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Abstract: We propose a new algebra which will hopefully contribute to the joint understanding
of electromagnetic and weak structure functions and of Regge couplings. It involves an infi-
nite number of form factors of arbitrary complex spin J (with Re(/--1) > 0) and definite
signature. The algebra holds exactly in a quark-gluon model when quantized canonically on
equal light fronts. If all form factors have k = 0 and J = 1, the algebra closes and becomes
U(6) X U(6), with the connecting subgroups being associated with pure quarks and pure
antiquark currents, respectively. This doubling of the group leads to exact exchange degen-
eracy if baryons and mesons consist of gqq and gq wave functions only.

To some lowest approximation, Regge couplings can be calculated by representing
U(6) X U(6) on properly mixed quark wave functions. With the mixing parameters fixed by
the chiral subgroup, these couplings are determined up to an overall normalization.

As an illustration, the couplings of the trajectories p, w; A, f; A, D; Z, ng; n, m;B, H
trajectories are estimated for the meson resonsnces p, w;w, n; Az, f; Aq.D; B, H; A, o. The
trajectories 7, n; B, H are not in the algebra initially but can be inferred from an extension
of PCAC to the bilocal currents (“PCBC™).

1. Introduction

With increasing accelerator energies, Regge exchanges have begun to play a domi-
nant role in strong interaction physics. This has led to a number of theoretical in-
vestigations both on the more detailed structure and the exchanged singularities [1]
as well as on possible couplings of these singularities among each other [2].

A large amount of experimental information on Regge couplings will come from
the peripheral production of higher resonances. Even though many of these data
have been analyzed from the phenomenological point of view {3], there has been
little progress in their understanding in more fundamental terms.

It is the purpose of this paper to develop an algebraic approach to Regge cou-
plings that makes optimal use of what we know about the quark structure of
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hadrons from deep-inelastic lepton hadron scattering. As it will turn out, universal
mixing schemes of chiral SU(3) X SU(3) charge algebra on quark wave functions
classified according to U(6) X O(3) provide essentially all the information needed
for a lowest order understanding of these couplings. Mixing schemes of this kind
have been proposed and studied in the literature some time ago {3, 4] and have re-
cently been reinvestigated and extended in great detail [5].

The idea that Regge couplings might be amenable to some kind of algebraic
treatment has been around [6] ever since the discovery of current algebra. However,
it was not until recently with progress in multi-reggeon and in quark-gluon theories,
that the nature of this algebra could be well defined [7] and that connections with
more familiar current structures were recognized [8]. It was finally becoming clear
that currents and Regge couplings could be combined in one large algebraic scheme
[9] and thus turn into an object of representation theory in terms of quarks.

Our starting point will be the algebra of bilocal form factors of all “good”
U(6) charges of the standard quark model quantized canonically on light fronts. The
philosophy and basic properties of their model as well as its experimental implica-
tions on deep-inelastic electron and neutrino structure functions are all assumed to
be well-known [10]. There are some arguments based on perturbation theory in the
deep-euclidean limit suggesting the algebra to be hampered by logarithmic factors
[11]. However, such factors do not appear to be present in experiment®. Thus it is
possible that they are either a false property of the model or there are flaws in the
arguments vig the deep-euclidean limit. We shall take the standpoint that our basic
algebra is, in fact, true exactly.

The algebra of bilocal form factors can be transformed in a straightforward
manner into an algebra of signatured form factors [9]. It is this algebra that offers
direct access to Regge couplings.

The introduction of signature leads to a doubling of the original U(6) group and
is the group theoretic basis of exchange degeneracy of p, A,; w, f, etc., trajectories.
As an application, a large meson scheme will be presented which gives rise to
many predictions on the peripheral production of meson resonances while incorpo-

rating all known results of current algebra.

2. The algebra of signatured from factors

According to the philosophy presented in the introduction it will be assumed
that good components of quark fields commute canonicaily on equal light fronts
[10]. As a consequence, the algebra U(6) of light-like vector, axial vector and tensor
charges can naturally be extended to bilocal operators [10]. For the vector current
this bilocal extension reads:

* Unless the strong coupling constant is assumed to be so small that it is hard to conceive of
strong binding forces among quarks [12].
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F (k)= [a2RARe*R (R +16) 7" 1N, W(R—11). (1)

For the remaining operators of U(6), F s F 1¢> and F 5o One has to replace y* by
Y5, —iyty2, iv*yl, respectively. It is understood that ¢ has only a {~ compo-
nent*®, The matrix elements of these operators,

2p* (2m)38D (pt —pt k)8 (p*' —p")F, (k,p*ET) = D' 1F,(k, ) I 2

are called bilocal form factors and satisfy the algebra [10]
[Fa(kiz)ﬁ Fb(k,! Z’)] =i Fc(k+k”z +Z’) * (3)

abc

Corresponding commutators hold for the remaining bilocal form factors Fs,, Fy,,
Fs,.
Expansion of F,(k, z) in a power series

0= @
Fatk.2) 7=1 U=D!

leads to form factors of definite spin J. In the case of vector and axial form factors
Fl(k), Fg (k), these can be measured in deep-inelastic processes

“Y(q +k)+B(p)+“v(q) + olp), (5

with q2 > oo at fixed £ = —g2/(p' +p)g, k* =0, k* = (k1, k2). Here *“y” stands for a
photon or W meson emitted by electrons or neutrinos, respectively. If F,(k, §) de-
notes the structure functions of such processes, then Fg (k) is simply given by the
moments

F k), 4@

1
Fil)= [ &1 Fik, 9k (6)
21

It has been pointed out recently, that after properly introducing signature the
form factors (6) can be continued analytically in spin J. For this one splits the struc-
ture functions in symmetric and antisymmetric parts

Flk,8) =1 (FS(k,£) + FA (k,8)),

and divides F §k(k, £) in parts which are non-zero only for £ € [0, 1]:

Fi(k, §=F (k,))*F (k,-%). (7)

0

+ 0 -
*Weusex =3(x +x3),x =x —xa,xi=(xl,x2).
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The signatured form factors are now defined as:

1 1
iy = [ &1 F @k pa= [ &1 PhR Bt (8)
-1 0

and exist as they stand for any complex J with Re(/—1) > 0. For large J in this re-
gion F/¥ are expected [9] to fall off at least as |J]~%.

Our second basic assumption is now that Regge poles survive the scaling limit.
If this is so, there will be poles in the signatured form factor

-2 £

where RI(k) are the corresponding Regge couplings. Since the invariant momentum
transfer is —k2 < 0, all trajectories a (k) will be below the unitarity limit &(0) < 1.

Notice that in the complex w = 1—J plane the singularities are very similar to
the spectrum of a non-relativistic Hamiltonian. Thus F/* (k) is apparently closely
related to the phenomenological fields ¢(w, k) used in the Gribov calculus for
reggeons [1].

At this point one should also point out that, certainly, the Regge couplings
RI(K) are not quite the purely hadronic ones which we would like to know. They
contain, in addition, the couplings to the two deep-inelastic photons at the upper
vertex in the process (5). If we assume, however, factorization at each Regge pole,
then hadronic couplings do become acessible up to an unknown overall normaliza-
tion.

The leading trajectories in F/¥(k), FJ H(k), and Fl <" (k) will be p, w; Ay, f and
A,,D;Z, Z,, together with their SU(3) partners respectlvely In addition FJr g (k)
and F/* 120 ka) may carry a singularity due to diffractive effects (pomeron ex-
change! ) . In the case of the charges (k = 0), F/7(0) describes the helicity con-
serving™, FJ (0) helicity flip couplings of p, w; A,, f trajectories and possibly of
the pomeron

The important point is now that the algebra (3) implies an algebra for these sig-
natured form factors:

+ cuts, (9)

(F7R), Fym (D] = if e FL Y17 (e 1), (10)
with corresponding commutators for the other form factors. The special case
J,m=J,7n" = 1,— coincides with the old U(6) algebra, with F 1-(k), F 1- (k) forming
the well known chiral SU(3) X SU(3) subalgebra.

The introduction of signature has the important consequence that there exists a

* When we talk of helicity we mean the infinite momentum helicity in z direction. This is equiv-
alent to s-channel helicity when scattering takes place in forward direction.
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new extension of U(6). It consists of operators of J =J' = 1 with both signatures.
This doubling will turn out to be the group theoretic basis of the experimentally ob-
served exchange degeneracy of reggeons.

It is obvious that the whole algebra (10) can now be continued analytically to ar-
bitrary J, J' as long as the commutators exist. Some interesting sum rules emerge
which have been discussed previously [9].

For example, if J' runs into a Regge pole R:1(k) at ai(k), F/¥(0) turns out to be
a daughter lowering operator by J—1 units:

[F/7(0), RE"(K)] =if ,, REY-1¥7(k) .

If there is no such daughter trajectory which can be singular on the right-hand side
a superconvergence relation emerges:

[F%(0), R*(K)] =0 (11

Similarly, taking both J and J' to a Regge pole a(k) and a{k") leads to a supercon-
vergence relation for reggeons

[RI(K), R\V(K")] = 0. (12)

Triple Regge considerations permit an estimate for the range of momentum
transfers k, k' in which (11) and (12) are expected to be valid. One finds that

o (k +K') — o (k) — T +1<0, (13)
for (11) and
AZ Eak(k +k,) - Oti(k) — aj(kr) +1<0,

for (12) where oy (k + k') is the leading traizctory in the corresponding scattering
process. If these conditions are not fulfill :d the superconvergence relations will turn
into algebraic versions of finite energy <am rules. For example, (12) becomes

[R! (k), RI(k"] = Z)g" R"(k+k)

L abc

where g‘z are triple Regge couplings.
As far as daughter trajectories can be neglected in 2, the triple Regge couplings
satisfy the approximate U(6) X U(6) relations™

gpngAz ngnwgp etc.

* Due to the consistency conditions following from the Jacobi identity.
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For kinematical reasons, such neglect cannot be truet fora larger range of k, k'
It may, however, hold at kK = k' = 0 when saturation should be fast.

In this work we shall be dealing with the algebra (10) only for the charges
k =k' =0, In this case, the U(6) X U(6) subgroup with J=J =1 seems to run into
a difficultyTT: the operators F "%(0), ’2;0,8(0) do apparently not exist due to the
pomeron singularity at J = 1.

The superconvergence relation (11), however, ensures us immediately that this
difficulty does not really arise. In fact, the pomeron singularity turns out to be a
complete singlet under U(6) X U(6). For example, using the commutator

[F1*(0), Fg*(0)] = /2 i FL4(0),

and letting J = 1 we see that the pomeron residue commutes with FF(O). In order
to make sure that this is valid we confirm that condition (13) is respected:
025-1-1+1<0.

A similar argument holds for the commutators with all other generators®. Thus
only F/ )" (0) can have the pomeron singularity at J = 1**,

If we remove the pomeron smgulanty inF 1+(0) we can deal with the full algebra
of signatured form factor (10) atk=k' =0 and assume only true Regge singularities
to appear in an expansion (9).

Let us now turn to the practical problem of calculating Regge couplings. For this
we shall work completely within a narrow resonance approximation. At this level,
also the trajectories are purely real and involve no cuts. There is no pomeron
coupling in F, (1)"(0) from the beginning. The program we have in mind is the follow-
ing. As a first step we shall represent only the algebra U(6) X U(6) formed by the
charges F 3 *(0) etc. Then Regge couplings can be estimated by using the closest pole
approximation in the expansion (9):

R P,A2

2 (14)
l—ap’Az(O) )

A

Ffroy~—
©) I—a, , 0

Fi¥ (0)~
2

Since a,, Az(O) ~ 3 and the next lower trajectory follows at —1, this approximation

should be good to at least 30%.

The axial vector trajectories A, D and their exchange degenerate partners can-
not as reliably be estimated from (14). Their intercept is s | 7(0) ~ 0 and the next
lower term will bring corrections up to 50%. It is gratifying to note that these tra-
jectories have played no significant role in any phenomenologlcal analysis so we
shall discard them altogether.

"1 I thank M. Suzuki for a discussion of this point,
Tt 1 thank Murray Gell-Mann for pointing this difficulty out and helping me to resolve it.
* Notice that the purely hadronic couplings of the pomeron could still be non-signlet. Since
their decoupling in F¥ *(0) may be due to the two photon vertex in the Iocess (5).
** We assume, the pomeron to be a strong singularity in the J plane with /T > = asJ > 1.
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Notice, on the other hand, that the axial charge and its exchange degenerate
partners do carry an important information on the couplings of 7, n and B, H tra-
jectories respectively. It is well known that on the basis of PCAC, the matrix ele-
ments of F1 —(0) are related to pionic couplings at g2 = 0 vig

i

£,

Ui

(mg® —m, ) (Fi~ (0)g, = Bl OVl 2 - (15)

But the intercept of the poin trajectory is almost zero such that the poin does not
reggeize much. Thus the same relation also holds for the coupling of the poin trajec-
tory. By exchange degeneracy, %*(0) should give the couplings of the B trajectory.
Alternatively one may argue that the divergence for the bilocal currents [10] is dom-
inated by the leading trajectories (“PCBC”). This gives a PCAC type of relation for
the charges of both signatures with m, 7 and B, H trajectories appearing on the right-
hand side.

3. Quark representation of U(6) X U(6)

Let us split the quark field Y(x) in good and bad components according to*

WE) =1 A+ 9P +1 (1 -3 x)

( B
vi"

vi

i

)
¥

v )

| 2 4
and expand the good components in terms of quark and antiquark creation and an-
nihilation operators of infinite momentum helicity s:

v o) = Ef dj )ldp [ P G(s) 0", 0, )
)2

P S 1 1. .
+e @ =P )0 (pt,pt,5) | (16)

* We use
7,,=(0 o )
o0

as Dirac matrices with o* = (0%, — o%).
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Here

1 0
w(3)= (O)and w(—1) =(1)
such that charge conjugation is represented by
Cw®x)C =0, v (). (17)

The trivial SU(3) indices have been suppressed. If we introduce the shorter notation

1

2
o, ph) = 21 (0@ pts), 0 pH= El WoA(=s)0 @, p*,5),

§= —3

o

then the operators corresponding to the form factors F(k), Fg (k) can be written
explicitly as

= (P%);—f d*p! dp*'{(p*)“’—lcz*(pl +k,p) iz, 00 PY)
(=Y LQ @+ pH (-1, 06 ) ] :
FL (k)= (?‘)—,— I [ @Y -Lo* @t +k,pY N, 05 04, PT)

HepY L0t kP N * 0, O (pi,p*)} . (18)

Signatured operators 2k (%), ﬁf (k) are obtained by changing (—p*)/~1->+ (p*y-1.
Due to the spectral condition, the integral can run only over the interval p*e(0, P*)
and this is what permits direct analytic continuation [9] of the operator™ in spin J.
Similar expressions hold for Ff’ (k) and F{’_' (k).

In this work we shall investigate the subalgebra U(6) X U(6) of the charges with
k = 0. If we define

ol @X1+1Xb)= (-;})J— f a2pt dp* Y1 [Q*(pl, rH)aQ(p*. p")
+Q" (PL,PJ')bQ(Pl,PJ')], (19)

* The analytic continuation to Regge operators has been studied from a dynamical point of
view in a recent preprint by Brandt [141.
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they can be written as

FF0)= 01 AAX 171X 10%); C=7,8=7,

FIHO)=01(An? X 1 £ 1X1a* 0%); C=2,8=7,

1 1
FIF0) =0 A o? X 171X\ 0?); C=7,5=7. (20)
2

Because of their quantum numbers C, S the leading trajectories of these operations
are

F1¥ . (0) 1y(0). 7(0) #(0)
Sa. Al 3 D ] Z 1 ng b

Fﬂiz,a: p®), w(i);A2("), £
with the corresponding U(3) partners. The superscript denotes the helicity proper-
ties ((0) = non-flip, () = flip up or down).

In order to find a representation of the charges (22) all we have to know are the
quark wave functions of the resonances. These wave functions have been determined
some time ago in saturation schemes of the chiral U(3) X U(3) sub-algebra con-
sisting of F1~(0), F;,E(O) [3-5].

Such saturation schemes {3—5] start out with quark model wave functions of
the type 35, L =0, 1, 2, ... for mesons and 56, L =0;70,L =1;56,L =0, 2, for
baryons. They directly provide a reducible representation of U(3) X U(3) formed
by the matrices A X 1 — 1 X }A* and 1N\ 03 X 1 + 1 X 3A* 03. At this level there
are no transitions between different orbital states. In order to obtain such transi-
tions, a universal mixing operator has been proposed and all mixing parameters have
been fixed [3—5]. Since PCAC relates F %—(0) to the pionic couplings according to
(14), the outcome of such mixing schemes has been a large set of pionic decay
widths of meson and baryon resonances. The experimentallly known widths are all
in good agreement with the predictions. We refer the reader to the original works
for a detailed description of these results.

The point is now that exactly the same wave functions allow for a direct exten-
sion of the chiral group to the whole signatured group U(6) X U(6).

In the saturation scheme baryons are represented by pure qqq, mesons by pure
qq wave functions®. An immediate consequence is exact exchange degeneracy. Thus

* In fact there are small admixtures of qq, 9gqq, etc., wave functions. They should only be seen
by F‘(],q' which contains the pomeron. This operator breaks exchange degeneracy.
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one finds for baryons
+ — —
Fl (k) =P (k) (1)

which holds for all k. From equation (9) we see that this implies equality of all tra-
jectories

)= (k) , (22)

as well as all residues RZ*(k) = R'=(k). For mesons one has again (22) with certain
cross relations of the residues of opposite signature. These will be presented in de-
tail in sect. 4.

4. The meson scheme

For simplicity, we shall not take into account the full SU(3) symmetry but shall
drop strangeness and restrict ourselves to the subgroup U(4) X U(4) of U(6) X U(6).
Since purely mesonic couplings possess only trivial D/F ratios due to charge conjuga-
tion, we do not lose much information by proceeding this way. As announced be-
fore, we shall perform a saturation in terms of narrow resonances only. Then no dif-
fractive effects should arise. The leading singularity in F, g+(0) will directly be the f
trajectory. It goes without saying that all SU(4) singlets are ideal mixtures of SU(3)
octets and singlets (i.e., those with no strange quarks.)

With the isospin subgroup being self-adjoint, it is useful to perform a rotation
e™2 on the antiparticles bringing —7* into 7. Then the operators (20) can be written,
together with their leading trajectories, as

FIF=0'Gr, X 1£1X 17); p®, 4,0
FF=0" ¢ x171x1); 0@, O

FEO=0'(r,0®x 171X 17, 6%); A, 2O

1**§;(0)=01 13 X 1£1x16%; DO, Zgg)’

FINO)=0' (47, 0" X 1£1X Ly a*); p®), Az(z) ’

FS(O) =0t ({o* X 171 X 1o*); @), ), 23

The basic quark representation is (4, 1)
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00 -0
()0 w-(0)

while antiquarks transform according to (1, 4):

() () o))
O -0

Meson states are assigned to (4, 4) with different orbital wave functions. The ground
state mesons can be listed according to the different helicities as®

h=1 h=0
o= plal pO = \[ (—p*a' —plah
Pl = \/ié (-n'a"+p'5") o =4 (—n*a' —nlat+pipT +pTph
oM = pT5t p0 = Lptst 1ol
V2
(OF iZ (njrﬁT + pr?) W@ = % (nJ’r'lT + nTﬁ‘]' + piﬁT + prJ')
7, = _15 (piﬁT _ pTﬁi)
Ty =3 (n‘LﬁT ~ntat p’LﬁT + PTf’i)
T_= —15 (—nl"T + anﬂ') (26)

n=3(n'n +n'at - ppT 4 pT5h.

Coupling these with a p wave orbital quantum I, 10 /=1 yields the first ex-
cited positive parity states:

* The subscripts denote charge states. The & = —1 states are obtained by applying
la X1+1X o to the # = 0 states.



h=

2 C k=1

= (1) (1) =
Ay=pr N0 Ay

f

M ¢ =

D =

B =

H =

1
2

L @0 4 )y ¢

— (p

1
2

5

ﬂl(l)

171(1)
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0

h=
IO + Oy p = L D 4 p- D) 4 55O

V6
1
6

(w(l)l(—l) + w(-—l)l(l) + 2(,0(0)1(0))

L (oM@ _ p@hyy 5 = 1 (o0 _ p-nyy

V2

(DO _ 0Dy p =_1_(w(1)l(—1)_w(—1)l(1))
2

B =i

A= L (W=D 4 (D) _ ,0)00)y

Q
|

L (oMCD 4 D) _ 00y
27

The matrix elements of the operators (23) are now readily evaluated. Within the
ground state representation one finds

Fl-, Fi; ey PLON F%,Z PUCORIN() J

) 1 (1)

w 0 0 - w 1 0 0

N/

w© 0 0 0 w©® 0 0 0
1

n —— 0 0 n 0 0 0
2

p 1 1y oM o 0 0

)

p©® 1 1 0 Q! 0 0 1
2

il 0 0 1 T 0 1 0

(28, 29)
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Notice that '~ and F %_ can be listed in the same table since the first contains on-
ly helicity non flip, the other only flip transitions. Only reduced matrix elements
have been given. If X, denotes an arbitrary isovector operator they are defined by

1
X=X, 12 D=—"_U0|X_{1£1),
3 \/j | +I

x0=q O|X3|00)=$\7_<1 +11X,100) . (30)

If we also introduce reduced matrix elements for isospin zero operators Y

YO =o0vi000, YU=am yYiim), (31)
all operators (23) can be taken from (28), (29) and the following relations

{Fl,‘n]Ol — [Fl,-—‘n]ll - [Fl,nIOO = [Fl,‘rz]ll , (32)

which hold for F17, Ft ”27 and F 1n We see that due to the (4, ) nature of the me-
sons, the U(4) X U(4) charges dlsplay full exchange degeneracy.

Using (28), (29) one can calculate the charges also for the L = 1 states (27), again
showing exchange degeneracy (32). It can also easily be seen that if mesons consist
of pure (4, 4) representations with arbitrary orbital excitations, relations (32) should
hold for F/7 (k) with any J = 1, 2, 3, . . . whatever the details of the model. Now,
eq. (9) teaches us that trajectory functions of both signatures are equal and that all
Regge residues satisfy the relations (32).

As we discussed in sect. 2, the matrix elements of 1~ are related to the pionic
couplings via the PCAC relation (14). In order to obtain decays of the L = 1 states
to the ground states, mixing has to be introduced®. Since helicity and G parity are
good quantum numbers, they have to be conserved in the mixing process. At A= 0
there is, in addition, normality (parity X ei”J2)'thqt must be respected. This leaves
for isovector particles, only two allowed mixings: at 2 =0

ﬂ=cﬁ+s7\1, A1=—sﬁ+cA1; (33)
andaths =1
p=c'p+s'B, B=—s5'p+c'B, (34)

where a tilde has been used to denote unmixed states and ¢, s, ¢’, s' stand short for
cos and sin of two different angles. The iso-singlet states 7, D and w, H can, in prin-
ciple, mix independently. However, if we invoke SU(3), we expect the same mixing
angles to appear. With these angles the charges (23) between L =0 and L = 1 states

* Remember that J is not a good quantum number in the infinite momentum frame.
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are listed in tables 1 and 2*. Also after mixing there is complete exchage degenera-
cy (32).

The matrix elements of %; can be compared with the pionic decay widths.
Good agreement with the many experimental numbers is found if one chooses the
two parameters™™ to be s ~ 0.8, 5’ ® 0.41 (i.e., ¢ = 0.6, ¢’ = 0.91). We recall one of
the successes of the scheme: B = wr decays only in the & = 1 state (with a rate
Pgon =570 5'2 ~ 96 MeV (exp. 100 % 20). For the detailed comparison with the
data the reader is referred to the original work™®**.

Table 1

The reduceFd matrix elements of the isovector part of the axial charges Fé‘(O) are listed for the
mixed (4,4} L = 0 and L = 1 meson states

- P(I) 27O Al2) ] A Al Sy O 40 B(O) 0

(o)
F5O P Az AZ A| B A2 A| Ao
oM ¢l o 0|0 0 -C¢d 0
w0 o o 0 o 0 0 0 O
7 A O 0 /%s
@] o 0 1 0 o)
HE o
D(n 0 0 o4 % O o
H™ |-s!c! 0o o s?
©) s <
f o % o £ 0 0
@l o o o |o 0 £ 0 o0 3¢
H©! 0 0 0O 0 0 0
ol0 o0 /%s o./%c 0 O
| t
s o 0 o|%-% © 0
(©) 0 ¢ 0 -S 0 0
P
0 0

0l © ¢ o O 0 0 0
e 0 0 0 0

-3 <!
A ;%I 0 © %
| s g
A% 0 olo E £
B | o 5% o
A9 o o o 0o /2 o©
A9 5 s 0 |o 0 O 0 0 ©
B« o o /5 o o -k
AD 0 © 0 0-% O
0 73

Superscripts denote helicity. The exchange degenerate partner F t*(0) is obtained by using rela-
tion (32) of the text. The matrix elements of the isosinglet operator follows also from (32).

* The results can be checked by using the Adler-Weisberger type of sum rules for the reduced
matrix elements implied by the commutation rules of the group. See the appendix,
** The angle s ~ 0.8 leads to Lpnn = 270 ¢* MeV ~ 100 MeV.
*** See also the third of ref. [7] for a detailed comparison of the other couplings with experi-
ment.
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As we have argued in sect. 2, the pionic couplings vie¢ PCAC (15) can also be iden-
tified with the couplings of the = trajectory. Since the pion does not reggeize much,
and the pionic decay widths do agree with experiments, the couplings of the = tra-
jectory will be correct to the same degree of accuracy. Similarly, the exchange de-
generate partner of the PCAC relation (14):

i

!

m

(mg* —m 2 (FEF(O),, = (RP),, Jio’ (35)

will yield correct couplings for the B trajectory as far as exchange degeneracy is a
good approximation.

Table 2
The reduced matrix elements of the isovector charges F }_(O) and F }_(0) are displayed

e A0 [ pO 4O Atzz) AV A g O O g0 O
m T~ &l 1 T gl ]
SToTogEFo] o [ HF o &
] e o 0 0 o
(0) |_c'c_s's| sc! ¢cs!

KA v 0O -FE
@} o 0 o 0 0
£ o o ]o 0O 0 -3 0

o oo oo 0 o o - o
()] sic cls| i ¢! cc_ st c'
H - 2/3 2 7§O Ve
)} !

f(o) 0 © 2/,

D L
o] © 0 0 OI 0 2 33 0
i) o) 0
s 1 [& oo 0 0
o| & -

P LR IS B A 0

7O o | O 1 B 0

2o | o |1 5 o 0
_ s _

A 0 0-53 2 10 0 |/fsm 0 O
n - _
Al ojoo sz |0 1 Ol s O -;
it -%#00jlo|l 0 0o 1|0 0 o0 o0
()] |
A(zo) J32s 0|1 0 0 0
AVl o 0 o) —2% 2—‘% o|l]oc 1 0 ©
gto 0O 0 0o|lO0O O 1 o©
A9 o/ 0|0 0 o0 1

The first charge is helicity conserving and appears only in diagonal boxes. The second can flip
the helicity indices up or down by cone unit. To lowest order, these matrix elements coincide
with the couplings of the p trajectory. The other partners s, Asy, f, follow from exchange degen-
eracy (32). :
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Let us now test the Regge couplings of vector and tensor exchanges. A com-
plete listing is given in table 2. Experimental tests are available only through #N scat-
tering. From the diagonal elements of table 2 we see that with no helicity flip, # can
only go into itself via p exchange or into n via A, exchange. Other resonances can
only be produced at helicity (+ 1). Due to exchange degeneracy, the corresponding
couplings can all be written as:

(n . c’c s
T , Wi — — ex 20 X const
p 7 (I p.| = ),
n—*Az(z), ., 5 (lexp.| = 11 X const) ,

/2

> Al(l),D(l): (lexp.| =9 X const) ,

s
V2
x> B, HO) . % — —21 (lexp.l = 11 X const) , (36)
for any of the allowed exchanges. For example: 7 - «X1) can go via p or f exchange,
7~ p(Dvig A, or w exchange, each of these couplings beingv/Ic'c — 1s’s. The phe-
nomenological determination of these couplings™ has been given in parentheses in
arbitrary units.

With the mixing angless = 0.8, ¢ = 0.6;5' ~ 0.41, ¢’ ~ 0.91 we predict the cou-
plings —0.55, —0.28, +0.28, —0.2, respectively. We see that apart from the unknown
overall normalization there is good agreement with the experimental numbers. The
B coupling comes out a little too small.

5. The baryon scheme

The mixing procedure for baryons is much more involved technically and more
space will be needed for a full discussion. Here we just want to mention a few intro-
ductory points in order to complete the picture.

Baryons are assigned to (56,1) L =0,(70,1) L =1,(56,1) L = 0,2 etc, represen-
tation of U(6) X U(6). Then all Regge couplings are exchange degenerate according
to (22).

The pionic couplings are known to emerge in good agreement with experiment
[4, 5]. In addition we now find the results that p(0) (0 (= AZ(O), (0 non-flip tra-
jectories can never excite the nucleon™*

At the level of no mixing, the matrix elements of F1%(0) and F: 1+(0) are listed for
the (56,1) ground state in table 3. We see that the helicity flip couphngs e ()
(=A, (), (1)) connect N and A in a pure M, transition and give elastic matrix ele-

* I am indebted to G. Fox for providing me with a ready-for-use version of the results of his

paper.
** This statement holds in the approximation (14).
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* ments an F/D ratio of 2, just as in the standard quark model*. Both results are in
good agreement with experiment (13). Mixing brings a modification of these results
by =~ 30%. In addition, it causes transition to the (70, L = 1) and higher states.

The ratios of N*, A* production with respect to NN or NA transitions are now
provided together with their D/F ratios.

The couplings of p(1) to baryons can also be compared with the mesonic ones
obtained previously. The agreements of NN and NA transitions is quite good (as is
known from quark model estimates). For the excitation of N* resonances no exper-
imental numbers are as yet available. Detailed phenomenological analyses are defi-
nitely needed.

Table 3
The reduced matrix elements of Fl"(O), F}_(O) are shown for the (56,1) representation

T eIF % % ‘% '5 'é '%
FRFFluon? 6,35 6,35 (3,6)F (36} (1,10)
(IO,I)% 1 A A 0 0
(6.3),% 7'5 1 0 -2 -2 0
(6,3)’;5 -& | © F I §F+D -3 0
(3.65? o | -3 §FD| 1 o | £
(3,651%0 -2 -2 o F |-4
(|,|03% 0 0 2 = 1

The reduced matrix elements are defined as 2 <A+IF§"| AY, V2 (A+|F§_| p and (p| F%‘lp) with
(Pl FIpy =(plDIpy = % To lowest order, they coincide with the couplings of p and A, trajectory.
Rows and columns have been labelled directly in terms of the chiral properties of the states p

and A at different helicities. This saves one from writing down F éi explicity. .

6. Conclusions

The new algebra of signatured form factors is seen to provide a promising tool
for the understanding of Regge couplings in terms of quarks. In this work we have
defined the algebraic structure, formulated a program, and given a simple illustra-

* Note that the matrix elements of Fi_(O) have to be interpreted as the helicity flip contribu-
tion of the total moment coupling of the p trajectory. This has been one of the important
results of the discussion of Melosh [5]. The reason is that F }'(0) commutes with PL, a prop-
erty which is shared by the (1 + x) type of coupling, not with « at infinite momentum. This
is analogous to the electromagnetic case where D =fd2 xdx xJ_jJ'em does not commute
with Pt but M| = P'D| + E| Q does.
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tion to some lowest approximation. There are many questions which have to be
answered by future investigations.

(i) What are the full implications of the algebra and its representations upon the
Pomeranchuk singularity? It appears as if s channel helicity conservation will appear
as a lowest order results due to the U(6) X U(6) singlet property.

(ii) How does one extend the representation of Ff(O) properly to all J? Then
also the electromagnetic and weak structure functions are predicted and can be
compared with experiment. It is quite probable that here we will run into difficul-
ties with the usual quark wave functions. From our experience with dual models it
appears that wave functions with one principal and one orbital quantum number
are not enough to allow for the full hadronic singularity structure in the J plane.
The richer Veneziano type of spectrum will be necessary in order to solve this prob-
lem. But then there are problems in extending the algebra to all k. Until today no-
body knows how to obtain even the electromagnetic form factors in the Veneziano
model.

(iii) What are the connections with the auxiliary Reggeon fields of the Gribov
calculus [1]? Is there an approximate phenomenological field theory involving di-
rectly the operator FT5(k)? Can it be derived from the quark-gluon model? A
Langrangian with U(6) X U(6) symmetry incorporating the field current identity at
infinite momentum and having an additional space-time variable conjugate® to
w = 1-J provides certainly an interesting example. It represents a solution of our
full algebra (10) with the correct leading Regge trajectories appearing to lowest or-
der in perturbation theory and higher order graphs giving unitarity corrections. In-
dependent of any definite model, our algebra gives important restrictions on how to
incorporate internal degrees of freedom with Gribov’s fields. It may also point the
way of how to accommodate particles in this hitherto purely reggeonic theory.

I am grateful to Murray Gell-Mann for his kind hospitality at Caltech. It is a
pleasure to thank him and Richard Feynman for generating an extremely stimu-
lating atmosphere at their institute. There are many things I have learned in discus-
sions with both of them, with Harald Fritsch, Heinrich Leutwyler and Peter
Minkowski. There were also some clarifying conversations with Henry Abarbanel,
Richard Brandt, Hugh Osborn and Yuval Ne’eman.

My special thanks go to Geoffrey C. Fox. Not only did he stress the importance
of understanding exchange degeneracy, he also kept me informed about the phe-
nomenological aspects of Regge couplings and provided me with the experimental
results quoted in the text,

Appendix. Adler-Weisberger type of sum rules for reduced matrix elements

The results of our calculations presented in tables 1 and 2 have to satisfy certain

* By virtue of eq. (6) it would be related to £ as =i log £.
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sum rules which are the analogue of the Adler-Weisberger sum rules of

SU(3) X SU(3). They arise by eliminating the isospin indices from the commutator
of the group and going to reduced matrix elements defined in (30), (31). These sum
rules are useful in checking final results when representing any group containing

isospin.
Consider the commutators
[Aa,Bb] =i€abc C'C , (A.1)
[Aa’Bb] = iSab C, (A.2)
[Aa,B] =i Cb ) (A.3)

The commutators (A.1) translate to reduced matrix elements as
AOIBIO——BMAIOEO, A01311+301A11=C01,

AIOBOI +BllA11___C11 , AllBll—BllA11=O. (Alf)

In the case of (A.2) one has to substitute the right-hand sides by iCY0, 0, 0, iC11,
respectively. For the third commutator, finally, one finds

AOlBll —BOOA10=iC01 AllBll —B”AH:I'Cll . (A.3’)
The original Adler-Weisberger relations are obtained from the commutator
[XaXb] = ieabc Tc ’

where X are the matrix elements & %— and 7 is the isospin. Using (A.1") yields
the well-known sum rules:

X0xl=g, x10x01 4 x1xll=y (A.4)
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