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Regge Couplings From SU (2) x SU (2) Saturation Schemes*)
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Abstract

For any saturation scheme of the chiral §U(2) x SU(2) charge algebra we develop a simple
algebraic method of calculating the couplings of g and f trajectories to all particles involved.
The information on these coupling is shown to be directly contained in the chiral mass splittings
among the different isospin multiplets.

I. Introduction

In these lectures®) we shall present a method of predicting numerous Regge coupl-
ings by means of simple algebraic calculations. The starting point is any reasonable
saturation scheme of the chiral SU(2) x SU(2) charge algebra. In recent years,
rather complete schemes of thistype have been developed accommodating most of
the known baryon and meson resonances. Via the assumption of PCAC, these satu-
ration schemes pro vide us with the couplings of all these resonances to pions. They
can therefore be efficiently used asan input to dispersion relations for any process

ATt —> By,

if one is content with a narrow-resonance approximation. Since these couplings
satisfy simple commutation rules, any calculation can easily be performed by pure-
ly algebraic means.

II. Brief Review of SU(2) x SU(2) Charge Algebra

Recall that the SU(2) x SU(2) current commutation rules!) allow us to derive a
Ward identity, relating the axial vector amplitude between two arbitrary hadron

states § and «: |
i 5 = —1 [ €19 (8’| T(A,2(x) 4,%(0)) |ap) d (2.1)

uy SBa

*) Lectures presented at the Discussion Meeting on High-Energy Scattering of Elementary
- Particles in the Black Forest, May 23—27, 1972.
}) Conventions: (p'Ip) = 2p,2n® [ & (p' — p), S =1 — i 2n)*S*(p, — p)) T
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to the amplitude of the divergences

rgf: = —1i [ ' (fp’| T(BAb(x) 6A“(0)) |xp) dx (2.2)
via

W LD ) . toup) 23)

q ‘“q T,u,uﬁa = Tﬂa ?’I.fbac

— = (691 [Q2(0), 24%(0)] ) + (ba)].

The am, — Bwb scatterlng amplitude can be obtained from 4% by picking up the
residues of %% at the pion poles in ¢’2 and ¢?:

. ’ . ( ) - 2)

T, ) = lim Th(r, 1, g% ¢¥) = lim “—bp el (24)
qz“’)‘#z q2—>,u

e gF—ut

(g
‘l,l,
1f ¢'2, g2 leave their mass shells, 7' defines an off-shell continuation of the am, — 3=,
amplitude. For this off-shell continuation we can derive a low-energy theorem by

setting ¢'2 = ¢® = 0 and going to the threshold point in the Ward identity (2.3).If
one, instead of s, introduces the crossing symmetric variable

—u 2
v=l 2= @+ 9 (25)

one finds thatat the threshold point ¢ = 0, » = vy, = (m,* — m;*)2 the isospin odd
and even parts of T%

1
T, )= 5 (T F T ¢ 0 (26)

satisfy the low-energy theorems

| ) 1
— 15, t) = —ggbac }? [T¢)pa (2.7)
t=0
1
TEP (v, £) | = 55 [2"]pa- (2.8)
=0 T

Here T', is simply the (necessarily diagonal) isospin matrix between the particles
g and « and 3% denotes the commutator

Ste = () % ([QP(o) 4%(@)] + (ab)) (2.9)

which has been the subject of much recent discussion.?)

2) For a detailed discussion see H. Kleinert, Fortschr, Phys. 21, 1 (1973).
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Now one invokes the Regge pole model to argue that 7' at high energy should
be governed by the exchange of a ¢ trajectory of intercept «,(0) ~ 1/2. This im-
plies an asymptotic behaviour

— T3 08(p) ~ poe(@—1 zy 0.5 (2.10)

4 >0

such that 1/» T obeys an unsubtracted dispersion in »2:

°°Im — T
— T:,)’ - —f dv'. (2.11)

If one assumes that the dispersion integral can be approximated by a set of narrow
resonances only, the amplitude can be expressed completely in terms of the colli-
near couplings of the divergence of the axial currents to resonances of helicity 1 [3]:

)
[ XA yo = — —— (yp,4| 84, |ap,A) . (2.12)
e mE —mp (B3 —pa)*=0

Using thisdefinition, the imaginary part of 7'7*® attheresonance s = m,2 becomes
explicitly?®)

Im T/7% = —q [6(v — v,/*) - S(v + v,/)] 0F9(A), b (2.13)
with#)
1
o EG(A) = T {{Bp'4|8A%yp,4) (yp,Al0A% | xpl) -F (ab))
1
= g3 (0 — my?) (2 — ) [X (), Xo, (D)5 (214)

such that equ. (2.11) yields

£, . . ) a
. Tfﬁ‘a)b (v) = HZ{‘V —— + - ,Ba} Q;; Lb (2)
1 — m.2 — m,
= — 753 (1mg? ::L) S;Zz ™) X, (), Xo(D)]ga- (2.15)

At » = »y, the right-hand side reduces simply to the commutator of the matrices

1
— Tbay),

13

= [Xb(l) Xo{A)ga - (2.16)

¥=1vth f}!

%) The pole positions of T3 are determined by s — m,? = v — v with

2 2
pha— o _ Ma A Mg
Y 2

) We use PCAC as 04, = fru®n, such that fr ~ .095 GEV.

32%
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Invoking now the low-energy theorem of equ. (2.7), we find out that the matrices
X,(2) have to form, together with the isospin operator 7';, the algebra of SU(2)
X 8U(2):

[X5(4), Xa(A)] = vepgc T, (2.17)

Historically, these commutation rules for the coupling matrices X ,(4) to resonances
were first derived by saturating the SU(2) x SU(2) charge algebra [1, 2]

(@5 (), Qa5($0)] == isbuch (2.18)

with resonances in the infinite-momentum frame. Obviously, this procedure is
completely equivalent to the use of a low-energy theorem, an unsubtracted dis-
persion relation and the narrow-resonance approximation for the imaginary part
of the amplitude [3].

Given any representation of this algebra, the couplings X (1) can directly be com-
pared with experiment if one makes use of the assumption of PCA C. According to
this assumption the matrix element of

(12 — g (p,A] 24 Jap.A) (2.19)

does not vary much when ¢ = (p, — p,)?is continued from g2 = 0 to the physical
mass?-of the pion. Therefore we can write the on shell coupling constant

<V29y2' |7u”1 “pa;"> ~ (/m’ﬂz - maz) [Xa(l)]ﬁa (220)
gl =mz? f ]
and we can express the pionic decay width I, g, for the process vy — amr, directly in
terms of X,(4)
(my2 - ma2)3 fl

— 2 5
Fy—mm - 165’6 fng mr:y3 2J;v _I_ 1 Z |[Xu(j:)]}'a| . ) (2.21)

i

The isospin even part of the amplitude 7'+ (») cannot as readily be turned over
into a sum rule. The reason is that 7*+)(v) will, in general, allow for the exchange of
Regge poles with intercept x(0) > 0, such that no unsubtracted dispersionrelation
can be written down. Only if one considers the projection into the ¢-channel iso-
spin I; = 2 does T+) presumably tend to zero for large » since no Regge trajec-
sory is known with this exotic quantum number. In going through the same proce-
dure for the I, = 2 projection as for 1/»7-) we obtain then the sum rule

TEme) | = =g S @m? — m — mg) [K,(0) K3
1= a oy By ra +
1 .
— e (X It X+ @by | 2.2

which has to be equal to the I, = 2 projection of the > term.

5) The factor f; corrects for the finite pion mass in the phase space of the final state, which
depends on the threshold behaviour of the amplitude

o (12 mﬁ(m,,z + my2) i+1/2
Ui (m,® — m,2)

In addition, one has to divide by a factor 2 if particle o and g, are identical.
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About the detailed form of 3’ term not much is really known. However, our
present ideas concerning the mechanism that generates PCAC (via spontaneous
symmetry breakdown of SU(2) x SU(2) with only little symmetry breaking in
the Hamiltonian) tells us thatit is small, proportional to the mass? of the pion.
If we neglect at least the I, = 2 part of 3¢, we find

[Xe, [m2X]|ri=2 = O. (2.23)

This equation is equivalent to saying that the mass? when seen as a (diagonal)
matrix between the different particles, can be written as

[m2]gx = ma? g = [MmePlpx + [m4%]pa (2.24)

where m,? is SU(2) X SU(2) symmetric while m,2 transforms as the isosinglet com-
ponent of a representation (1/2, 1/2) under SU(2) x SU(2) [3]. Thus for any solu-
tion of the SU(2) x SU(2) algebra, not only the pionic decay widths are deter-
mined but also the masses can be calculated in terms of a few reduced matrix
elements only.

Also this result can be obtained by saturating directly the commutator

[Q:5(20), [ A% 84,(2)] |1,m2 = [@5(0), Qul@o)]lries = O (2.25)

with resonances in the infinite-momentum frame. _
For the purpose of calculations it is convenient to introduce (hermitian) reduced
matrix elements of X,. Between isospin o and 1 we can write

[Xe(D)]y0,00 = Opa Gra(2); [Xp(D)s 0000 = 606G (2.26)
o
and between isospin 1 and 1:

[Xb(;")]yc,aa = iecba G;ﬁ(z) . (2'27)

Then the commutation rules (2.17) are equivalent to the Adler Weisberger relations

X GE() G2(0) = 0

4

2 GR(2) GR(2) + G() G(2) = 1, (2.28)

4

and the width formula becomes®)

i mep @I (=1 L.=0

— 7 e L2 sie0 ()2t £ =0, I, =1

PY—>C(75 . 167'6 fﬂz mya (2']'? + 1) 3 3IGya(A)I or I? y Lo
2161 (7)]2 I,=1,1,—1

(2.29)
If a saturation scheme involves half integer isotopie spins 1/2 and 3/2, one intro-

8) Again with an additional Bose fator 1/2 if x = =.
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duces the reduced coupling matrixes ¢ by?) [4]
wall . 31 __ ]/3
[XoD]a = 2 5 2 Ga); [XoW)Se = 5 1™ 260

XD = o e 1" 10 G201 (2.30)

In this case the commutation rules (2.17) are equivalent to the Adler Weisberger
relations

3 (G5 Gi2(A) — GR(A) BPYA)) = 14,

14

3 (—63) G1(2) 4 BGRA) G3(2)) = 0

4

= (5 oo e + @00 6200) = 1 2.31)
4
and the width formula (2.21) becomes
1 1
L=3l=3
11 2
IG}'“(A) Il), — 33 Ia = i
o _mremP 2 o3 enar| 2 2
T 16 fEimp 20, 115 & 2162302 ;1,3 '
5/G%(1)[2 rTg e g
3 3
h=pl=3
(2.32)

III. The Use of Saturation Schemes in Finite Energy Sum Rules

A few years ago it was observed that scattering amplitudes approach their asymp-
totic Regge limes at relatively low energies as soon as they have passed a few pro-
minent low-energy resonances. If the scattering amplitude 7"%)(») at t =0 is
decomposed into pieces #+)(v) and #£)(—») containing only the left and the right-
hand cut, respectively,

TE) (p) = BB (p) 4 HE)(—y) (3.1)

then Regge theory says that for » — oo

e-i?ra(O) " «(0)
~ —e(0) ——— [ 2
t) ‘O s 0) (M2) (3:2)
with
» a{0)

Im ¢(v) =~ ¢(0) (W) (3.3)

?) ¥ and x4 are the isospinors of isospin 1/2 and 3/2, respectively. Since yq4 is pure T = 3/2, it
satisfies 7%, = 0 and.
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where «(0) is the intercept of the leading Regge trajectory and M? is some mass
parameter (usually ~1 GeV2).
Since t(») has only a right hand cut, we can insert it into a Cauchy integral

0= i t(v) dv (3.4)

where the contour passes below and above the cut in £ and is closed by a circle of
radius N. If we choose the energy N just in the region, where the resonance struc-
ture starts smoothening out to the Regge formulas (3.2), (3.3), we can ingegrate
from zero to N by inserting the imaginary part coming from resonances only, and
integrate over the circle by using the Regge approximation (3.2). In this way we
obtain [5]

N

1 M2 1 v \&0)+1

This formula is called finite-energy sum rule (FESR). 1t provides a powerful tool
relating low-energy resonance parameters to Regge couplings ¢(0).

Suppose now we have calculated the coupling constants of pions in a saturation
scheme of the SU(2) x SU(2) algebra up to an energy N, where Regge behaviour
is setting in. These coupling constants can then be used to evaluate the left hand
- side of the FESR for any process ar, — fr,. Take for example {#-?%(y),, which is
equal to the first term in equ. (2.15).

ha0) = 2 vﬁa 05a"*(%)

7

1 1

- 2f 2 P y — phe (mg? — m,®) (mg% — m,?) [Xbﬁ?(/i): Xﬂya()‘)]—
1 1 R .

= ~gpa 2 ;[ Xy, [®, Xo(D)a)- (3.6)

Inserting it into the left-hand side gives

1 B 1
= [ 0 & = o S0 Xl bt S @)
0
Let us call the commutators
i[m?, X,] = m,*. (3.8)

If we insert the chiral decomposition (2.24) of the mass matrix we find
me® = —1[ X4, m4?]. (3.9)

Using this matrix the resonance contribution in the finite energy sum rule for £5;*
can be replaced by the commutator [m2m,?] giving [6]

2 m,2]5, M2 N \ee@+1
D e M gy (ﬁ) .

2f.2 T x,(0) + 1 (8-10)
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We have right away written «(0) = x,(0) since the g trajectory with «, ~ .5 is
governing the high energy behaviour. For any saturation scheme, the matrices m,?
can easily be calculated and equ. (3.10) provides us with a set of coupling constants
for the p trajectory at t = 0.

A similar treatment can be given to the ¢(+) amplitude. In order to obtain the
amplitude with the weakest divergence at large energy we make use of the low-
energy theorem at { = 0, v = wy,:

1
T}%’:)ba(ij)‘v=vm = 'f_z gg‘ (3‘11)
Let us define the auxiliary amplitude
Fpagy 2 (+)ba
L") = 5 5 b Pt (v) (3.12)
’IJth — ¥

Suppose above the energy N, t(+) behaves approximately like

t(+)ba( ),...._, c(+)ba(0) e—ina(0) » ‘a(O) (313)
pa = 0 i e (0) \E] ‘

Then the Cauchy integral gives

2he 2 N\« mg2 M,
=3 oS )

th FE

(3.14)
where 1 — ¢(mg?/N, m,2/N) denotes the following infinite series

1— (”;ﬁ; m;) S 0)0) [(mﬁz ) +(”;VZ)J (3.15)

This term has its origin in the denominator 1/(»}, — »?) of the amplitude 7 (1%,
Notice that ¢(mg?/N, m,2/N) vanishes as mz*/N — 0 and m,2/N — 0 and can there-
fore be safely neglected if m4® and m,2 lie sufficiently low in the saturation scheme.
If initial and final masses are taken to be large, however, the factor 1 — & will be-
come small or even negative and equation (3.14) does not serve any more for a
reliable estimate of the Regge coupling.

The sum over resonances can be rewritten explicitly as

2fn2 > (2m,? — — %) [Xp(A)gp Xal(A),a]+
= %2 (X5 [m2X,Jpe + (b)) = [”;4 iz, (3.16)

Together with the low energy theorem (3.11) we finally find [6]:

[724%] s b L 2 e L (NVO
7 Opq = 7.2 + = Cfsa)b (O)m(jﬁ) (1 —¢). (3.17)
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Since the D' term vanishes in the chiral limit and is therefore expected to be small
compared with the Regge term, we shall neglect it alltogether.

What value do we have to choose for the intercept «(0)? The phenomenological
discussion of FESR for 7(+), mainly in the case of =N scattering, has shown that
resonances in the direct channel are apparently not able to build up the asymptotic
behaviour due to the diffraction part of the amplitude [7]. The non-diffractive part
appears to be dominated by the exchange of an f trajectory. It’s intercept is usually
taken to be 1/2 (if one prefers a universal slope of all trajektories). For this value
the series (3.15) can be summed explicitly giving

- 1 - Mg’
mg® m,t\ i mg? N 5 5
&£ (N ’ N ) - 1 VN In :—Wt—a'; —]—' (’ln“ mﬁ ). (3.18)
VN

Notice that as m;? and m,? approach the upper region of the saturation scheme, ¢
moves close to one and aquires a'strong dependence on N thus spoiling the sensiti-
vity of formula (3.17) to ¢j)".

IV. Calculation of [m;%, m,2]

Suppose we are given a saturation sheme of the SU(2) x SU(2) algebra in formof
the reduced coupling matrices

6%, G = [G]f,, GIL. (4.1)

A matrix m,2 can be constructed in terms of a few free parameters using its pro-
perty of being the forth component of a (1/2, 1/2) representation. Let us introduce
reduced matrix elements for m,® between isospin zero and isospin one states,
respectively :

[m4%]p0,00 = M3 (4.2)
[m42]ﬁb,aa = Milﬁa aba . (43)

Then M, decribes directly the couplings of the f trajectory via equ. (3.16).

In order to obtain ¢ couplings we construct first m,2 = —i[X,(2), m,?]. If one
introduces for m,? reduced matrix elements M in a completely analogous fashion
as for X,, the commutator tells us:

J[V{JI — ,_,i(GOlM411 — M400G01) s MVIO p— [ﬂ/[v()l]—}—
My = —i[GW, M%) = —iG1 M, + h.c.. (4.4)

Now consider the commutator [m,2, m,2]. Due to its antisymmetry in b, a, it is
necessarily an object of isospin one. Therefore it vanishes between two isospin zero
states. Between isospin zero and one we find:

2 ., 2700 0
[, MYy = gy 2,0 MM

[mp2, m21h% 0 = ‘eypa 2D M0 (4.5)
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and between two isospin one states
noo_ 01 1 V!
[722, maz]ﬁbf,aa' = 18pac Veprca [My My + M1 M.

For saturation schemes involving the isotopic spins 1/2 and 3/2, we introduce the
reduced matrix elements of m,2.

[m 2t = 'y MM (4.6)
[?7?,42]33 = Za+’Xa M433 (4.7)

The reduced matrix M corresponding to m,? is defined in analogy with equs
(2.30). Using equ. (3.8) we calculate

M = [, M1 = —GUM 11 4 he.
M8 = —4(G3LM 2 — M ,33G8Y)
M3 = —i[G33, M,33] = —iG38M 33 L h.c. (4.8)

From these expressions we can derive the commutators [m,2, m,2] as

[fm’bzs maz]n = T:ebac x+’ % X {MVIIMVll - MV13MV31}

. 3 1 5
[my?, M2 ]*% = iepa, l;: 1t x {— G} M3 M 4 5 MV33MV31}

: . 3 . : 1
[712, mg*]*® = 9£pq, 5 ey X Ao {"é* MMy + MyBM Vsa}

(4.9)

V. A Simple Saturation Scheme Involving J'E'QA 16 Mesons

The construction of saturation models proceeds by assigning certain irreducible
SU(2) x SU(2) contents to every particle. Take for example the irreducible re-

presentation
1 1
V= (E- ’ ?) (5.1)

consisting of an isosinglet®) v, and an isovector v,. The matrix elements X between
these states are given by?)

[Xb]m,va = 6ba
[Xb]m,m = [Xb]vb,va = 0. (52)
8) In our notation we make use of the isomorphism of 7', X with the fourdimensional rotation

group L, M. A four-vector transforms like (1/2 1/2) under SU(2) x SU(2).
%) Check that z, satisfies the commutation rules Equ. (2.17)!
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Another irreducible representation consists of an antisymmetric tensor?)

bap —lyqa 3abcic —l4a ia = [(1, 0), + (O, 1)a]”/§
tyg= | s o= . B (5.3)
tw! O tra 0 / tw=((1,0), — (0, 1)]/}2
with the matrix elements®)
[Xplteeia = 1£4pq
[Xb]t«;c,ha - [Xb]ic,ia == 0' (5‘4)

Both representation can be mixed to form a reducible representation. We shall
assign the most general mixture conserving isospin and G parity?? }to the mesons
nA 0 and ¢ at helicity 1 = 0: [3}

7ty = co8 P, + sin Vo,
A= —sin ¥i,, + cos P,
00 = Uy} ¢ = v, (5.5)

with an arbitrary mixing angle ¥. For the reduced matrix elements this amounts
to '

G — ()
GOl — & T 4, e
sin ¥ cos ¥ 0
z [0 0 cos W
G = A4,10 0 —sin ¥ (5.6)

o \cos¥ —sin¥ 0

which easily can be checked to satisfy the Adler Weisberger relations (2.28).
From the width formulas we find
— m’ fy
OTTT T A8 g f2

9 m,d
r o — o f02
2 487 f,

cos? ¥ &~ .135 (2cos? ¥) GeV (for m, ~ .76)

sin? ¥ ~ .600 (2 sin? ¥) GeV (for m, ~ .76)

(md, — m 2P
487 2 m3,

r Al

cos? ¥ a .050 (2 cos? V) GeV (for m3, ~ 2m,2).
(5.7)

The experimental g width tells us that we have to choose ¥ somewhere around 45°.
The prediction for ¢ is about of the correct size. One presently prefers values for
I'ssnn 0f about 400—500 MeV. For 4; — o noexperimental results are available.
Let us now see what restrictions are implied on the masses of these mesons by the
superconvergence of the I, = 2 amplitude. The most general matrix elements of

19) Since the @ parity of X is negative, v, and v,; t,, and ¢, have opposite ¢/ parities.
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m,2 between v, ¢, and {, are given by
[74¥ o0 = [M4®ter,t1a = [Ma¥liniu = O
(1242 ]ss,000 = M 40pa. (5.8)

Between the particle states (5.5) this leads to a reduced matrix M,:

MO =0
sin 2% cos2¥ O

MW =tcos2¥V —sin2¥ 0| M, (5.9)
0 0 0

Together with the SU(2) x SU(2) singlet the total masses become
m2_ = cos® ¥m,? - sin? ¥my® + sin 29 M,

mi_,, = sin® ¥m? L+ cos® ¥m,? — sin 2¥Y M,

Moy = m?
mas = mv2
mk, = —% sin 2¥(m2 — m,?) + cos 2¥YM,. (6.10)

Since m? between z and A4, is zero, we find

1
2 2 Wy 2 _ sin2 Win.
m2_ == cos? ¥m sin? ¥m
™ eos 2‘_{’[ ¢ o]

2 1
Mads ™ G 2

[—sin? ¥m,2 - cos? ¥m,?]. (5.11)

This implies one prediction independent of the mixing angle:
M2+ mi, = mp? + mg>. (5.12)
The mixing angle can be determined from the masses:

Mp2 — M2

tan? ¥ = (5.13)

2 2 °
My, — Mg

Experimentally, m.2 a~ my?, mz? ~ 0 and mi, ~ 2m.2, such that (5.12) is satisfied
and equ. (5.13) yields tan ¥ &~ 1 in good agreement with the value giving the
correct o width.

Let us calculate the Regge couplings of f and o trajectories explicity in this satu-
ration scheme. As we canread off equs. (5.9) the reduced matrix M, is in this case

M0 =0
sin 2W¥ cos 2¥ 0

MM = |cos2¥ -—sin2¥ 0| M, (5.14)
0 0 0
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Thus we obtain the predictions that the f trajectory does not couple to oo and pg
The transition from = to A; and the elastic A;A; case cannot be calculated reliably
since the correction terms ¢ are not small in these cases. The zero of M, in the
mA, transition (cos 2% a~ 0) and the negative value for AjA; (—sin 2¥ ~ —1)
are properties of the factor 1 — & rather than the Regge coupling ¢+). The elastic
vertex fnz comes out as follows: Since M, is equal to

1 1

we insert equs (5.12) and (5.13) to find
M, = —tan ¥(mi, — m.?) ~ —m2 (5.16)

Therefore our predicitions for the coupling strength of the f trajectory to = and A,
are

M2 2 ) 1 [/ N\
met & (2 5.17
FE=L4 ool (6.17)
Let us now calculate the ¢ couplings. From (4.4) we find
sin 2Y cos2¥ O
Mp" = —i(sin ¥, cos ¥, 0) | cos 2¥ —sin2¥ 0| M,
0 0 0
= —t{cos ¥, —sin ¥, 0) M,
cos ¥
MM =4{ —sin ¥ | M,
0
0 0 cos ¥ sin 2% cos2¥ 0
M= —2]0 0 —sin ¥ | | cos 2¥ —sin 2% 0] M, + h.e.
cos W —sin¥ 0 0 0 0
0 0 —sin ¥
= —¢|0 0 —cos ¥ |M,. (5.18)
sin ¥ cos ¥ 0
Therefore the commutators become
[mp2, m 2] = [mp?, me?]"® = 0
i 0 0
[m2, ma2]§§,,aa, = i€pge ey (0 1 O] M2, (5.19)
0 0 1

Thus the g trajectory does not connect with =, A, and p. The first two transitions
are forbidden by ¢ parity. The last one, however, is a dynamical result. It is
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consistent with the prediction of scale invariant effective Lagrangians which states
that the coupling of gy should vanish!?).

A second non-trivial prediction is that the g trajectory at ¢ = 0 fails to.excite the
pionto 4,.Tomykn wledge there exists, as yet, no reliable analysis confirming this
results.

Third, we predict that the ¢ trajectory couples to =, A; and ¢, all with equal
strength [8] M, ~ m/* Explicitly, equ. (5.19) tells us that

met  M? 1 (N )“e(o)“

_ et e
2f,2 7w Taa, %(0) + 1\ M2

PP

(5.20)

where, for brevity, we have removed the isospin factor igy,, iey o from C%) and
the left hand side of the equation.

VI. Comparison with Veneziano Model of w7t Scattering

Since not much experimental information is available on the couplings of f and ¢
mesons, let us compare our predictions with another model, which incorporates
some of the essential features of our scheme: the Veneziano model of mr scattering
[9—11]. This model satisfies the correct low-energy theorems of 7'(4), is asymp-
totically dominated by reggeized f and ¢ exchange in the {-channel, and builds up
the Regge behaviour by a string of s-channel resonances. If §, « denote directly
the isospin indices of target and final pion, the Veneziano amplitude is given by

1 1
T8 = Th=0 T 8b935, + TTe=1 5 (6,28, — 6528,7)

4 Tle=2 [—;-(636,31' + 8,26,0) — % abwaﬁa] (6.1)
with
1 T7=0 — 1 (A(s &) -+ At u)) — i A(s, u)
3 2 ’ ’ 6
1 1
5 Ti=1 — 5 (A(s, t) — A(u, 1))
TI=2 = A(s, u) (6.2)
where
w2 1 DL — () P(1—a®) - 1 s
Al ) = =5 = It — a(s) — a(0)) o) = gt gus (63

The coupling strengths of the s-channel resonances ¢ and y are not too much diffe-
rent from those of our saturation scheme. They are somewhat smaller,

1 1
h=—r, 9=—,
V=

=

(instead of cos ~ 1/]/5, sin v & 1/}2).

(6.4)

1) Assuming that v is emitted via a p meson continued to zero mass and that this in turn can
be related to the coupling of the g trajectory at ¢ = 0. See Sections XTand XII of the Reference
given in the footnote on p. 378.
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since more resonances are present filling up the Adler Weisberger relation (2.28).
However, all those other resonances couple with considerable less strength (The

nextare f, o’ with Gt = G =1 /]/-(E) At high energies, Im A(s, t) approaches

2m,2 1 y \el®)
Im A(s, t) ~ — F T0) (2%2) (6.5)

which becomes at { = 0

2m> 1 [ » O
Im A(s, 0) ~ : ( ) (6.6)

I A ]/— 2m,?

As a consequence, Im t(=) behave asymptotically as

m2 1 [ v \L2
Im ()88 s §ba =t 6.7
m ‘5*““[ = 1/_(2%) ] oD

1 v \2
Imt WAL ] 7;8 ?;8 « 9 ( ) . 6.8
bae Be [ f,-,; V— 2:”?/p ( )
Therefore c{i), and ¢{;, are both equal to
21

el = ok =~ L~ 56 e (6.9)

W ya T

This property of being equal is called exchange degeneracy of p and f trajectory.
It is shared by all amplitudes satisfying FESR in which the exotic I; = 2 ampli-
tude vanishes at high energies and in which the exotic s-channel I; = 2 is free of
resonance poles.

Now consider our predictions (5.17) and (5.19). In order to compare the results we
have to fix M2 = 2m_? ~ 1 Ge V2. Therefore we find

2\1/2 2
o) ~ 2 (zm") Mo

=2\ ) Gz
c-) ~ _3_% 2’m,p2 e .7?_9_2
4\ N f=*

We now have to choose the energy N. Since our saturation scheme is rather small,
the results will be somewhat sensitive to the exact value of ¥V to be taken. Consi-
dering that our scheme contains all important resonances up to the f meson at
3m,%, we choose simply

N = 3mz2.

For this value, ¢+) and ¢ take both the value®

7 [ 2\Y2 m? my2
clx) ~ ——E (3) fn._z r —.64 -](n—z.

The agreement with the couplings predicted by the Veneziano model is excellent.
Notice also, that our predictions will always show exchange degeneracy (at least
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approximately). Thereasonissimplytha,twehave enforced T+, _, =4 by taking
m?® = me® -- m,® and that the s-channel contains no exotic resonances by construc-
tion. Therefore if one considers the exact choice of N to be dubious one may simply
prefer the value exhibiting exact exchange degeneracy.

VII. A Simple Saturation Scheme involving N, 1 (1236), N*

In the case of baryons the representation (1, 1/2) contains the most important
particles N and A and the couplings are the same as those obtained from SU{4)
symmetry!2)

5 4 1

m . = 31 . 3B .
¢ 3’ ¢ 3’ G 3

The simplest saturation scheme going beyond this is constructed by admixing a
(1/2, O)representation which amounts to introducing one more 7 = 1/2 resonance
N*[3]. Defining the physical states as

oo

N*¥ = —gin !P( —;-) -+ cos &U(— O)
1
4 = (1, 5-)3 (7.1)
we find
1 {4+ cos2¥ —sin2V¥
1
¢ 3 (—msin 2% 4 — cos 2'?) (7.2)
4 .
G3 = 5 (cos ¥, — sin ¥)
1
038 — — .
3
Experimentally, one knows the couplings
2
ga=0k =1+ §—cos”f’w1.23. (7.3)
and
4
By =—wcos ¥V~ 1 (7.4)

3
from the width I'y_ . &~ 120 MeV.

The scheme has the basic defect that no choice of ¥ can really satisfy both. The
mixing angle ¥ may vary from 549, where g, is correct but (8L ~ .78 too small, to

12) They obviously fulfill the Adler Weisberger relations (2.31).
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41°, where (% is correct but g, is too large (~1.37).
If we enforce m? = my? + m,? we find
MAZ — M2

tan? ¥ = (7.5)

ME — Mp2
which puts the resonance N* anywhere from 1.38 to 1.55 GeV. Therefore we shall
call it tentatively the Roper resonance and denote it by R. Its coupling is predicted
as Giy ~ —.33 in the whole range of . Experimentally the Roper resonance
decays with 'z x. &~ 100 to 240 MeV giving |Gy ~ .32 to .5 compatible with
the predicted number.

Since m4 can connectonly (1, 1/2) with (1/2, 0) the mass splitting matrix M 2742Ta
has the form

e sin 2Y¥ cos 2¥
4 cos 2% —sgin 2W
M3 =0 (7.6)
where
=/ iO :lsin%[f(mrz—m%
BN 2’ 2 N R
54°

o~ 2
ARY { 76} GeV2 for ¥ ~ {410} (7.7)

Thus we obtain for the coupling of f to NN :

xw (MY ([ 5
(Cf);pn—n R — 4](_71!2 (.Z_V_) {.76} GeV?2

30 549
%—-{46}f0r ‘Pm{éuo}, (7.8)

while experimentally one finds!®) the value
(epp = c§F" = —2mpH) =-—-2m(27.2 4+ 1) GeV-! a~ —53.6 L 2. (7.9).

In order to calculate the coupling of the ¢ trajectory we insert equ. (7.6) in equs
(4.9).

If we denote the reduced matrix elements contained in the curly brackets of (4.9)
by R, we calculate

pu_ % 4 {1 —4sin?2Y¥ —2gin 2¥
9 ~~2sin2¥ 1 —4cos2YW
R = —3— (—cos ¥, sin ¥) M 2
8
R3 — 9 M2, (7.10)

13) According to the review of C. MicHAEL, Springer Tracts of Modern Physics 55, 182 (1971)
one has for ©N scattering Im (4 -+ vB) ~ B(v/M?2)* with ) = (27.2 £+ 1) GeV—1 and p-) =
= (14.7 + .8)/3 GeV—L (A +vB= —T/2m).
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For the angles ¥ = {31} this gives numerically

/ 22
1
8 {.51

R & — } GEV*
221 (.00
{.51} {33}
07 (.90
31 o . 4
B ~ ( {.20}" {.17}) GeV

22

33
A~ ']I.52

} GeV4. (7.11)
Notice that several numbers show an unpleasant strong dependence on the mixing
angle V. Tt is gratifying to note, that the most interesting matrix element R is
rather stablein . Unfortunately it leads to a completely wrong pNN Regge coupl-
ing. From equ. (3.10) we find

(cg)r:' n”

3 & [M?
S TE

3/2
T) RiyJe ~ 6 (7.12)

while experimentally 14) this value is found to be —2m(14.7 4 .8)/3 GeV-! &~ —10.
The reason for this serious defect of the saturation scheme is easily discovered: If
we write Rl explicitly as a sum of intermediate states of isospin 1/2 and 3/2 we
find from (4.9),

Bl = 37 (my?— m3)? (GHx)? — (ms?— mh ) (G2
The experimental sign is due to the fact that this sum is dominated by large masses
of isospin 1/2. This interpretation is confirmed by a look at the standard figure [5]
showing the validity of finite-energy sum rules for =N scattering in the 7't
amplitude. The Regge behaviour builds up in the region where isospin 1/2 reso-
nances are dominant. In our scheme, however, we have explicitely

4 16 .
RY = (~9- a sin? T) M2 (7.13)

N A

and the A resonance makes R negative. The only way to remedy this defect is by
going to a more realistic scheme containing high-mass T' = 1/2 resonances. This
will be done in future work.

VIII. Outlook

Encouraged by these first results based on an extremely simple saturation scheme
we suggest investigations on the following subjects:

1. Properties of f and g couplings in larger meson as well as baryon saturation
schemes [4].

14) See footnote on p. 393
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. Helicity flip properties of f and p couplings. For this one simply has to apply

our procedure to helicity flip amplitudes.

Identification of i[m,*m,?] as the A, Regge couplings. Here one has to alge-
braize appropriate finite-energy sum rules of amplitudes involving three pions.
Possibility that the operators T',, X,, m,2, m,® form a larger Lie algebra. The
observation that [m,?, m,?] comes out proportional to 7', (p universality) is
certainly an indication that this could happen.

Links with the algebra of Regge residues of CaBBsiBo, HorwrTz and NE'EMAN
[12].

Possible connections with the infinitely rising meson schemes of Brout et al [13].
Extension of the method of chiral SU(3) x SU(3) saturation schemes.

Once these questions will be answered we may obtain a joint understanding of
particle and Regge couplings within one algebraic scheme,
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Note added in proof:

While this paper was in print, most of the investigations proposed in the outlook have
successfully been performed. The couplings of f and p trajectories to larger meson schemes
are given in H. KLEINERT and L. R. Ram MorAN, Nuclear Phys. 52B, 253 (1973). Points
3., 4. and 5 of the outlook are solved in H. KrEiNERT, Letters Nuovo Cimento 6, 583
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(1973). There it is shown that T, X, —t [mg? my?]l, —¢ [mg% mg], ms®, m,® form the
»superalgebra® SU (2) x SU (2) x O (b) of charges and Regge couplings. In addition, the
connection of this superalgebra with the algebra of bilocal form factors of Fritzsch and
Gell-Mann has been established in H. KreiNnerrt, Berlin preprint, March 1973, and a
combined algebraic view of currents and Regge couplings has been obtained.



