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Exact PCAC implies the presence of “wee’ quark pairs inside any hadronic wave function. If present physics takes
place underneath a large energy gap within a type II superconductive world, such quark pairs find a natural quantita-
tive explanation. It can be phrased in terms of a mixing operator dressing any constituent quark wave function with

the proper amount of pairs. This completes the program of transforming constituent quarks into current quarks
(partons).

Experiments suggest the presence of an infinite sea of quark-antiquark pairs of small longitudinal momentum
p* inside the proton (“wee” quarks). For if hadrons were to consist only of QQQ or QQ wave functions, the struc-
ture function F 5 (x) of the proton would vanish atx = — q2/2 pq ~ 0, resulting in the absence of diffraction scat-
tering [1] and the presence of an exact exchange degeneracy [2] among p, w <> A,, f and 7 <> B trajectories.

Quantitatively, this effect is rather small: only ~ 6% of the area of the structure function F, (x) is arising from
antiquarks [3]. Qualitatively, however, it supplies an important information on quark dynamics.

It is the purpose of this note to point out that:

1) Exact PCAC implies a theorem on the presence wee quark pairs.

2) A quantitative description can be obtained by considering the world as a type II superconductor. In particu-
lar, there exists a simple mixing operator which dresses any constituent quark wave function with the necessary
amount of wee pairs in order to respect PCAC.

A quark (or parton) is defined by all observable currents having the form*!

FE=EPE) Y YE), B =) vHrs ). (1)

Their charges f dx~d2x!j*(x* = 0, x) contain only the “good” components ¥ (D (x) = (1+4°93)/2 ¢ (x)
=( %01) Y (x) of the quark field. These can be expressed, even in the presence of interactions, in the form*2:

v =0,0)= % S/ P EP fep i3 2 W) 005", 551
h==1/2"  (2m)}
+exp [i(p™x~ - px N w=m 8T (0", p*; W), )
such that the axial charge
O5a") = [dr=a®x" exp (ig"x) 73 (" = 0,.%) 3

* Supported by DFG under grant KI 256/4.
*1 We omit SU(3) in order to simplify the discussion.
#*2 The spinors w(1/2) = ((1)), w(-1/2) =‘((1)) are the good components of the infinite helicity spinors: u(p, 1/2) = (1, pti2p*
M/2p*,0),u(p, —1/2) = O, M/2p*, — p}/2p*, 1), v(p, 1/2) = (0, —M/2p*, —p[/2p*, D) v(p, ~1/2) = (1,p, [2p*, ~M/2p™, 0)
where p™= (p% +p3)/2, pL =p =p!+ip?. p= (p*, ph.

163



Volume 59B, number 2 PHYSICS LETTERS 27 October 1975

becomes #3 for qJr >0:

05" = f (2 )2 (0 (0" —q", )P 0", p1) + 0 (0" -4, 1) 0P D0, p)

+rd? ~
f o ”)2 O(—p*+q*, —PHCO(P", PH =054 - 05@"). @
Asg* - 0, the first operator tends to the conventional axial charge Q5 which simply counts the difference of up
and down quarks (or antiquarks). For a single quark its matrix elements are

(0',31051p,3)=02m3 8(p*' - p*) 8(p'' — P g4, (5)

with g, =1 while for a proton one finds from § decay g, ~ 1.2.

The second operator vanishes for single quarks. Between hadrons it can be non-zero only if these do not consist
of pure QQQ wave functions but contain, in addition, admixtures of QQ pairs with total momentum ¢*. If { s(@h)
turns out to be non-zero even in the limit g* — 0, there must be an infinity in the wee quark distribution at small
longitudinal momentum.

The important observation is that in a world in which PCAC is exact, precisely this must happen. In such a
world current conservation implies for elastic matrix elements

o + _‘
p1Qs(@* > 0)1pH, 1 (=0,

(6)
and therefore for infinitesimal q* - 0
(p ) + = 3 '+ '
PGS > 0P, = (2m) 80 - p* +¢%) 62(pL’ - plyg, ™
The simplest example is the axjal current between protons
et - +
<p,]5 (0),p>=u(P)(%7+7sgA_%‘Tﬂgﬂ\m 75)“(!’)’ ®)
297q"—q

with M, 8, = f, & Inserting 4(p', 1) v vs u(p, 1) = 1 and (P, 1) s u(P, )y 1o 1 - o = /M yields
directly (6).

Let us now describe such admixtures of wee quark pairs quantitatively. Consider a chirally symmetric world
following a Heisenberg-Nambu type of Lagrangian [4] with an ultraviolet cutoff at p? =A%

Lx)=iP)F )+ Ly (P ), ¥ (), ®
where
Chiral symmetry is broken spontaneously giving rise to quarks of a large mass M satisfying the “gap;’ equation
A? g 2 2 2
1=8gi [ d'p 1 _eA [1—£1og(ﬁ_+1):| (11)
o @mt p2-M?2 2n? A2 Mm?

The vacuum of these massive quarks is a coherent superposition of “Cooper” pairs of the original massless
quarks.

Consider now a field theoretic analogen to the theory of type II superconductors by allowing for a space-time
dependent gap M(x). Let M(x) deviate little from the large constant value M, say by

ot ph 1/2)

0" pli—1j2 ) =W pHand C=io”.

*3 We abbreviate {
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mx)=M(x) — M= 0'(x) + m(x)ivs + ¥, (x) v* + 4, () v*s, (12)
with [m{x)| < M

By rewriting (9) in the form
LE)=19 0% —(M+mE)Y ¥ + [ Ly + M +mEx) Pyl = £,,(x) + £} (), (13)
and minimizing Bi'nt with respect to the self-energy one finds the relations

ox)=EM+0'(x)=2guS,, (xx), n(x)=2gtr (iv5S,,(x, x)),

VA = —(e+ag) u(r S (5, x),  AM(x) = (g-4g) tr(r*y5 S, (3, X)) (14)
where S, is the propagator of 2, satisfying the integral equation

Sm =SM +SMmSm

5 M (15)

Neglecting terms of the order L-! = 16112/ log(A%/M?) one obtains [6] an effective (classical) chiral Lagrangian
Legr =1(3, + 214, (1)) 9 12 +2M2|900) 2 — |94~ 5 F A FRY +3 mEA, 44 =5 By F& +2 m2 v, V¥ (16)

where

PE)= o) +im(x), FY(x) =04V (x) 3"V (x), md , = 3/[4L(4g g)] (17)

which describes massless pseudoscalar fields interacting with massive (m_ = 2M) scalar and very massive axial vec-
tor fields. The vector fields are decoupled as long as no SU(3) symmetry is included. Otherwise the Lagrangian
(16) becomes a standard massive Yang-Mills theory.

Of great help in extracting consequences from these Lagrangians is the fact, that only a few percent of hadronic
wave functions consists of QQ pairs. One can therefore approximate physical hadrons extremely well by proceed-
ing in the following fashion:

First one takes quarks of mass M and calculates bound states via the interaction Lagrangian

Lint Wy (x), Yipg 00) + My () Ypy (). (18)

The result is a standard “naive” quark model. Then one turns on the interaction (13). In the vicinity of a con-
stituent quark the degenerate vacuum will be perturbed by a field m (x) # 0. It’s shape is controlled by the
Lagrangian L,¢ of eq. (16) with a coupling to the quarks given by

Lettdo =" Z [0’ (%) Y(x) ¥ (x) + m(x) ¥ (x) ivs V)]
+417(4?g + 1) 1% VEDG) Y, v () + i—(‘*—;f —1) I%—A#@(x)n'ys ¥ (x). (19)

Due to the smallness of m(x), all non-linear terms in ¢, m, Vy» A, of L g can be neglected. Thus 7 and ¢’
fields satisfy

O~ = 57 T @) ivs pg ()5 (O +4M2) 0'(x) ~ = o Ty ) Uy ), 20)

The perturbed states can be calculated from the original ones by applying the Méller operator:

0
QM) = exp [—iT f &x Ppr ) m(x) \,L/M(x)]. (21)
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It can be considered as a mixing operator adding an infinity of quark-antiquark pairs to any constituent quark
wave function.

Let us now go to the infinite momentum frame. As far as the operators Q(p*, pt; h) at x* =0 are concerned,
massive and massless quark operators become indistinguishable ¥4 . Thus any charge at x* = 0 can directly be evalu-
ated on the final mixed wave function. The massive constituent quarks have turned into current quarks.

For a single quark Q(#), the QQQ admixture of pseudoscalar pairs given by (21) is *5 (with g~ = (P? + M?2)/2P*
[P, ~q )2 +M2] 2Pt — ).

1 d3q &p [P3+M2 L a-p)? M’
Llempend 2wt 2t -pY)

X a(P—q)ivsu(P)it(q —p)ivs v(p) @*(g —-p)0*(p) Q*(P - q)|0). (22)

If we evaluate the operator é 5(g™) we find that eq. (7) is indeed fullfilled and hence PCAC is respected.

The admixture of pairs has the probability ~ 1/L = 1672 /log(A2/M?2).

This remains small for a large cutoff such that our approximation of small m (x) is self-consistent. The value of
1/L can be adjusted to the experimentally observed number (~ 6%).

Notice that the description presented here bears a strong analogy to presently fashionable studies of extended
hadronic objects and of ““solitons” in non-linear field theories [7]. Also solitons can be considered as “gap waves”
in a type II superconductor.

A remark is in order concerning the program of transforming constituent quarks into current quarks [8]. This
program is certainly completed by the operator (21). When calculating axial charges one has to keep in mind that
any quark wave function is commonly constructed in terms of canonical quark spinors u(p, §3). The operator Os
of eq. (4), on the other hand, deals with infinite momentum helicities 4. A Wigner rotation

-1
- q—] (2q+q- _ q12)—1

1/2
0*(p;s3) =h=§/2Q (p:h) Wy, 5, (), (23)
with
Wh,s:; (p) = L_l(p, h) U(P’ S3), (24)

has to be performed before applying Q5. In this connection, Wy, s, is called the Melosh transformation.

It will be interesting to investigate the modification of chiral wave functions, the detailed distribution of pairs,
the properties of diffraction scattering and the amount of breakdown of exchange degeneracy by means of such
considerations.

*4 In the infinite momentum frame, vacua corresponding to fermions of different mass, which are originally connected by a
Bogolubov type of transformation, become equivalent. Thus also the sea of Cooper pairs disappears. The reason is the clear
frequency separation of creation and annihilation operators in ¥ (x) of eq. (2).

*S Here p = (p*, p); d3p = dp*a?pl.
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