it has not produced any

experimentally observable results. The particle spectra of its solutions have not matched

the existing particle spectra.

The arisal of the string action proposed here has a chance of curing this problem. If

“strings” describe “dark matter”, there would be no need to reproduce other observed

particle spectra. Instead, their celebrated virtue of extracting the interaction between

gravitons from the properties of their spin-2 quanta can be used to fix the proportionality

factor between the Einstein action (16) and the string action (17).

It must be kept in mind that, just as −Mc
∫
dτ had to be modified for fluctuating

paths, also the Nambu-Goto action (17) needs a modification for fluctuating worldsur-

faces. That was found by Polyakov [16] when studying the consequences of conformal

symmetry. He replaced (17) by a new action that is equal to (17) at the classical level

but contains, in D ̸= 26 dimensions, another spin-0 field with a Liouville action.

Since the singularities of Einstein’s fields possess only gravitational interactions, their

identification with “dark matter” seems very natural. All visible matter consists of sin-

gular solutions of the Maxwell equations as well as of the field equations of the standard

model. A grand-canonical ensemble of these and the singular solutions without mat-

ter sources explain the most important part of all matter in the Friedmann model of

cosmological evolution.

But the main contribution to the energy comes from the above singularities of Ein-

stein’s equation. Soon after the universe was created, the temperature was so high that

the configurational entropy of the surfaces overwhelmed completely the impeding Boltz-

mann factors. Spacetime was filled with these surfaces in the same way as superfluid

helium is filled with worldsurfaces of vortex lines.

Vortex lines in superfluid helium are known to attract material particles such as

frozen helium. This phenomenon provides us with an important tool to visualize vortex



Electronic Journal of Theoretical Physics 13, No. 36 (2016) 1–12 7

lines and tangles thereof [17]. In spacetime, we expect that any stable neutral particle

will be attracted by its singularities. These could be the elusive objects which many

experimental particle physicists have been looking for in elaborate searches of WIMPs

[18]. If the conjecture of this paper is correct, they should rather be serching for GIMPs

(Gravitationally Interacting Massive Particles).

In helium above the temperature of the superfluid phase transition, these lie so densely

packed that the superfluid behaves like a normal fluid [19, 20]. The Einstein-Hilbert action

of such a singularity-filled turbulent geometry behaves like the action of a grand-canonical

ensemble of world surfaces of a bosonic closed-string model.

Note once more that here these are two-dimensional objects living in four spacetime

dimensions. There is definitely a need to understand their spectrum by studying the

associated Polyakov action. To be applicable in four physical dimensions one should not

circumvent the accompanying Liouville field. Or one must find a way to take into account

the fluctuations of the gravitational field around the field near the singular surface.

It should be realized that, in the immediate neighborhood of line- and surface-like

singularities, the curvature will be so high that Einstein’s linear approximation −(1/2κ)R

to the Lagrangian must break down. It will have to be corrected by some nonlinear

function of R. This starts out like Einstein’s, but continues differently, similar to the

action that was suggested some time ago in 2002 [21]. Since then, many modifications of

this idea have been investigated [22].

After the big bang, the universe expanded and cooled down, so that large singular

surfaces shrank by emitting gravitational radiation. Their density decreased, and some

phase transition made the cosmos homogeneous and isotropic on the large scale. But it

remained filled with gravitational radiation and small singular surfaces that had shrunk

until their sizes reached the levels stabilized by quantum physics. The statistical mechan-

ics of this cosmos can be described by analogy with a spacetime filled with superfluid

helium. The specific heat of that is governed by the zero-mass phonons and by rotons

[23]. Recall that in this way Landau discovered the fundamental excitations called ro-

tons, whose existence was deduced by him from the temperature behavior of the specific

heat. In the universe, the role of rotons is played by the smallest surface-like singularities

of the homogeneous Einstein equation. They must be there to satisfy the cosmological

requirement of dark matter.

The situation can also be illustrated by a further analogy with many-body systems.

The defects in a crystal, whose “atoms” have a lattice spacing lP, simulate precisely

the mathematics of a Riemann-Cartan spacetime, in which disclinations and dislocations

define curvature and torsion [19, 20, 24]. Thus we may imagine a model of the universe

as a “floppy world crystal” [25], a liquid-crystal-like phase [26] in which a first melting

transition has led to correct gravitational 1/r-interactions between disclinations. The

initial hot universe was filled with defects and thus it was in the “world-liquid”-phase of

the “world crystal”. After cooling down to the present liquid-crystal state, there remained

plenty of residual defects around, which form our dark matter [27, 28].

In the process of cooling down over a long time, the dark matter fraction can have
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decreased so that the expansion of the universe could have become faster and faster over

the millennia. Thus it is well possible that the baby universe had so much dark-matter

content that it practically did not expand at all for a long time. It would have been closer

to the steady-state universe advocated in 1931 by Einstein and in the 1940’s by Hoyle,

Bondi, and Gold [29]. This would relieve us from the absurd-sounding assumption that

the entire universe came once out of a tiny beginning in which all matter of the world

was compressed into a sphere of the order of a Planck radius.

We know that the cosmos is now filled with a cosmic microwave background (CMB)

of photons of roughly 2.725 Kelvin, the remnants of the big bang. They contribute a

constant Ωradh
2 = (2.47 ± 0.01) × 10−5 to the Friedmann equation of motion, where

h = 0.72± 0.03 is the Hubble parameter, defined in terms of the Hubble constant H by

h ≡ H/(100 km/Mpc sec). The symbol Ω denotes the energy density divided by the so-

called critical density ρc ≡ 3H2/8πGN = 1.88× 10−26h2 kg/m3 [30]. The baryon density

contributes Ωradh
2 = 0.0227 ± 0.0006, or 720 times as much, whereas the dark matter

contributes Ωdarkh
2 = 0.104 ± 0.006, or 4210 as much. Let us assume, for a moment,

that all massive strings are frozen out and that only the subsequently emitted gravitons

form a thermal background [31]. Then the energy of massless states is proportional to

T 4, and the temperature of this background would be TDMB ≈ 42101/4 ≈ 8TCMB ≈ 22K.

We expect the presence of other singular solutions of Einstein’s equation to change this

result.

There is an alternative way of deriving the above-described properties of the fluctuat-

ing singular surfaces of Einstein’s theory. One may rewrite Einstein’s theory as a gauge

theory [19, 20], and formulate it on a spacetime lattice [32]. Then the singular surfaces

are built explicitly from plaquettes, as in lattice gauge theories of asymptotically-free

nonabelian gauge theories [33]. In the abelian case, the surfaces are composed as shown

in Ref. [34]. For the nonabelian case, see [35]. An equivalent derivation could also be

given in the framework of loop gravity [36]. But that would require a separate study.

Summarizing we have seen that the Einstein-Hilbert action governs not only the

classical physics of gravitational fields but also, via the fluctuations of its line- and surface-

like singularities, the quantum physics of dark matter. A string-like action, derived from

it for the fluctuating surface-like singularities, contains interacting quanta of spin-2 which

define a finite Quantum Gravity.
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