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Our goal is to understand the phenomena arising in a Fermi liquid at low temperature in an
external magnetic field. Varying the field, the attraction between any two fermions can be made
arbitrarily strong until it reaches the unitarity limit, where composite bosons form via so-called
Feshbach resonances. By setting up strong-coupling equations for fermions, we find that in spatial
dimension d > 2 and the unitarity limit that they couple to a gas of bosons which dress up the
fermions and lead to new massive composite fermions. At low enough temperature, these form
tightly bound pair states which are new bosonic quasi-particles producing a condensate of Bose-
Einstein type. The mass of the new bosonic quasi-particles is much larger and the new condensate
happens at a much higher temperature. This may be the origin of high-Tc superconductivity and a
similar form of composite superfluidity.

PACS numbers: 71.27.+a, 71.10.Pm

Introduction. The attraction between any two
fermions can be tuned, as a function of an external mag-
netic field, and be made so strong that the coupling con-
stant reaches the unitarity limit of infinite s-wave scatter-
ing length via a Feshbach resonance. At that point, the
Cooper pairs, which form in the weak-coupling limit at
low temperature and make the system a superconductor,
become so strongly bound that they behave like elemen-
tary bosonic quasi-particles with a pseudogap at high
temperature, and form a new type of Bose-Einstein con-
densate (BEC). The problem of understanding a strong-
coupled Fermi gas has been investigated with reasonable
success, see review by Randeria and Taylor [1, 2]. In this
letter we shall argue that results should be corrected.

In addressing strong-coupling fermions at finite tem-
perature we incorporate the relevant s-wave scattering
physics via a “`0-range” contact potential in the Hamil-
tonian for spinor wave functions ψ↑,↓(x),

βH =

∫ β

0

dτ

∫
dx
[
H0−gψ†↑(x)ψ†↓(x)ψ↓(x)ψ↑(x)

]
,(1)

where x = (x, τ), and β = 1/T . The kinetic energy of
fermions with mass m and chemical potential µ is col-
lected in

H0 =
∑
σ=↑,↓

ψ†σ(x)[∂τ −∇2/2m− µ]ψσ(x). (2)

The attraction between the up- and down-spins is charac-
terized by a coupling constant g(Λ) > 0, where Λ = π`−1

0 ,
and the range `0 is usually much smaller than the lattice
spacing ` of the mean separation between two atoms.
The “bare” g(Λ) is related to a “renormalized” coupling
described by the s-wave scattering length a via the two-
particle Schrödinger equation at finite temperature T ,

m

4πa
= − 1

g(Λ)
+
T

V

∑
ωn,|k|<Λ

1

ω2
n + ε2k

= − 1

g(Λ)
+

1

V

∑
|k|<Λ

1

2εk
tanh

εk
2T

. (3)

Here ε2k = |k|2/2m denotes the energy of the free fermions
and

∑
ωn,|k|<Λ contains the phase-space integral, and the

sum over the Matsubara frequencies ωn = 2πTn for n =
0,±1,±2, · · · , as derived in Eq. (3.61) of textbook [3].
The second sum can be written in d dimensions as

4πa

mg(Λ)
=

akF

4πbh̄3Sd(T )− 1. (4)

In d = 3 dimensions, at half-filling electron density n ≈
1/`3 ≈ k3

F /3π
2h̄3, Fermi momentum kF ≈ (3π2h̄3)1/3/`,

and Fermi energy εF = k2
F /2m, we introduce the dimen-

sionless length parameter b = 2−1(3π2h̄3)1/3`0/` � 1,

and find S3(T ) ≡
∫ 1

0
dt tanh

[
εF
T
π2t2

8b2

]
and S3(0) = 1. For

low temperatures and small a, Eq. (3) reduces properly
to its well-known BCS version [4, 5].

As the attractive coupling g or the inverse scatter-
ing strength 1/akF increases, the Cooper pairs become
tightly composite bosons. They form a normal Bose liq-
uid, provided the temperature T is less than the crossover
temperature T ∗ of Cooper-pair formation.Otherwise, the
Cooper pairs dissociate into two fermions and form a nor-
mal Fermi liquid of unpaired fermions.These composite
bosons undergo the BEC and become superfluid, as T
decreases below the transition temperature Tc. The T ∗

diverges away from the Tc as the 1/akF increases. These
results are summarized in the phase diagram of T/εF
vs 1/akF [1, 4]. We study quasi-particle spectra for the
phase 1/akF ≥ 0, and discuss the ultra-violate (UV) scal-
ing domain in the unitarity limit 1/akF → 0±.

Strong-coupling limit and expansion. Inspired by
strong-coupling quantum field theories [7, 8], we calculate
the two-point Green functions of composite boson and
fermion fields to effectively diagonalize the Hamiltonian
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into the bilinear form of these composite fields, and find
the composite-particle spectra in the phase 1/akF ≥ 0.

The lattice representation of the Hamiltonian (1), for
one electron per cubic lattice site (half filling), reads

βH = β
∑

i,σ=↑,↓

(`d)ψ†σ(i)
[
−∇2/(2m`2)− µ

]
ψσ(i)

− gβ
∑
i

(`d)ψ†↑(i)ψ
†
↓(i)ψ↓(i)ψ↑(i), (5)

where each fermion field is defined at a lattice site “i” as
ψσ(i) = ψσ(x) and the index i runs over all lattice sites.
The fermion field ψσ has a length dimension [`−d/2], and
the coupling g has a dimension [`d−1]. The Laplace op-
erator ∇2 is defined as

∇2ψσ(i) ≡
∑

ˆ̀

[
ψσ(i+ ˆ̀) + ψσ(i− ˆ̀)

]
−2ψσ(i)

⇒ 2
[∑

ˆ̀

cos(k ˆ̀)− 1
]
ψσ(k) ≈ −k2`2ψσ(k), (6)

where ˆ̀ for l = 1, . . . , d indicate the orientated lattice
space vectors to the nearest neighbors, and the ψσ(k) is
the Fourier component of ψσ(i) in momentum k-space.
In the last line we assume that k2`2 � 1.

To calculate the expansion in strong-coupling limit,
here we relabel β`d → β and 2m`2 → 2m, so the
lattice spacing ` is set equal to unity; this rescales
ψσ(i) → (βg)1/4ψσ(i) and ψ†σ(i) → (βg)1/4ψ†σ(i), so
that the Hamiltonian (5) can be written as βH =∑
i [hH0(i) +Hint(i)], where the hopping parameter h ≡

β/(βg)1/2 and

H0(i) =
∑
σ=↑,↓

ψ†σ(i)(−∇2/2m− µ)ψσ(i), (7)

Hint(i) ≡ −ψ†↑(i)ψ
†
↓(i)ψ↓(i)ψ↑(i), (8)

and the partition function with expectation values

Z = Πi,σ

∫
dψσ(i)dψ†σ(i) exp(−βH), (9)

〈· · ·〉 = Z−1Πi,σ

∫
dψσ(i)dψ†σ(i)(· · ·) exp(−βH). (10)

Fermion fields ψ↑ and ψ↓ are one-component Grassman
variables with ψσ(i)ψσ′(j) = −ψσ′(j)ψσ(i) and integrals∫
dψσ(i)ψσ′(j) = δσ,σ′δij ,

∫
dψ†σ(i)ψ†σ′(j) = δσ,σ′δij , and

all others vanishing.
In the strong-coupling limit h → 0 for g → ∞ and

finite T , the kinetic terms (7) are neglected, the partition
function (9) becomes the one-site integral

Πi

∫
i↓

∫
i↑

exp(−Hint)=−Πi

∫
i↓
ψ↓(i)

†ψ↓(i) = (1)N , (11)

where N is the total number of lattice sites,
∫
i↑ ≡∫

[dψ†↑(i)dψ↑(i)] and
∫
i↓ ≡

∫
[dψ†↓(i)dψ↓(i)]. The lattice

hopping expansion can now be performed at strong cou-
plings in powers of the hopping parameter h.

Composite bosons. We first consider a composite
bosonic pair field C(x) = ψ↓(x)ψ↑(x) and study its two-
point function,

G(x) = 〈ψ↓(0)ψ↑((0), ψ†↑(x)ψ†↓(x)〉 = 〈C(0), C†(x)〉. (12)

Here the fermion fields are not re-scaled by (βg)1/4. The
leading strong-coupling approximation to (12) is G(x) =
δ(d)(x)/βg. The first correction is obtained by using the
one-site partition function Z(i) and the integral

〈ψ↑ψ↓〉≡
1

Z(i)

∫
i↓

∫
i↑
ψ↑(i)ψ↓(i)e

−hH0(i)−βHint(i) (13)

= h2
ave∑
ˆ̀

ψ↑(i; ˆ̀)

ave∑
ˆ̀′

ψ↓(i; ˆ̀′)≈h2
ave∑
ˆ̀

ψ↑(i; ˆ̀)ψ↓(i; ˆ̀),

where the non-trivial result needs ψ†↑,↓(i) fields in the

hopping expansion of e−hH0(i), and
∑ave

ˆ̀ ψσ(i; ˆ̀) ≡∑
ˆ̀

[
ψσ(i+ ˆ̀) + ψσ(i− ˆ̀)

]
. In Eq. (12), integrating over

fields ψ↑,↓(i) at the site “i”, the first corrected version
reads:

G(x) =
δ(d)(x)

βg
+

1

βg

(
β

2m

)2 ave∑
ˆ̀

Gnb(x; ˆ̀), (14)

where δ(d)(x) is a spatial δ-function and Gnb(x ± ˆ̀) is
the Green function (12) without integration over fields
ψσ at the neighbor site x. Note that the nontriv-
ial contributions come only from kinetic hopping terms
∝ (h/2m)2 = (1/βg)(β/2m)2 dimensionless parameter.
The chemical potential term µψ†σ(i)ψσ(i) in the Hamil-
tonian (7) does not contribute to the hopping.

Replacing Gnb(x ± ˆ̀) by G(x ± ˆ̀) converts Eq. (14)
into a recursion relation for G(x), which actually takes
into account of all high-hopping corrections in a strong-
coupling expansion. Going to momentum space we ob-

tain G(q) = 1
βg + 2

βg

(
β

2m

)2

G(q)
∑

ˆ̀cos(q ˆ̀), which is

solved by

G(q) =
[2m/(β`)]

2

4`−2
∑

ˆ̀sin2(q ˆ̀/2) +M2
B

. (15)

Here we have resumed the original lattice spacing ` by
settting back β → β`3 and 2m→ 2m`2.

We find that in the strong-coupling effective Hamilto-
nian, C = ψ↓ψ↑ represents a massive composite boson
with propagator

gG(q)=
gR2

B/(2MB)

(q2/2MB) +MB/2
⇒ gR2

B

q2 +M2
B

, (q`� 1), (16)

with pole of mass MB and residue of form factor gR2
B :

M2
B =

[
g(2m)2(`/β)−2d

]
`−2 > 0, R2

B = (2m/β`)2. (17)
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From Eq. (16), the effective Hamiltonian of the composite
boson field C can be written as,

HBeff =
∑
i

(`3)Z−1
B C

†(i)
[
−∇2/(2MB`

2)−µB
]
C(i). (18)

The chemical potential is µB = −MB/2 and the wave
function renremalization is ZB = gR2

B/2MB . As long as
ZB is finite, we renormalize the elementary fermion field
and the composite boson field as

ψ → (gR2
B)−1/4ψ, and C → (2MB)1/2C, (19)

so that the composite boson C behaves like a quasi par-
ticle in Eq. (18). Contrary to the loosely-bound state
of two electrons in a Cooper pair in the weak-coupling
region (kFa)−1 � 0, this is a pair in a tightly bound
Feshbach resonance.

The bound states are composed of two constituent
fermions ψ↓(k1) and ψ↑(k2) around the Fermi surface,
k1 ≈ k2 ≈ kF and k2 − k1 = q � kF . The wave-
function renomalization ZB ∝ gT 2 (16) relates to the
bound-state size ξboson. As gT 2 → 0, ZB decreases and
the pair field C(x) descibes loose Cooper pair. The van-
ishing form factor represents that bosonic bound state
(pole) dissolves into two fermionic constituents (cut) [9].
At this dissociation scale, i.e., crossover temperature T ∗

at 1/akF , the phase transition to a normal Fermi liquid
of unpaired fermions takes place. Limited by the validity
of strong-coupling expansion, we are not able to quanti-
tatively obtain the dissociation scale T ∗ as it results from
1/akF . We can estimate at the unitarity limit 1/akF = 0
the crossover temperature T ∗ ≈ εB/ log(εB/εF )3/2 [4].

The binding energy εB/εF = 2f−/f+, f± =
√

1 + µ̂2 ± µ̂
from Eq. (3.285) of textbook [3]. Here we insert for the
crossover parameter µ̂ = µB/MB = −1/2, using MB as
the mass gap at 1/akF = 0 and find εB/εF ≈ 5.24 and
T ∗/εF ≈ 4.86.

On the other hand, the mass term M2
BCC† changes its

sign from M2
B > 0 to M2

B < 0 and the pole MB becomes
imaginary, implying the second-order phase transition
from the symmetric phase to the condensate phase [8].
M2
B = 0 gives rise to the critical line: m2gcTc = d/(2`).

Substituting gc from Eq. (4), we find for 1/akF ≥ 0

Tc/εF = (Tuc /εF )

[
1− 4πh̄3b

Sd(Tc)
1

akF

]
, (20)

where Tuc is the critical temperature at 1/akF = 0,

Tuc /εF = (3π2)−1/ddSd(Tuc )/[(4π)2h̄3b]. (21)

In the superfluid phase (T < Tc) tightly composite
bosons C(x) develop a nonzero expectation value 〈C(x)〉
and undergo BEC.

We numerically calculate in d = 3 for the parame-
ters b = 0.02, 0.03 corresponding to the ratios `0/` =
0.013, 0.02, find Tuc /εF ≈ 0.31, 0.2. Equation (20) is

FIG. 1: Qualitative phase diagram in the unitarity limit.
Transition temperature Tc/εF is plotted as a function of
1/kF a ≥ 0 for the selected parameters b = 0.02, 0.03. The
“infinite”-coupling points are shown to lie at one of the cor-
responding zeros (1/kF a)Tc=0 = 4.0, 2.7. That is a point of
quantum phase transition, Above the critical line is a normal
liquid consisting of massive composite bosons and fermions.
Below the critical line lies a superfluid phase with a new type
of BEC involving composite massive fermions.

plotted in Fig. 1. In contrast to the practically hori-
zontal phase boundary in Figure 3 in Ref. [1], we ob-
tain a decreasing critical temperature Tc as a function of
1/akF ≥ 0. At an “infinite” coupling strength gc → ∞
we find at constant Tcgc that Tc = 0 for 1/akF →
(1/akF )qc ≡ Sd(0)/4πbh̄3 = 1/4πbh̄3. This is a quan-
tum critical point, in which all thermal fluctuations are
absent. What about the phase (1/akF ) > (1/akF )qc, it
seems inconsistently g < 0 from Eq. (4). In fact, this
phase should be related to the formation and conden-
sate of more complex composite quasi-particles, e.g., spin
triplet Ctri ≡ (ψ↑ψ↑, ψ↑ψ↓, ψ↓ψ↓) with mass gap M tri

B (T )
and phase factor Stri

d (T ), which are not given by Eqs. (3)
and (17), and the bosonic triplet Ctri dresses up an ele-
mentary fermion to form a three-fermion state discussed
below. The critical line T tri(1/akF ) from M tri

B (T ) = 0
separates the quasi-particle Ctri formation from the con-
densate phases. Starting from the quantum critical point
it increases as T and (1/akF ) increase (g decreases) for
(1/akF ) > (1/akF )qc. Viewing the four-fermion inter-
action as an attractive potential, this “infinite” coupling
point indicates the most tightly bound state locating at
the lowest energy level of the potential, with a scatter-
ing length a = 2π`0. If the attraction comes from a δ
-function, the length parameters a, and b vanish, while
(1/kFa)qc →∞, recovering the nearly horizontal critical
line presented in Figure 3 in Ref. [1].

Analogously, we consider the composite field of elec-
tron and hole, i.e., the plasmon field P(x) = ψ†↓(x)ψ↑(x),
the same calculations are applied for the two-point Green
function GP(x) = 〈P(0),P†(x)〉. In the lowest non-
trivial order of strong-coupling expansion, we obtain the
same result as (16) and (17), indicating a tightly bound
state of plasmon field, whose Hamiltonian is (18) with
C(i)→ P(i). This is not surprised since the Cooper C(x)
and plasmon P(x) fields are symmetric in the strong-
interacting Hamiltonian (5). However, the charged pair
field C(x) and neutral plasmon P(x) field can be differ-
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ent up to a relative phase of field θ(x). We select the
relative phase field as such that 〈|P(x)|〉 = 〈|C(x)|〉. We
also obtain [10] the identically vanishing two-point Green
function 〈P(0), C†(x)〉 of Cooper C(x) with plasmon P(x)
fields, as one is charged the other is neutral.

Composite Fermions. To exhibit the presence of com-
posite fermions in the strong-coupling Hamiltonian (7)
and (8), following [8] and using the Cooper field C(x) we
calculate the two-point Green functions:

SLL(x) ≡ 〈ψ↑(0), ψ†↑(x)〉, (22)

SML(x) ≡ 〈ψ↑(0), C†(x)ψ↓(x)〉, (23)

S†ML(x) ≡ 〈ψ†↓(0)C(0), ψ†↑(x)〉 (24)

SMM (x) ≡ 〈ψ†↓(0)C(0), C†(x)ψ↓(x)〉 (25)

By the analogy to (12)–(15), we obtain three recursion
relations [10]

SLL(p) =
1

βg

(
β

2m

)3 [
2
∑

ˆ̀

cos(pˆ̀)
]
SML(p), (26)

SML(p) =
1

βg
+

1

βg

(
β

2m

)[
2
∑

ˆ̀

cos(pˆ̀)
]
SLL(p), (27)

SMM (p) =
1

βg

(
β

2m

)[
2
∑

ˆ̀

cos(pˆ̀)
]
S†ML(p). (28)

We solve these recursion relations and obtain

SML(p) =
(1/βg)

1− (1/βg)2(β/2m)4
[
2
∑

ˆ̀cos(pˆ̀)
]2 , (29)

SLL(p) and SMM (p). Defining for the propagator of the
composite fermion SFermion(p) the quantity gS(p),

S(p) = R−1
B SLL(p) + 2R−2

B SML(p) +R−3
B SMM (p)

=
2

4`−2
∑

ˆ̀sin2(pˆ̀/2) +M2
F

⇒ 2

p2 +M2
F

, (30)

where RB and M2
F = M2

B follow Eq. (17) in lowest order
calculation. SFermion(p) represents a composite fermion
composed of the elementary fermion ψ↑ and the three-

fermion state C(x)ψ†↓(x) [8],

Ψ↑(x) = R
−1/2
B ψ↑(x) +R

−3/2
B C(x)ψ†↓(x)

⇒ g1/4ψ↑(x) + g3/4C(x)ψ†↓(x), (31)

where the three-fermion state C(x)ψ†↓(x) is made of a

hole ψ†↓(x) “dressed” by a cloud of Cooper pairs. The
associated two-point Green function reads

〈Ψ↑(0),Ψ†↑(x)〉 = 〈ψ↑(0), ψ†↑(x)〉+ 〈ψ↑(0), C†(x)ψ↓(x)〉

+〈C(0)ψ†↓(0), ψ†↑(x)〉+ 〈C(0)ψ†↓(0), C†(x)ψ↓(x)〉, (32)

whose momentum transformation satisfies (30). A sim-
ilar result holds for the spin-down composite fermion

Ψ↓(x) = R
−1/2
B ψ↓(x) + R

−3/2
B C(x)ψ†↑(x). They can be

represented in the effective Hamiltonian

HFeff =
∑
i,σ=↑↓

(`3)Z−1
F Ψ†σ(i)

[
−∇2/(2MF `

2)−µF
]
Ψσ(i).(33)

Here µF = −MF /2 is the chemical potential and
ZF = g/MF the wave-function renormalization. Fol-
lowing the renormalization (19) of elementary fermion
fields, we renormalize composite fermion field Ψ↑,↓ ⇒
(ZF )−1/2Ψ↑,↓, which behaves as a quasi-particle in
Eq. (33), analogously to the composite boson (18). The
negatively charged (e) three-fermion state is a negatively
charged (2e) Cooper field C(x) = ψ↓(x)ψ↑(x) of two

electrons combining with a hole ψ†↓(x). These nega-
tively charged (e) composite fermions Ψ↑↓(x) are com-

posed of three-fermion states Cψ†↑ or Cψ†↓ and an electron
ψ↑ or ψ↓. Similarly, positively charged (−e) composite

fermions Ψ†↑(x) or Ψ†↓(x) are composed by three-fermion

states C†ψ↑ or C†ψ↓ combined with a hole state ψ†↑ or

ψ†↓. Suppose that two constituent electrons ψ↓(k1) and

ψ↑(k2) of the Cooper field, one constituent hole ψ†↑(k3)
are around the Fermi surface, k1 ≈ k2 ≈ k3 ≈ kF , then
the Cooper field q = k2 − k1 � kF and three-fermion
bound state p = k1 − k2 + k3 ≈ k3 ≈ kF is around the
Fermi surface. As a result, the composite fermions Ψ↑↓
live around the Fermi surface as well.

The same results (30)–(33) are obtained for the plas-

mon field P(x) = ψ†↓(x)ψ↑(x) combined with another
electron or hole, and the associated composite fermion

ΨP↑ (x) = R
−1/2
B ψ↑(x) +R

−3/2
B P(x)ψ↓(x)

⇒ g1/4ψ↑(x) + g3/4P(x)ψ↓(x), (34)

whose two-point Green function,

〈ΨP↑ (0),ΨP†↑ (x)〉 = 〈ψ↑(0), ψ†↑(x)〉+ 〈ψ↑(0),P†ψ†↓(x)〉

+〈Pψ↓(0), ψ†↑(x)〉+ 〈Pψ↓(0),P†ψ†↓(x)〉. (35)

The same is for ΨP↓ (x) = R
−1/2
B ψ↓(x) +R

−3/2
B P(x)ψ↑(x)

the spin-down field. They can be represented in the ef-
fective Hamiltonian (33) with Ψσ(i) → ΨPσ (i), follow-
ing the renormalization (19) of elementary fermion fields,
and renormalization ΨP↑,↓ ⇒ (ZF )−1/2ΨP↑,↓. The charged

three-fermion states Pψ↑↓ or P†ψ†↑↓ are composed of one
electron or one hole combined with a neutral plasmon
field P(x) = ψ†↓(x)ψ↑(x) or P†(x) = ψ†↑(x)ψ↓(x) of an

electron and a hole. The composite fermions ΨP↑,↓(x) are
composed of a three-fermion states Pψ↑,↓ in combina-
tion with a further elementary fermion ψ↑ or ψ↓. The
same thing is true for its charge-conjugate state. Sup-
pose that constituent electron ψ↓(k1) and hole ψ†↓(k2),
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another constituent electron ψ↑(k3) are all around the
Fermi surface, k1 ≈ k2 ≈ k3 ≈ kF , and the plas-
mon field q = k2 − k1 � kF and composite fermion
p = k1 − k2 + k3 ≈ k3 ≈ kF is around the Fermi sur-
face as well. The three-fermion states in Eqs. (31) and

(34) are related, C(x)ψ†↓(x) = −P(x)ψ↓(x). This implies

that the three-fermion states C(x)ψ†↓(x) and P(x)ψ↓(x)

are the same up to a definite phase factor eiπ. Thus
the composite fermions Ψσ(x) (31) and ΨPσ (x) (34) are
indistinguishable up to a definite phase factor.

All composite fermions are of Dirac type, due to
the interaction (1). For stronger couplings 1/akF >
(1/akF )qc, Eq. (23) should be extended by more com-
plex composite fermions SML(x)≡〈ψ↑(0), C†(x)ψ↓(x)〉
+ 〈ψ↑(0),S⇑(x)ψ†↑(x)〉, where S⇑(x) = ψ†↑(x)ψ↑(x) brings
in a spin-vector field.

Conclusion and Remarks. We present some discus-
sions of the effective Hamiltonian (18) and (33) of com-
posite boson and fermion for 1/akF ≥ 0 and different
values of temperature T . (i) In the regime T ∗ > T > Tc,
there is a mixed liquid of composite bosons and fermions
with the pseudogap MF,B(T ), which is expected to dis-
solve to normal unpaired Fermi gas at the crossover tem-
perature T ∗. These composite quasi particles are ei-
ther charged or neutral. They behave as superfluids up
to a relatively high crossover temperature T ∗. (ii) In
the regime T < Tc, the superfluid phase of composite
bosons undergoes BEC and one finds in the ground state
the coexistence of BEC and semi-degenerate fermions
Ψ↑(x) and Ψ↓(x), the latter couple to the BEC back-
ground to form massive quasi-particles of fermion type,
moreover they form tightly bound states Ψ↑Ψ↓ or Ψ†↑Ψ↓
which are new bosonic quasi-particles producing a new
condensate of Bose-Einstein type. In both cases, if the
Coulomb repulsion between electrons could be compen-
sated by “phonons” in an analogous way to either com-
posite bosons via a Feshbach resonance, or new bosonic
quasi-particles via a composite-fermion pair state, this
would result in superconductivity and superfluity at high
temperature Tc ∝ O(εF ). The scale of that is the result
of a large coherent mass gap MF,B(T ), being much larger
than the BCS gap. The coherent supercurrents consist of
composite fermions and bosons. These features though
discussed in 1/akF ≥ 0 are expected to be also true in
1/akF � 0 with much smaller scale MF,B(T ). Due to the
presence of composite fermions in addition to composite
bosons, we expect a further suppression of the low-energy
spectral weight for single-particle excitations and the ma-
terial following harder equation of state. Its observable
consequences include a further T -dependent suppression
of heat capacity and gap-like dispersion in the density-
of-states and spin susceptibility. Moreover, we discuss
the quantum critical point and speculate the phase of
complex quasi-particles.

It is known that the limit 1/akF � 0 produces an IR-

stable fixed point, and its scaling domain is described
by an effective Hamiltonian of BCS physics with the gap
scale ∆0 = ∆(Tc) in T ∼ Tc <∼ T ∗. This is analogous
to the IR-stable fixed point and scaling domain of an
effective Lagrangian of Standard Model (SM) with the
electroweak scale in elementary particle physics [11, 12].

The unitarity limit 1/akF → 0± representing a scale
invariant point [13] was formulated in a renormalization
group framework [14], implying an UV stable fixed point
of large coupling. The couplings g > gUV and g < gUV

approach gUV, as running energy scale becomes larger.
In the scaling domain of this UV fixed point 1/akF →
0± and T → Tuc , an effective Hamiltonian of composite
bosons and fermions is realized with characteristic scale

MB,F (T ) =

(
T − Tuc
Tuc

)ν/2
(2d)1/2

(3π2)1/d
kF , T >∼ T

u
c (36)

where ν = 1 is the critical exponent derived from the
β-function which determines the scaling laws. Equation
(36) shows that the relevant cutoff is the Fermi momen-
tum kF and the physical correlation length ξ ∝ M−1

B,F ,
which characterizes the size of composite particles via
their form factor ZB,F ∝ M−1

B,F (18) and (33). This
domain should be better explored experimentally. The
analogy was discussed in elementary particle physics with
anticipations of the UV scaling domain at TeV scales and
effective Lagrangian of composite particles made by SM
elementary fermions including Majorana type [15].

[1] M. Randeria, E. Taylor, “BCS-BEC Crossover and the
Unitary Fermi Gas”, Annual Review of Condensed Mat-
ter Physics, Vol. 5: 209-232 (2014), arXiv:1306.5785, and
references therein.

[2] M. Randeria, W. Zwerger and M. Zwierlein, In W. Zw-
erger, editor, The BCS-BEC Crossover and the Unitary
Fermi Gas, Lecture Notes in Physics. Springer, 2012.

[3] H. Kleinert, Collective Classical and Quantum Fields
in Plasmas, Superconductors, Superfluid 3He, and
Liquid Crystals, World Scientific, Singapore, 2017
(http://klnrt.de/psfiles/sc.pdf).

[4] C.A.R. Sa de Melo, M. Randeria, and J. R. Engelbrecht,
Phys. Rev. Lett. 71, 3202 (1993).

[5] H. Kleinert, Fortschr. Physik 26, 565 (1978)
(http://klnrt.de/55).

[6] J. R. Engelbrecht, M. Randeria, and C. A. R. Sa de Melo,
Phys. Rev. B 55, 15153, 1997.

[7] C. M. Bender, F. Cooper, G. S. Guralnik, D. H. Sharp,
Phys. Rev. D 19, 1865 (1979);
E. Eichten, J. Preskill, Nucl. Phys. B 268, 179 (1986);
M. Creutz, C. Rebbi, M. Tytgat, S.-S. Xue, Phys. Lett.
B 402, 341 (1997).

[8] S.-S. Xue, Phys. Lett. B 381, 277 (1996), Nucl. Phys. B
486, 282 (1997).

[9] S. Weinberg, Phys. Rev. 130 776 (1963), 131, 440 (1963),
133, B232 (1963), 137, B672 (1965).

[10] for some more details, see the long article H. Kleinert
and S.-S. Xue, https://arxiv.org/abs/1708.04023v1.



6

[11] S.-S. Xue, Phys. Lett. B 727 308 (2013); JHEP 11, 027
(2016) (arXiv:1605.01266).

[12] M. Fiolhais and H. Kleinert, Physics Letters A 377, 2195
(2013) (http://klnrt.de/402).

[13] T.-L. Ho. Phys. Rev. Lett. 92, 090402 (2004).

[14] P. Nikoli and S. Sachdev, Phys. Rev. A 75, 033608 (2007)
(arXiv:cond-mat/0609106).

[15] S.-S. Xue, Phys. Lett. B 737 172 (2014); JHEP 05, 146
(2017) (arXiv:1601.06845).


