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Abstract: We employ a chiral saturation scheme involving 15, L =0, and 15, L. = 1 mesons in a
classification according to SU4) & O(3) (i.e. the mesons , p, w, Ay, Ay, f, A, (58),B,D
and o) and calculate ali f and p Regge couplings between these mesons rig a matrix
version of finite-energy sum rules. In addition the size of exotic exchanges is evaluated
and found to be small. The results are compared with experimental numbers and other
models as far as available.

1. Introduction

Within a narrow resonance approximation to hadronic amplitudes, algebraic
treatments of the chiral SU(2) & SU(2) charge algebra have provided us with a large
number of pionic coupling constants [1,2]. For example, all couplings of pions to the
mesons 7,0, and Ay, Ay, f,A; (8),B,D,0,belonging to the 15, L =0,and 15,L =1
representations of SU(4) & O(3) can be found in the literature {3]. Similarly, large
coupling schemes have been developed for most of the well-established baryon reso-
nances, in particular, for the 56,L=0,70,L =1, and 56, L =2 states of SU(6)} & O,
(ref. [4]).

The calculation of such coupling schemes proceeds via the construction of reduc-
ible representations of the SU(2) &@ SU(2) commutators

(T, T,] =ie, . T, (1.1)
[T, X, N =i, X (N, (1.2)
(X, (), Xy, M) =ie, T, (1.3)

where, as usual, T, denotes the isospin and X, () the collinear matrix elements of
the axial charges at infinite momentum and helicity A [2]:

* Supported by Deutsche Forschungsgemeinschaft under Grant No. KL 256.
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[X, O] g 2P, 27)° 8% (g —p,) = lim (p,B,NQ, Ip,a, V)
p—)uo

The possible irreducible chiral contents are assigned to the particles in two steps:
(i) One assumes a non-relativistic quark model with SU(4) & O(3) symmetry.
This group contains an SU(2) & SU(2) subgroup formed by the operators

dequ 7,4 (1.4)

fd3x gl 17,034 . (1.5)
The matrix element of these operators between states at rest * are taken as a lowest
order approximation to the algebra (1.1) —(1.3).

(ii) One accounts for the effects of symmetry breaking and of relativistic correc-
tions by mixing the above representations and by identifying the mixed charges (1.5)
with the matrix elements of X, (A) in the infinite momentum frame.

As a consequence of eq. (1.3), the coupling constants so determined satisfy the
Adler-Weisberger sum rules for the scattering of pions on any final state

naa—ﬂrbﬁ .

In a system of mesons consisting of isospin one and zero only, these Adler-Weisber-
ger relations can be expressed in terms of the reduced coupling matrices™* G égla of
the pions as

01 =
%} cravellm=o, (1.6)
?G};(A)G% M+GHMei =1, (17)

where the sum goes over all intermediate states allowed in the s-channel. The informa-

* In Gell-Mann’s recent terminology, the first representation denotes the content of constituent
quarks in an elementary particle. The mixing establishes the proper amount of current quarks
which can be found by probing a particle at infinite momentum with photons and neutrinos
{51

** These matrices G Iglo are defined by taking the following Clebsch-Gordan coefficients out of
X, )
a

[ 10 - _

sﬁaG s Iﬁ—l, Ia 0,
:J 01 4 = =

[Xa Y Bor 6aaG , for Iﬁ 0, Ia 1,
. 11 _ _

_leﬁaaG y _15_1’ Ia 1.

Actually these couplings refer to pions continued to zero (mass)? vig the interpolating field
T (llfﬂm i) 5 A. The assumption of PCAC brings us back to the mass shell.
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tion contained in the coupling matrices ¢ obtained in such a fashion has so far been
used to a rather small extent. Only the absolute magnitude of a few matrix elements
G] /o has been tested by comparing with the experimental widths for decays

g - o + 7. It is the strength of the Adler-Weisberger relations of being able to deter-
mine as well the relative phases among the couplings Gﬁlg]a. Other methods which
could verify also this aspect of the theory are therefore desirable.

One such method has been developed some time ago. It allows for a calculation
of electromagnetic couplings between all particles in the saturation scheme by mak-
ing a combined use of forward and backward dispersion relations and vector-meson
dominance [6]. In this way the anomalous isovector magnetic moment of the Roper
resonance was predicted [7] and has since been verified by the phenomenological
analysis [8] of photoproduction on deuterons [9]. Furthermore the known multi-
pole couplings of the ¥ N A transition have been correctly reproduced [10].

Recently it has been observed that chiral saturation schemes can also be used to
predict the Regge couplings of p- and f- trajectories [11]. For this one simply in-
serts the G-matrices in appropriately chosen finite-energy sum rules. Also this meth-
od is sensitive to the relative phase of couplings. The ingredients of this method can
briefly be stated as follows.

Let us split the isospin even and odd parts of the scattering amplitude at =0
according to ™

Tj(s,z)ba =t [gz)ba (v) * tgia)ba (-v) ,

where t(ia)ba contains only the singularities due to the particles exchanged in the
s-channel (v =5(s —u)=s— %(m2 +m2)) According to the ideas of duality [12,13],
f( Jba (v) will contain a set of resonance bumps which even out at relatively low ener-
gy to form a smooth curve

i )
(2 )ba (+)ba (+)ba e~ /5 \*p 3
1 (V) (1‘ ) — (€3 4 7o) \ 73 (1.8)
Regge M

Notice that we have written (s/M2)*.e © rather than the conventional form
(v/M2)*p @ The reason is that we shall be dealing with rather general scattering
amplitudes in which initial and final particles @ and § may be highly massive objects.
The s-channel singularities in such amplitudes start close to s =0 i.e. much below
threshold (with one or two pions in the intermediate states). Thus we expect the
form (s/M2)*p @ (0 be relevant down to lower energies than the corresponding
version in .

With this asymptotic behaviour being known, the difference

el GRS Gl ) (1.9)
Regge

* Normalization: =1 —i(2m)* 8% (pg-p; T, ' Ipy=2p, (2m)° 87 (p' — p).
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is a superconvergent amplitude and has to satisfy

f dsIm (P @)~ (G @) 170 . (1.10)
b egge

Since the Regge asymptotic form is presumably reached at a rather low energy s =N
we can truncate the integral and find the finite-energy sum rule [12]:

o, (0)+1

N ) 32
(t)ba o cCY'M N)
6[ dslthmd (oefp(())+1)( 5 . (1.11)

The important point now is that the left-hand side can be approximated by the
coupling constants X, (A) calculated in an SU(2) & SU(2) saturation scheme. For
the contribution of the sharp resonances in such a scheme we have

tm = () 2 b(s =) o =) Om =) Xy 0.5, 0

Ba 2
2 t
I (1.12)
Introducing the matrices
(mg_mi) X5 ()= [m%, X, (V] = —im? (1.13)
and performing the integral in (1.11) we obtain
D ]~ w0 (N O (114
22 b A, B (. (0)+1) 32 ’ -
m ]
2

where V is a number somewhat larger than the highest m% occuring in the saturation
scheme.

Notice that due to the absence of exotic Regge trajectories the right-hand side has
no /, =2 part. On the left-hand side, however, there is no a priori reason for the [, =2
part to vanish. The knowledge of its suppression due to the information coming from
Regge poles imposes severe restrictions on the interrelation of masses and coupling
constants in any scheme. The amount of suppression should become more effective
with growing saturation schemes while being hardly noticable if only a few particle
couplings are available. We shall come back to this point in the next section.

In an earlier paper another finite-energy sum rule has been derived involving

(¢4

8., m2=[X, (N, [X, ), m?]] . (1.15)

This was done by considering the finite-contour dispersion relation

N ! ! 1]
ba 2 ] Im £ ) ") dv 2 dp'2 c® (S/Mz)
¢ wd)== [ + , (1.16)
Pa m ) S22
O th th
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and using the low-energy theorem
Te ) =Z5f2 (1.17)

zba

where denotes the matrix elements of the X-commutator

b2 = Li (07, 84°] + [QP,047)) , (1.18)

and Vth stands for the threshold value Vth [-(m —mz)] 2 of v2, Inserting the coupl-
ing matrices X3, () into the first integral in (1.16) we flnd

2o _ T ~(4) = _fi)}
my =2 . C o (0) [1 E( . (1.19)

Here the usual Regge expression is modified by a factor (1 — £)where E is a correc-
tion term having its origin in the denommator (V -~ Vth) in the last integral of (1.16)
and tends to zero for (mg[/]\O, (mg 2/N) - 0. The correction term can therefore be
safely neglected in large saturatlon schemes when the pions are scattered on particles
with low masses. Explicitly this term is

2 .2 2 2

DD T o

nO

Since the intercept a(0) is about & the summation can easily be carried out:

(1.21)

(mi mé) mi [1+ mi/N] r1+\/m2/N
() [ iy
NN ! 1 —/m2/N N L i 2IN

N

If NV is rather small £ may take such large values that (1 — L) can be close to zero or
even become negative. We believe that in such cases the sum rules are quite unreliable
since they depend on the validity of the Regge asymptotic form all the way down to
threshold 2 ~ v%h, (ie.s=sy, = max(mg, mé)). This situation occurs, for example,
if one considers mA; = mA, scattering in a saturation scheme involving only m,p, A;, 0.
Then the only intermediate resonances p, o lie below the threshold energy s = M
and the Regge asymptotic form will hardly have been reached athmzA1

It is the purpose of this paper to employ the largest meson saturation scheme
available in the literature in order to calculate Reggeized f- and p- couplings from the
sum rules (1.14). Many of these couplings will hopefully be tested in the future when
good phenomenological fits to production amplitudes for mesons in pion and pho-
ton collisions (using vector-meson dominance to relate to the p-meson) will become
available. A few couplings are compared with the data available at present and with
predictions of competing models.
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2. The meson saturation scheme

Let us consider explicitly the mesons contained in the representations 15, L =0,
and 15, L =1 of SU(4) @ O5(ref. [3]). For a brief orientation on their properties we
have given a Chew-Frautschi plot of these mesons in fig. 1, with the parity (£) and
G-parity quantum numbers added on as superscripts. The states of L =0 can be de-
composed with respect to the chiral subgroup (1.4) and (1.5) as

PN =0, Wt =(g,50, —vr ), n=10, (2.1

where A denotes the helicity and s, v, 7, ¢ are * the standard abbreviations to the (0,0),
(.1, [(1,0)+(0,1)] and [(1,0)—(0,1)] representations of SU(2) ®@ SU(2) respec-
tively.

In combining these states with orbital L = 1, one finds the chiral contents: **

A=2 A=1 A=0 GP
A,=v' A, = \715(,) +7) 7 v, +4/2F ] — 4+
f=v, f=\/%(v;+s) f=—\}§ (v, +/2s] + o+
A1=—\1}-_2—(u'7') A, =v] — 4+
D=:/L_2—:(v:t 5) D=v, + +
B=1{ B=¢ + +

\/—[\/-2—01 - +

o=—1—[\/§v;’—s] + 4

V3

Representation mixing has to be performed at every helicity separately. It has to
respect the two important properties of X(X):

* The notation makes use of the four-vector language of the group O{4) which is isomorphic to
SU(2) @ SU(2). See ref. [2].

** For brevity we have dropped the orbital states in the notation since their magnetic quantum
numbers are uniquely determined by the helicities. However, we have to remember that £,1
and v at L =1 are different from those at L =0. We have indicated this fact by using primes on
these quant1t1es for L=1. At 7\ 0 we have also used the more conc1se notatlon V2, =
(u +uv ) \/§v4 = (u tuy ) ﬁ (v — v ')and \/§u4 —(u ) since only the chi-

ral properties are of interest here.
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GXMNG1=-x0) , X N =—mgn, X, () (2.2)

where G is the G-parity operator, and 7, = intrinsic parity X (- I)Ja denotes the
normality of the particles.

Inspection of the states shows that one can mix only the 7 with the A; meson at
helicity A=0 and the p with the B-meson at A=1, i.e.,

1r=cosd/t+singbu'1 , A1=—sin¢t+cosybv'l , (2.3)

oW =cospv' +sing s | B =_singv' +cospr . (2.4)

From the standpoint of SU(2) ® SU(2) the mixing angles ¥ and ¢ are completely
arbitrary. The resulting G-matrices are obtained for helicity zero as

if A1 o] A B A

2 0
olvZsiny  VZEcosy 0 0 0 0
GOl =51 L gny 1 cosy 0 0 0 0 (2.5)
) \/§ sSin \/3_008 .
] .
D 0 0 0 — 0 Vi
i V3 3
i A1 o A2 B A0
i i 0 0 cos V¥
A1 0 0 —sin Y 0
P os Y —sin Y 0
G1lLl0)= , (2.6)
A, ¢ Vi oo
|
B 0 Z 0 -
V& NG
|
A 0 -—= 0
vl 3 1

for helicity one as
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Fig. 1. A Chew-Frautschi plot of particles present in our model. The parity and G-parity quan-
tum numbers are given as superscripts, in that order.

G (nH=D

A1 B
3 0
L 0
L 0 cos ¢ —sin ¢
A1 Jo)
[ 0 ——1— sin ¢
V2
1
——sin ¢ 0
V2
1
——=cCcos ¢ 0
V2
0 L sin ¢
: V2

B

(110
-

<o

cos @

o&l—‘ w

—=Ccos

[\

(2.7)
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and for helicity two as
" (2)=Gy =1, (29)
2

GH(@=6, , @=0. (2.10)

It is easy to check that these matrices do indeed fulfill the Adler-Weisberger rela-
tions (1.6) and (1.7).

Due to the restriction to a finite set of resonances the determination of coupling
constants will involve errors that are hard to assess. [f one considers the pions on two-
low-lying particles, most of the important resonances necessary for a saturation of the
Adler-Weisberger relations will be contained in our scheme. If, on the other hand,
initial and final particles are rather heavy, our scheme has too few resonances to
offer above these particles to provide for an appropriate saturation of the sum rules.
The scheme will exaggerate the couplings in order to make up for the absence of the
higher resonances™, An example is A, —~> nA scattering at A = 2. This amplitude is
saturated with just the f-meson yielding G 1(0) = 1, which is probably a poor ap-
proximation. In general one should expect that the larger number of particles present
in an Adler-Weisberger relation above the target and final mass, the more reliable are
the coupling constants determined from it.

The resulting coupling can be compared with experiment by calculating the decay
width for A = pm, Ay = pm, B > wm, 0 = 7w, { = 7. One finds that mixing angles
sin = 1/+/3 and sin ¢ = 1/3/6 lead to reasonable overall fits of the existing data (for
the details see appendix A).

3. The Regge couplings

The calculation is conveniently performed in terms of the reduced matrix ele-
ments M‘{gl‘l of (mz) . These are defined in complete analogy with G4 B]a Since by
definition m2 =+i [m2 X(A)] we have

!
Mﬁa*ﬂ(m 2)G5°‘ . (3.1)

The commutator [m%, mg] consists only of an isospin one operatorr,:

[mg, m? =ie, .r. . (3.2)
Its reduced matrix elements are
RI0=2 Z‘,M” M10 (3.2)

via T vya

* Due to the positive definiteness of the resonance contributions in all elastic sum rules.
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11 _ 10 01 11 5,11
Rﬁa_ E( vﬁf),M +MB-),M ) (34)

The anticommutator {m%, mg}, on the other hand, can be written as
2 A
{mg,mi}y =6, fre., . (3.5)

where the traceless tensor e, is an exotic isospin 2 operator while f is of pure iso-
spin zero.
The reduced matrix elements of f are *

00 _ 01 10 11 —2 10 01 11
FR=2MY MO Flo =35m0 M) +2Mvﬁ7M - (3.6)

The exotic operator can only contribute between isospin one states. There it
yields*™*
En =2(m10 pOL M“M“) _ (3.7)

The results are displayed on table 1 for helicity zero and on table 2 for helicity one
scattering, with particle symbols denoting particle mass squared.
The Regge contributions of f- and p- mesons to the amplitudes

T(+)_ '(T ;=0 ; T1t=2)ba T(_)E%(TITZI)ba
Bo Bu

are obtained from the numbers in the tables by using (1.14):

o , {0)+1 F,Goz
% (3.8)

r @ (D) 42
212 M2 (N)

() _
Ch)=—

R

Ba

The commonly accepted values for the intercepts of the f- and p- trajectories are
ap (0)~ a, (0) ~ 3. The energy NV has to be chosen somewhere above the highest

* For isospin zero operators we go to reduced matrix elements simply by removing the isospin
conserving Sﬁa
** Notice that between isospin one states
11 = 11 11
baf 6ba 6.801 F,Ga Z(P )F,Ga ’
correspondingly we have defined
1152

i = - 11
(eba Ba = [ bB aw 6boz'SaB) 3 ba Boz] Bl =2P bﬁa ;
This definition is convenient since it makes R and F, £ contribute directly to T( )= If =1 and

T®= 17704 7472
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Table 1
For the processes e > w8 the Adler-Weisberger sum rules are displayed together with the finite
energy sum rules for the It = 0,2 and 1 amplitudes which are denoted F, F and R, respectively.

Helicity A= 0,s =2, ¢ = \/%

3
. Adler-Weisberger 2 F
Reaction relation Matrix elements of { %E \
mh— na RJ
a) [g=1,=1
3(1.50),
S——— Lde+p+c?=1 1 [2(17—0)2+(1r~f)2]+(—1)6‘2 (n—p)* = (%(0.25) p?
o f »p 1 1.63
2 2(0.78)
mA —>rA; FrQ+D+st=1 0 Lé? [2(A1—o)2+(A1~f)2]+(— )s (A, -p)° (2(0 16)) o
o f p 1 0.87
2 3( 0.60)
mm-rmA;  3se(2Q+1)-3 =0 %sc[Z(n—O)(AI—GH(ﬂ—f)(A,~f)+(—1)3] =(%(—0.31))p2
o f »p 1 0.45
2 2( 6-08)
nA, —aA, 3+3 =1 M, -D)* + (~1)2(A2 - B)’| = %(—0.04))92
D B 1 0.06
2 3 1.08)
mAg— A, 3+3 = 1 L2(A, -D)* + (‘1)(A0 B)?| (2( 042))p
D B 1 1.30
3 0.15)
A, 1A, +-2 =0 V2 (A7 — D) (Ag —D)( ) ~B)(A,—B)|= (( 013))p
D B 0.09
2 5( 0.52)
mB—-mB  :+% =1 ;—(~1)[2(B—A2)2+(B~A0)] =(%(-—0.26))p2
A, A, 1 0.39
2 2( 1.28)
o — TP 2+st= 1 (—1)[c2 (o-m*+s> (p— A =(§(0.64))p2
T A 1 0.96
b) IB =(Q, Ia =1 Matrix elements of R
76— TP 2WEsc(1—-1)= 0 2WEscllo—m(p-m—(o—A)(p—AD] =~ —-0.06 p’
n A
nf—mp 2Ese(1-1)= 0  2/&sclt—mp-m)—(E~A) (o —A,)] = +1.80 2
T Al _
aD—~aB  2/Tse(1-1)= 0 WEsc[(B-A) (D —-A,)—(B-A)D-Ay] ~ -110 p?

Ay g
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Table } (continued).

3
Reaction  Adler-Weisberger 3 F
acto relation Matrix elements of %E
R
c) [;3 =1,=0 Matrix elements of #
"G = TG %[s2 (G—TT)2+02 (o—Al)z] ~ 1.30
af - f P t-mP et (- AP ~ 180
0=0
g — uf V22— (f-m+ct (a—-AD(E-A)] = 0.37
D — 7D (D -4, +2(0-Ay)°] ~ 192

The common helicity of target and final particles is A = 0. The particle symbols denote the
particle mass squared.

mass squared. Let us take N~ 4.5 mz. Choosing M2 ~ ng = 2p~ | MeV2 we finally
obtain

F
R

1
- (3.9)

P

() _
Cﬁ 22.7

[0

Thus muitiplication of our values in tables | and 2 by — 22.7 yields directly the de-
sired Regge couplings. Notice that the overall size of the couplings is dependent on
the value chosen for N. Had we used NV = 5p we would have

Fl1
R|

[0

cW 19.4{
B 2
p
This discrepancy indicates the typical systematic error inherent in our predictions.
F(()r)the sake of simplicity let us use the factor — 20 in translating /- and R- values to
c.

We wish to bring attention to the approximate exchange degeneracy [14] F~R
predicted by our scheme. It is known from general considerations on duality that ex-
change degeneracy goes together with the absence of exotic amplitudes at high ener-
gy. In our algebraic scheme this connection is manifest. From egs. (3.3), (3.5) and
(3.6) we have

R-F=3F .

1
P

A perusal of tables 1 and 2 shows us that £ is in fact considerably suppressed relative
to F. The reason is roughly that in /" one is dealing with a sum of the isospin zero



265

H. Kleinert, L.R. Mohan, Chiral symmetry

0 I vly o

0= IV -V -+ Cv-(lv-plE[1-}+ (@ - (@-@-}x 0= Erlir-)os O gu
0 4 .
19°0 I iy ly o
9 10 )¢ = LEV-@+ ,v-@] 2{1-) 3+ (0o-m s 1= (1+1) 0%+ s gu — gqu
(€50 HE z
P10 I
.9 (200 )& = a-WE-'w) 2+@ - -y s1¢{1-] -
(sT0-)% z a 9 a3y
£ 4 b z I
0= (p2+ 9%-(+Dk Vi fyu
(a-*¥) (@~ "'M+0-wa-"wit
SE€0 L : . . 1 g d a I
0 AR @~ "V) 24+ (I= V) SIF T )+ A=)+ G=WIF  T= (po+ 9%+ (1+DE CyneTyu
(9r'0 )% z
IS0 I g ¢ d 3
¢ (€00 )&|= =" 2+ (0= W) SIEE| 1)+ a-"W+ G- "WIE 1= 2+ 9T4(1+DE tyz ety
(050 )& (4
80 I ty ly o
29 (9704 |= [[V=9+ (V=) sl 1-} &+ (@-0) 0 = (T+ D58+ 0 oL o
(1570 )& 4
1="71=9 (2
o U —gu
<
T m Jo stuawiaja XIIeW uofe[ar uonoray
a& Ia3I3qsTapm-1o[PY :

.m =2 J\/ = 85T = ¥ ANOHH "A]9A10adsal “y pue 7. Aq Pajouap oI yomym

sopmidwe | puz ‘0= 7 ou) 1o} sepn1 wins A310u0 9y1uTy oYY YHM 12Yy7030] poAe[dstp aIe SO[NI WINS I05IaqSIOM — I[PV o) gu «ox sassa00id oy} 10,1
T °l9EL



H. Kleinert, L.R. Mohan, Chiral symmetry

266

0t0

0€0+

8T 0~

S€0+

£C0—

1¢°0+

&

2

[(d— *W) (g~ @) — (9= Ev) (F— ) +] (55 /)

(a-'WE- @)+ (@@= TV (@-m) -] (s

(Cv-(v-+(v-('v-—a-1@EN9)

[(Cv- v—@+(v-v— -1 @

(Cv-@ Cv-n+v-@ (v-2-1@N9)

(Cv-o Cv—p+(v= (vy=-1 @9

: 3 JO sjuQweld XINEW

q d

o
MM JO SJULUAD NP}

4
qg

OH A~|~vmbm\/ N.<.=AI3.F
q d

. AH+~|vhU|N|\/ “<.=.A|3.F

0= (T+1-)= e
N< —< W\/

.- :+~tviml ox « (qu

0= T+1-)= e
N< ~< m\/

0= (T+1-)= e

.H “vON no HQN AQ

DU gu

uonefar uonorvay

I9313qSIaM-19] PV .

(PONULLOD) T S[qBL



H. Kleinert, [.R. Mohan, Chiral symmetry 267

Table 2 (continued).

. Adler-Weisberger Matrix %E
Reaction .
relation elements of {2—1:‘]
R
(c) Matrix elements of F:
]ﬁ =0= IQ
nf — nf HE—AD? + (T - A ~ 026 p’
7D > 7D IO —-A D + (DA, ~ 033 p’
0=0
nf—xD HE-ADD—A)+(E-Ay) (D - Ay)] ~ 029 p°
W — W 2{(‘2 (u.;—p)2 + 52 (w-—B)z] ~ 0.85 p2

The common helicity of target and final particles is A = 1. The particle symbols denote the
particle mass squared.

and (twice) the isospin one contributions, while in £ the two contributions are of
opposite sign. If an amplitude has only isospin one intermediate states, the suppres-
sion of exotics is only by a factor —% as, for example, in 7p = mp and 7B — 7B at
helicity A= 0 (see table 1). In the first case this is a direct consequence of the fact
that w cannot contribute due to normality selection rules and that no meson with
16 =0~ and normality — 1 is known to couple significantly to mp (¢(1019) has only
Ly pn S 1 MeV, the next candidate being ¢y (1655) with I‘¢N_,p1T < 140 MeV). In
the second case the decoupling of w (at helicity A =0) is a prediction of the model
which, however, agrees with experiment (see appendix A). Also here no other / G=0-
meson of normality —1 is known to couple to Bm. We conclude that forward #p and
7B scattering at A= 0 should show some exotic amplitude and that there exchange
degeneracy should be very approximate. The success in obtaining a suppression of
the exotic amplitudes may be related to the fact that our particle multiplets are taken
from the quark model. We wish to mention that considerable effort has been de-
voted to establishing quark-like SU(6) X O(3) multiplet structures purely from Regge
considerations without much success [15]. There one assumes all baryons to lie on
completely degenerate Regge trajectories and evaluates the consequences of the con-
dition that exotic amplitudes vanish at high energies. The multiplets found in such
calculations are quite different from those expected from the quark model. The con-
nection between the two approaches is certainly worth further investigation.

Before we go on to discuss the Regge couplings we find it interesting to compare
the results with what has been obtained previously in a small saturation scheme con-
taining only 7, o, A; and o mesons. Our formula (3.8) indicates that by using larger
and larger saturation schemes the matrix elements of # and R should increase with
a power ~ V2. Consider n-w scattering for which we may expect our saturation
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scheme to work best *, The small scheme (constructed for zero helicity) yielded

R] _=p?, (3.10)

mr -
while the larger scheme gives (table 1):

- 2
R_=163p (3.11)
The increase by a factor 1.63 is just what one expects from the behaviour N3 since
N has meanwhile increased from =~ 3 m;‘; in the previous scheme to ~ 4.5 mﬁ in the
present **. Note that if one would compare two large adjacent saturation schemes
one could establish accurately the intercepts a(0) of the leading Regge trajectories.

It is worth emphasizing that the scheme with 7, p, A; and 0 mesons is not very
suitable for a calculation of Regge couplings within our framework, even though it
has some interesting features [11]. For instance, it leads to p -universality in the
form

= = = 2

RM—RAIAI—Rpp—p . (3.12)
However, it has rather large exotic parts in the even amplitude and exchange degen-
eracy is no longer valid for all amplitudes:

F_=F 2 F =4F , =%p? (3.13)

n AlA1 =P

Wi
©

E =~E , =%p . (3.14)

pp ,

Wi

Curiously enough, despite large isospin 2 parts in the matrix elements of {m% mg‘},
the super-convergence relation

) x=2) 1 f @TImT @)
TO@y)| == =0=— f — , (3.15)
=2 f,r 0 e
leading to [2]
{[X X, m2]] +(b¢>a)} =0, (3.16)
=2
and the superconvergence relation
1o ,
- f & ImTH =0, (3.17)
0

* Since the external particle masses are lowest.
** Naturally complete continuity cannot be expected in going from such a small scheme con-
taining four mesons only to the present larger scheme.
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giving
X, m? , [[X.,m?],m?],] +(b=a) =0, 3.18
b a 1:2

are satisfied |16] for the same choice of the mixing angle (Y =45°)in the small
scheme. Within our framework this absence of exotics appears to be rather fortuitous.

4. Comparison with experiment

Consider now the Regge couplings. At present only a few of the results can di-
rectly be compared with experimental data.
Regge fits to 7-N scattering yield [17] *

pp
€, , ~—536%2 . (4.1)
m

The unknown fNN coupling is eliminated by using the result from N-N scattering
[17]

PP
€ ~—120%2 . (4.2)
pp

Under the assumption of factorization we obtain
CMax_24+3 (4.3)
nmw

which agrees reasonably well with the value — 32 predicted in our saturation scheme
considering the roughness of the approximations involved. The corresponding de-
termination of CET;) is subject to more uncertainty. While 7-N scattering gives a value
of [17]

(€)™ = 9.6 £ (-06), (4.4)

the determination of p- exchange in nucleons scattering is only bounded from above.
One finds [17]

(4.5)

WPP _ g0
«, )pp—o_23 .

Again employing factorization yields the upper bound
c) <23,
I

* The small errors given in ref. [17] should obviously be taken with caution.
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[t is gratifying to note that at least this does not contradict our (exchange degenerate)
prediction of &~ - 30. Recall that the Veneziano model [18] leads to the somewhat

larger value [11]
Con = Clp) =36 . (4.6)

The coupling of the f- trajectory to pp can be estimated by using the idea of vector-
meson dominance together with the analysis of photoproduction of @ mesons.
For vp— p0p the best fit [19] is

a d2
%F():A%[ Ap \/—] (f) (4.7)
with
af/AIJ ~(0.8 ,
AL ~T0ub/GeV? .

From the vector-meson dominance relation

~ T ;_1__)0 (0) 1+ ReT"p)z
7 \lor) OT'PP Im T

do > A0
37 (P~ A°p)

=0 TP PP
~ L (1 0
i b 4.9
ImTpp -4 Trs( )%—C(J’)‘Jp(—-) . (4.9)
Vs (4, N 2
we then have
€)™ ~—as .
YY)
PP
In order to obtain (C?))mT we multiply (C(f+)) by
b pp

NN
™ /(cgﬂ) ~(-53.6)/( 120)~ 045 ,
NN NN
to obtain

Cf;;}"" ~ 20 . (4.10)
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Our calculations yields only *

tinm o

cm ~—10 . (4.11)
The remaining Regge couplings should be tested in production experiments of high-
er resonances. For example the process 7p— A; p can provide information about the
f(mA;)and the p(mA ) couplings. Photo- and electroproduction of 0,f,A;, A,, B
and D combined with the assumption of vector-meson dominance will give us infor-
mation on many other vertices. In the absence of Regge analysis of such reactions
we can compare here only with some results obtained from other models.

(1) The coupling of f and p in #p > A, p is predicted as follows: we have Cg:z
~— ]2 and Cg&)l ~ — 9, and hence !

p
(C(f+))p_ =—12 NN —27 (4.12)
7 A C(+)7T"
NN
P CRN 0
(C™y = ~ { (4.13)
Ay e\ ST

If we take the corresponding values from a 77— 7A Veneziano model [20] we find
the somewhat larger coupling

() ~
C'rrAl ~-—-258 , (4.14)
giving
pp
(€t - ~—57 (4.15)
T oAy
(C(~))PP ~ 0
p m-ps 160 (4.16)

For a description of the model and a derivation of the coupling C'gl see appendix B

(i} The cross section for photoproduction of ¢ is predicted to be extremely small
compared with photoproduction of p. The p- trajectory couples 16 times more weak-
ly to o than to yp since from table 1:

12 1

o) = A~ e
CPG /CPP 19.2 16 -

Under appropriate smoothness assumptions this agrees with the result of broken

* Due to s-channel helicity conservation the experimental result gives the A =1 Regge coupling.
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scale invariance [21] which tells us that o cannot couple to a photon and a vector
meson {22], and to two photons. That oyy is small is also found in dispersion re-
lations with Compton amplitudes [23] which is related to oyp by vector-meson
dominance. Notice that in the photoproduction of f- mesons, p -exchange is pre-
dicted to be rather small. This statement will hopefully be tested soon.

5. Conclusion and outlook

Many phenomenological analyses will have to be performed in order to test the
large number of predictions provided by our scheme. The few presently available esti-
mates are compatible with the numbers presented in our tables.

It will be interesting to study the behaviour of the Regge couplings calculated
with our method as the saturation scheme employed grows larger and larger, If the
chiral wave functions are correct the rate of growth of {m%, mgj} and [m%, mg] with
N is controlled by the Regge intercepts oy (0) and @, (0). In a similar way, the exotic
parts of the amplitudes will have to vanish rapidly as NV increases. These require-
ments impose stringent conditions on possible extensions of the saturation scheme
presented here.

In this work we have not considered any helicity-flip couplings of f-and p-mesons.
They can be dealt with in a similar fashion. In this case the number of particles con-
tained in our scheme is, however, inadequate even to allow for a suppression of the
I, =2 exotics™.

A challenging question concerns the algebraic description of the pomeron, for
which we have not found any answer as yet.

Let us finally mention that consideration of amplitudes such as wa— 78 and
mre~> w73 will lead to the result that the algebra of all operators considered, viz.,
isospin T}, axial charge X, and the Regge couplings of f, p and A, trajectories, closes
to one single larger Lie algebra. A sub-algebra of this may even coincide with the old
conjecture of Cabibbo, Horwitz and Ne’eman [24] concerning an algebra™* among
f-and p-trajectories only.

We wish to thank J. Baacke for numerous discussions. One of us (L.R.R.) wishes
to thank the Deutsche Forschungsgemeinschaft for financial support and the Institut
fur Theoretische Physik der Freien Universitat Berlin for its warm hospitality.

* The so called second Weinberg sum rule [X, [ X, m/ ] ]l =2~ 0, cannot be saturated with the
particles of this saturation scheme for physical masses.
*# Since the emergence of the concept of duality, Y. Ne’eman prefers to associate the scalar op-
erator with the f-coupling rather than the pomeron. For the pomeron he now involves addi-
tional assumptions. See ref, [25].
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Appendix A
Particle widths

The decay w1dth of a particle ¥~ o+ 7 is given from PCAC in terms of our cou-
pling matrix G* i lo by

o2 —m2) 1G22 1-0
N 1L —"ma 1
. on =R ;f @ H)ZJ 3|G%(7\)|2 , for{0-1 , (A
Y Y
S 2161 12 11

where R = m‘[3‘.,/161rf72r ~ | MeV and f; is a threshold factor®

mer (m% + mi) H;
fi= [I - > :I (A.2)
(m3 —m3)
correcting for the finite pion mass in an orbital angular momentum l
Insertlng our solutions for G we find (using m m? mzA ~ Zm m% ~2.9 m
m ~27m mB~26m2) ok
4’"727 2
e = (1 - ) YRIG ,, (0)I% ~ 0.8 X 330 cos? Y~ 265 cos” Y MeV,
p
[135 + 20},
1
o | 4_'"_) ) (2) 16,0 dmiyt
omm mg 2 mp cm( ) - ( - mg )

m A3
X 1500(—’;13) sin ¢ MeV,  [7] ,
o

Cpypn =1 (3f)<1cpA (012 +21G,, (1))~ 0.575 X 236(sin¢ + sin ) MeV

= 135 (sin? ¢ + sin® §) MeV, [80 + 30]

3 2

(R " 25 y® "o}
Tp on™f (g\u@) ( - )lGUA O} ~f ><80(2 ;2—) cos’ Y MeV, [7] |
p i (A.3)

* In addition, if o =m, there is a Bose factor %—and frbecomes (¥ — 4m?r/m )l+2 In the numerical
evaluation we have displayed the threshold factors separately to show their effect on the decay
widths.

** In evaluating the A; — pxm width we have included only a d-wave threshold factor since the
A decays predominantly in the d-wave. The s- and d-wave coupling constants are linear

combinations of the above helicity coupling constants.
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R :
o, :_f(l)(?)(]GwB (0)12 +21G_ 5 (1)12)~ 0.86 X 660 sin? ¢
= 570 sin® ¢ MeV , [100 % 20] ,

I =fDRX 132G (0}~ 0.88 X 440 sin? ¥ ¥ 390 sin® Y MeV . [125£20] ,

FA2p1r=f(2)R X036 (IG5 (0)12 +21G . (1)1%)~0.83 X 560 sin” ¢

=463 sin® ¢ MeV [76.8 £ 15] ,
P, 3, =4X1078MeVX g2, [103£08] ,
where
=2
- mf,, cos ¢

Here g, ,, is the coupling constant introduced by Gell-Mann, Sharp and Wagner
[26] *. In the above experimental decay widths have been added in the square
brackets. For A| = pw decay it is not clear how much the decay mode A — om con-
tributes to the total width. We see that choosing |sin Y| = I/\/3, |sin ¢|= 1/4/6
gives good agreement with all known widths.

In addition, if we assume the o to be = 700 MeV we predict a width of about
500 MeV in agreement with most phenomenological analyses of nw scattering. It is
the same meson that has been the subject of much speculation in connection with
broken scale invariance {21]. In the literature there also exist models that lead to a
low-lying o-meson of mass m_ = 400 MeV (ref. [27]). From our formula for ',
we see that this o-meson would have a width of only about 100 MeV. We consider
it improbable that such a narrow resonance would have escaped detection until now.
Notice that this small width predicted for a low-lying ¢-meson is by no means a
consequence of our specific saturation model. It follows quite generally from the
Adler-Weisberger relation for m-m scattering in the narrow resonance approximation

G2 +G% +.. .. .. =1, (A.4)
on pr
with only positive contributions. The experimental p7n width gives Ggﬂ=

(F- - fﬂ/mp)2 ~ 3, leading to

* Their effective Lagrangian is

L =g

WP wpm Euv?uS

M v.A & -
3w a T p €o123 =1 -

Hence the connection of g, with G, (1}isg,, .= 2/ ) G, ().
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Lorn <(f2)2 ( 4mi)% , (A.5)

mo mp‘ mg

thereby forcing any light o-meson to be very narrow.
Further, we wish to quote the experimental information™ on the ratio of the lon-
gitudinal to the transverse coupling in the A; - pm decay {28]:

L (D)

—1=——[=04820.13 . (A.6)
Gpp O

In this theory this ratio is given by sin ¢/ (v/2 sin /) = 7. Notice that in the specific
mixing model of ref. [4] exactly the same ratio is predicted. There is yet another
experimental determination of |G(1)/G(0)| by Crennel et al. [30]. These authors
find

G, (1)
_Ae gy TOO7 (A7)
Ga,p© —0.06

with a positive relative phase of G(1)and G (0) preferred. Such a large ratio would
yield too large an angle ¢ to be compatible with the B — com decay width [see eq.
(A.3)]. We shall therefore adhere to the value (A.6) with a positive relative phase. The
COHI:?CUOI’I of G(0) and G (1) with the standard couplings g, (om and A Lom is given
by *

G(0)=—K\/5gL=Km\/—§(~h+6g) ,

D
G()=+kgy=k £ | (A8)
P!
where
K=gf

With the angles ¢ and ¢ determined above we find

g~ 23
(A9)
h= 123 .

Finally we wish to point out that this mixing scheme predicts the B-meson to de-
cay into wm only in the transverse mode. This is in agreement with the experiment
of Ascoli et al. [31]. Their most recent determination yields

* One also finds the statement [29] that ref. [28] misquoted their resuit. It actually should read
1Gp p(1)/Gp p(0)1=0.565 + 0.35.
** See eq (B.4) for the defmltlons In terms of g and / the width I'y pﬂ
6.5[g2 —0.12 gh +0.01 #° ] MeV.
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[} (B—>wm)
—_— + ,
T (B wom) 0.189 £ 0.052 . (A.10)

Appendix B
Veneziano model for nm—>7wA,

Here we calculate the residues C'( ) glven by a standard Veneziano model for
nm—mA, scattering [20]. We descrlbe the process

T (pl) tm (pz) tm, (p3)—>A1a(k>?\) >
by

-e (k, ) Tabcd ’

where T is the completely crossing symmetric amplitude
T'u =[abcd [(pz _p3)” a(sa [) - plu 5(-9’ t)]

+ (cyclicterms 1 >2->3,s>¢t—u,a>b—c) , (B.1)
with

Linea S04 8 0g + 0,859 =8, 8pcl (B.2)

being the isospin projection operators free of ;=2 and 1, =2 contributions*, and
a(s, t)and S(s, t) are crossing anti-symmetric and symmetric functions, respectively.
The minimal Veneziano ansatz consistent with factorization in the leading

Regge trajectories of the processes nm = 7w, 7w — A and A = 7A,, and containing
the correct Adler zeros and current algebra constraints is given by **

afs, ) =5 (g(s, N -8 (s, 1) , Bls,)=~3(3g(s, N +g (s,0)) ., (B.3)

where g(s, ) and g’ (s, ) are determined completely in terms of pmm and Aqp7m cou-
pling constant with the standard definition

= ] FT
L—gpmrp”nxa“n+gAlpﬂmppﬂA“Xn+hAlmrm—p“a A Xo,m . (B4
0

One finds two possible amplitudes given by

o) [ beetm ) A e o

+E—%gi%h) (—s—5)+(2g+h) (—t;ﬂ Byy (5.0 (8-5)

2m 2m
p 0

* Hence T,f =(p, p3) als, 1) — Py B(s, ).
** See the last of ref. [20].
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R e

nmh
p p

i s t
TN RN P
L 2mp 2mp

—

| Germrin (Zo) e Sesinon ()] Baen . B

2m
p o

Here B,,,, (s,7) is the usual beta-function
- POn—a(s)) I'(n —a(1))
By (5:0) Pim+n—oa(s)—a(t)) (B.7)
Let us now calculate the s-channel helicity amplitude. We find for /, =0 and

I,=1

O 7, =(557) [~ a0 - Hat.9) ~attu) - 26(0.5) - e, )

A
t3My (-3 B(s,u) + 7 (a(t.9) taft.u) — 3 (B(rs) + bW (B.8)
)T = (;]‘}z) [~ et 5) + a(r, u)) — H(B(z,5) + B(7, )]
(B.9)

t ;—MA [% (oz(t,s)——a(t,u))— %‘(ﬁ(f,S)—ﬁ(f,u))] :

As a consequence the asymptotic behaviour of the imaginary parts for s —>oc are

given by eq. (2.12) with

\/Eg m
) - prmp
CﬂA1 -————4MA [ 2gA1pﬂihAlpn+2h] . (B.10)
Using the experimentally determined ratio IGf)lA) / GEJOK (0)| ~ 048 org/h ~ — 57
we finally obtain ' !
) { 25.8 80
o~ , for r = MeV (B.11)
A A
o 35.0 7 a0

for the lower sign, and
—63.4
~ { (B.12)
ollg40
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for the upper sign in eqs. (B.5) and (B.6). Comparing with our predictions

) ~ ) ~
Ci) ~ 120, cL) =90, (B.13)

we see that the lower sign at a width of 80 MeV is to be preferred. For complete-
ness we note that with the values g=— 2.3 and =+ 12.3 predicted by our scheme
[see eq. (A.9) the Veneziano model yields:

—24.1
—59.1

for the lower and upper signs respectively.
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