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ABSTRACT

Local quark gluon theories are converted into bilocal
field theories via functional techniques. The new field
quanta consist of all quark antiquark bound states in

the ladder approximation. They are called "bare hadrons".
Hadronic Feynman graphs are developed which strongly
resemble dual diagrams. QED is a special case with the
"bare hadrons'" being positronium atoms. Photons couple

to hadrons via intermediate vector mesons 1in a current=—
field identity . The new theory accommodates naturally
bilocal currents measured in deep-inelastic e p scattering

Also these couple via intermediate mesons.
In the limit of heavy gluon masses, the hadron

fields become local and describe K, g,A],U'mesons in a

chirally invariant Lagrangian (the "@"model"). Many
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interesting new relations are found between meson and

. 2 2 ) "
quark properties such as mg 2~ M where M is the'"true
non-strange quark mass after spontaneous breakdown of
chiral symmetry. There is a simple formula linking these
quark masses with the small "bare masses" of the Lagrangi-
an. The quark masses also determine the vacuum expectat-
ions of scalar densities, These show an SU(3) breaking

in the vacuum of & - 16 Z.

I. INTRODUCTION

In the attempt to understand strong interaction,
two basically different theoretical approaches have been
developed in the past years. One of them, the dual ap-
proach, is based on complete democracy among all strong-
ly interacting particles. Within this approach, an ela-
borate set of rules assures the construction of certain
lowest order vertex functions for any number of hadrons]).
The other approach assumes the existence of a local field
equation involving fundamental quarks bound together by
vector gluonsz) Here strong interaction effects on electo-
magnetic and weak currents of hadrons can be analyzed in a
straight-forward fashion without detailed dynamical com-
putations3). Either approach has its weakness where the
other is powerful. Dual models have, until now, given no
access to currents while quark theories have left the
problem of hadronic vertex function intractable. Not
even an approximate bound state calculation is avaiable

4)

(except in 1 + 1 dimensions or by substituting the field

couplings by simple ad-hoc forcess)).

At present there is hope that the problems connec-
ted with quark models are of a purely technical nature.

A Lagrangian field theory of Yang—-Mills type seems to
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have a good chance of defining a true fundamental theory
of elementary particles. Dual models, on the other hand,
seem to be of a more phenomenological character. Once the
fundamental vertices are determined, it is difficult to
find next corrections and to extend the prescriptions

to what might be called a complete theory. If this could
be done it would certainly have to be phrased in terms

of local infinite-component or multi-local fieldse).

It would be very pleasing if both models were, in
fact,essentially equivalent both being different langu-
ages for one and the same underlying dynamics. In this
case one could use one or the other depending on whether
one wants to answer short-or long—-distance questions

concerning quarks.

In order to learn how a translation between the dif-
ferent languages might operate we shall consider, in these
lectures, the simplified field theory in which quarks are
colorless, have N flavours,and are held together by vec-
tor gluons of arbitrary mass ,L. This theory incorporates
several realistic features of strong interactions, for
example current algebra and PCAC. Moreover, the case
N=1 and ,A=0 includes ordinary quantum electrodynamics
(Q.E.D.). This will provide a good deal of intuition as

well as the possibility of a detailed test of our results.

We shall demonstrate how functional methods can be
employed to transform the local quark gluon theory into
a new completely equivalent field theory involving only
bilocal fields. The new free field quanta coincide with
quark -antiquark bound states when calculated by ladder
exchanges only. They may be considered as "bare hadrons".

Accordingly, the transition from the local quark-to the
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bilocal hadron-theory will be named "hadronization". In
the special case of Q.E.D., "bare hadrons" are positron-

ium atoms in ladder approximation.

The fuanctional technique will ensure that bare ha-
drons have exactly the correct interactions among each
other in order that hadronization preserves the equiva-
lence to the original quark gluon theory. It is simple to
establish the connection between classes of Feynman graphs
involving quarks and gluons with single graphs involving
hadrons. The topology of hadron graphs is the same as that
of dual diagrams. It is interesting to observe the appea-
rence of a current-hadron field identity for photons
just as employed in phenomenological discussions of vec-
tor meson dominance. Moreover, since the theory is bilocal,

this identity can be extended to bilocal currents which

are measured in deeply inelastic electromagnetic and

weak interactions.

The limit of a very heavy gluon mass can be hadron-
ized most simply. Here the bilocal fields become local
and describe only a few hadrons with the quantum numbers
of ¢, X, g s A“ mesons. The Lagrangian coincides with
the standard chirally invariant @ model which is known to
account quite well for the low-energy aspects of meson
physics. Here hadronization renders additional connection
between quark and meson properties. It also makes trans-
parent the connection between the very small bare quark
masses (which describe the explicit breakdown of chiral

symmetry) and the mechanical quark masses (which include

the dynamic effects due to spontaneous symmetry violations).
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IT TECHNICAL PRELIMINARIES

Before we embark in our program we have to recall
certain functional techniques7). They are generalizations

of the basic Fresnel integrals, valid for all real A=0

il T (AT -1
S oA} e : = A (2.1)

_ 2%
b
Lt A
S‘i a VA
.% = = A (2.2)
2“'\, i o4
where the complex integral S‘ngg stands symbolic

for S d (ot i_i- . Quadratic completion in the

exponent ylelds.

"t (L33 +j5)  _, R4S
:Sm Zunt e =A e (2.3)

Lolgrag i) AT
g i s S N (2.4)

N2ed ' {2wi

1f i is a vector S= (SU ,i )and SDE stands short

f 7C.S Clik: th f i 1 tri
or en for non-singular symmetric or
kR {2m: ’

hermitian matrices A these formulas become

(58AL )

5]
S@g e =@tA)ze

N""

(2.5)
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i (AT A
bgﬁs e =Cdet/'\§ e (2.6)

respectively, as can be seen immediately by diagonalizing
/\*via an orthogonal or unitary transformation (which
leaves the measures ﬂ or Eg bit invariant).
If finally g(x) is a function E(X) and 3*A§ is under-

stood in the functional sense as
(A = Qe {760 Ay U(y) -

these integrals may still be defined by grating the X
axis into finer and finer lattices of points Xk= ke
with IQ‘OI‘.HlilJ,,,and reducing the problem to the previous
case via the vector components ik = {et! i(xh.) .

For large matrices;\, the calculation of the determinant

is performed most simply by expanding

det A =eoxp Indet A = exptr ln A

(2.8)

= exp tr a1+ (A-1)] = oxp tr {A—\ - 12(A'1):-13— (A-Sf,}

This formula is directly applicable in the functional
case if all sums over intermediate indices are replaced

by the corresponding integrals, for example:
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tr A = 2 Ay —> S AG)
(2.9)
A= T AveAu — (xay Alry) Ay, %)
e

The integrals (2.5) and (2.6) can also be extended to

functions (<) with values in an anticommuting algebra
l.e. = . I hi h det A) 1

(i.e {!(x)/ 2(3)} o ) n this case the (de )qu;‘l

equs. (2.5),(2.6)appears in the inverse forms (det A) and

(det A)], respectively.
With these preparations consider now a Lagrangian compo-

sed of fermion and boson fields and split into free and

interacting part x(’\h‘\—-{:lﬂe)sxo-t int - All time ordered
Green's functions can be obtained from the derivatives

with respect to the external sources of the generating

e (R, R4+ 4] ©)
Z‘["L"T('j] =wnst <2|T e [o>
(2.10)

The fields in the exponent follow free equations of motion and
|0> is the free-field vacuum. The constant is conventionally

chosen to make Z [b,o,d] = 1, i.e.

(o 2 (1, ¥, @)
const = [?QDYT-GZ ,Cii] (2.11)

This normalization may always be enforced at the very

end of any calculation such that ZL’L:-‘(:)] is only
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interesting as far as its functional dependence is con-

cerned, modulo the irrelevant constant in front.

It is then straight-forward to show that 'Z;F*,Rdj]

can alternatively be computed via the Feynman path inte-
(i (G N, ) ]
'z' G\.F\'ﬂ X SD'\{'B:('—@Q e (2.12)

gral formula

Here the fields are no more operators but classical func-
tions (with the mental reservation that classical Fermi
fields are anticommuting objects). Notice that contrary
to the operator formula (2.10) the full action appears

in the exponent.

For simplicity, we demonstrate the equivalence only
for one real scalar field QZk) . The extension to other
. . . . 7 . . .
fields 1is immediate ’8). First note that it is

sufficient to givethe proof for the free field case, i.e.

2, i - <o|Te P05

(Sab(é @6O(-0,p* Yetx)+ ((r)‘m))

(2.13)

oY SB@@

For if it holds there a simple multiplication on both sides

of (2.13) by the differential operator

- 6 \
N gdx &;.u ({—S—J(x‘)) (2.14)

&
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would extend it to the interacting functionals (2.10) or
(2.12). But (2.13) follows directly from Wick's theorem
according to which any time ordered product of a free field
can be expanded into a sum of normal products with all
possible time ordered contractions. This statemen can be

summarized in operator form valid for any functlonalF:[??:I
of a free field C((,()

8 i) O
— z SAW‘ §%tx) Dty )
Flel-e : FLe]-

(2.15)
where Dé‘-'j) is the free-field propagator
—iq(x
D) = dH4q ‘1 v ( &x_')
J /2‘-)&} C{_}“. ‘s ’U e 3/ (2.16)

Applying this to (2.13) gives

-‘z'go(xob-j > D(x-y\gs‘ S"t)lk)@&j
ZJ)]-‘-Q o) e ol:e  :[o>

-% Sd”"ﬂ e

= <lol:e™ oy

- Yo J6ODP3) Gy
= &

(2.17)
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The last part of the equation follows from the vanishing

of all normal products of C{Yn) between vacuum states.

Now exactly the same result is obtained by performing

the functional integral in (2.13) and using (2.5). The
matrix A is in this case x 6{ -1t -
s s A{ ‘tj)’ Gx )S(X 3‘1

such that its inverse becomes the propagator I)ﬁba)

A-‘(()(“j) = -é--)‘z %(x-,i) = -\ u’(“j) (2.18)

yielding again (2.17).

Notice that it is Wick's expansion which supplies
the free part of the Lagrangian when going from the ope-

rator form (2.15) to the functional version (2.12).

IIT QUARK GLUON THEORY

Consider now a system of N quarks'\yn(x) held to-
v
gether by one gluon field G (x) of mass /A,V]'.a a Lagran-

gian

L (<) = Yix) (¢ - W)Y () +3\—F(x)x,,~k(x)6"(x)
(3.
L\ T:.VCX) +/“ G,

Here :F/:'V is the usual curl ’a/.G.," ’31,6)‘ . In the
special case in which N l,/.A.= 0, and q,"s Lerod
this Lagrangian describes quantum electrodynamics. In
other cases it may be considered as a model field theo-
ry which carries many interesting properties of strong

interactions, for example approximate SU(3) symmetry,
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chiral SU(3) xSU(3) current algebra, PCAC, and scaling
up to small corrections. Certainly this model will never
be able to confine quarks, give symmetric baryon wave
functions, and explain infinitely rising hadron trajec-
tories. For this it would have to contain an additional,
exactly conserved, color symmetry with Gv(x) being its
non-abelian gauge mesons. Before attempting to deal with
this far more complicated situation we shall developlo)
our tools for the less realistic but much simpler model

(3.1) without color.

The generating functional of all time ordered

Green's function is

Cde (/"\’+"T1(1ﬁ“++, l”&)
Z ["(:ﬁa}v] x gb"f@’:ﬂb&} < (3.2)

The exponent is quadratic in G;?k), such that the func;ig;
nal integration over the gluon field can be performed °’

(using (2,5)) leaving:

t AU v
ZC‘(,K,)V}XS@’\(’bq € (3.3)

where the action 1is

()Ac E'\(' ;q', 4(,:1-, j-v ] = SAXAB {(&(X)-fqo:)*((’f)-l'ql’r\'\l'(’c))
"8 (X"j) - —Li_ 3 ‘ D(K~5) (‘/\sz) Y ) ﬂ'v( *)Y\T(‘i)rv’\"(ﬁ)"' jv(g))}

(3.4)
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By employing the Fierz identity:

X:(b ® Xv 5 - 4045 ® 4(3 *G\(s)as® (CKS)K@

(3.5)

-5 © ¥, 26O,

the quartic quark interaction term can be written in a

different fashion

§ 47 Dby Fortoy) Ry )et) 69 g Fegs Vo

-3 o ) Yy, e -4 Mo ey “Tédrxﬁ

= ( Z /\-(v !
= 39 U6y f")\[;“j) gdé,b’(b r\?zr(‘i)#(x)
(3.6)

This is the point where our elimination of quark fields

in favor of new bilocal fields can set in.

Let S(xl(j)} P(Kl‘j)/ V—?ﬁ‘ﬂ,AvA’l‘j) be a set of hermiti-

an auxiliary fields, i.e.

S(X\‘j\"S(‘j.X) , p(’(‘(j)-'—P*(g,x) , ete

(3.7)

With these fields onegcan certainly construct the following

functional identities
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—% [ S6ay)+ig™ Da-y) Fap oo | /g™ Doc-y)
S DSk, y) S B

Canst

-5 [ Pry) s Do Y (i ¥ | 7ea * O
Sf?p(xus)é § DY yis¥ea| 7iq

D Vg e

. v ] . = (st
C V%) - £ 4" DGyl Mgy ™) | g "Dky)
=omst
LAY - %4 “Die-g) ’?\Tg\x"ﬁ*ffx) | 74 *Dec-gy
(®Acp e oy
(3.8)

which are independent of the fields WQ%). If we now mul-
tiply EE[RNiJ‘ijin (3.3) by these constants and make use
)

of (3.6), all quartic quark terms are seen to cancel. The
ok
,—LZ,\["\.I{)}'V] oc SDW@W%@P@V@AQ (3.9)

generating functional becomes

where the new actionéc denotes the integral

J[C- quq-f slpl vl A i LUt J )“’] = 0‘*“3‘8{’75) (3.10)

with the bilocal Lagrangian
L 4) = { T (- W) i) +Hoy ey + ) “‘fx)} 533)
- oo me ) Ny) -4 DEYR i) .11y

=45 1617 5 P 12V AL g™ Docy)
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Here m(x,y) has been introduced as an abbreviation for the

combined field

W\(K,cj) = S(x‘cj) + 93(,(5){&.; (3.12)

+ (\/ Ix, 4)+ 6“&—3) gdz %ZD("”) 37?‘))8\? *A‘;""i)bl%

Due to (3.7), the matrix m(x,y) is self-adjoint in the sen-.

se, T
(m(w) )&p = \Go“(m"(xl«j) )el'P' Y°p'p: m“P( ,")(3_ 13)

At this place it is worth remarking that the Lagrangian
(3.11) shows its equivalence to the previous form (3.4)
also quite directly. By virtue of the Euler Lagrange
equations the fields S,P, V/A are seen to be dependent
fields coinciding with the corresponding bilocal quark

expressions

Sty )= =4 * Dbicyg) TFy) i)
FOyg) = - ™ Doegy Shyyipg e
Vi) = § 4 Doeg) Frghy ¥ ) 3.1

A = §g" Do) Sy )

Inserting these relations back into (3.11) reproduces (3.4).
In the action (3.10), quark fields enter only in quadratic
form such that they can be integrated according to formu-

la (2.6) (in its fermionic version). The matrix A is in
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this case

A= (-0 ) 80eg) -mGoy)

Hence A—\(x‘q)i-\'G(".'j) becomes simply the Green's function

of the equation
Y¥)
Cay [G#-w0) 8% -mog [Graeel=iblaa) .1
With this notation, the quark integration brings the
ftAleq,?\.}v]
Z [”L‘”—(,iv]x gobm( yY) € (3.16)

functional (3.9) to the form

with

AlLm iy %,j7] = SM‘*JJ(“J"‘(E“ G gy 17
-4 hr(miy) Es" m Uj."\)/(%" Dy} + in oo Gley) yry)

_ . 2 QO* v
- a,“-o)\/ )i, (4) -3 %’go\zalz’D(%-*)D(‘i‘f)j (‘3}»“%}

Here we have introduced, for brevity, the notation

@m&u:p @S&P@V@A . Notice that the effect of

the matrix i defined in equ. (3.6) is simply to devi-

de the projections into S, P, V, A by 4, -4, -2, 2,
+)

respectively “. The trace refers only to Dirac indices.

+) Since ‘1'494 ‘1’ QXQ@@KS« ) 11‘6 ®Xv .”’LY K5'® OVKF

are the correcpondtng projection operators.
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The new functional (3.16) is identical to the original
one in equ. (3.2). As a consequence, a quantum theory
based on the action (3.17) must be completely equivalent

to the original quantized quark gluon theory.

A word is in order concerning the internal symmetry
SU(N) among the N quarks (i=1,...N) under consideration.
Since the gluon is an SU(N) singlet, the interaction in
equ. (3.1) is 1{ ’\T;x'v'\('; Gv"‘) . In the Fierz transformed

[}

version (3.6) the indices i and j appear separated
. 2 — v ,
lz% D(x—cj) /\P?x) /\['\-s.’us\ g Y N";LX)

Hence in the presence of N quarks, the fields m(x,y) have
to be thought of a matrices in SU(N) space ﬂ[(xﬂﬂ)'s.

[
This carries over to the action with the traces including

Dirac as well as SU(N) indices.

Let us now develop a quantum theory for the new

action. In general, the field m(x,y) may oscillate around

some constant non-zero vacuum expectation value fﬂosa%pﬂy

It is convenient to subtract such a value from m(x,y)

and introduce the field
(%)
ml(lej) = m(Kl(ﬁ) —m06 (X\‘j) (3.18)
With this and the definition

M= W(+m, |, (3.19)

equ. (3.15) can be rewritten as
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SA‘) [Ci - M)g'*)(xﬂj)‘M’(&‘-’)]Gfgﬁ‘a)s(g‘g-g) (3.20)

Now let us assume that the oscillations m'(x,y) are suf-

ficiently small as to permit a perturbation expansion

for G(k\li)

Glx4) = G (xyg)-< @M "‘IGM)‘/X“Q B \’CMNGMM’GN) &)

< ... (3.21)

where C;Mfﬁﬂ> are the usual propagators of a free fer-

mion of mass M.

% —CPX

G (xY) =Gy (x-9) = 4 e :

(2xY' P-M
Using this expansion, the action (3.17) takes the form

AT, w,%,17 ] = A In] +ks (]
+ ok e L] 0‘4&@& {m"nia) )vl

+)

(3.22)

with 0{1 denoting the term linear in the field m'(x,y)

041 [m 1] = gdx‘*‘j +r [GM(Kj)m:/XL&j)- g"mlfx‘ij) ma&’x«j)/t%z D@'j)‘_[

(3.23)

+) A trivial additive constant has been dropped.
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and ()A\z being quadratic in m'

A, '] E&Ax b L Gum G i) Mg i

(3.24)
The term U‘(t«*tm'] collects all remaining powers in m'

vltwc (m]= gdx tr [— f G’iﬂ(gM m')n(xlx)] (3.25)

a=3 N

The last piece (A ,finally, contains all interactions
et

with the externali sources

Ay L] = go\x"“j‘g [ RoGEY M G)

-LZ %7‘ D(x-j) ‘)T(K)j.v('j)

(3.26)

v/ L i\ _cgt D0 . Oy
- a—o) v (X‘X) D(X‘&ﬁ))vuj)—tﬁ g*);:);‘w"gjuz Di-x)D(sj-a )J‘”}o"%

For the quantization we shall adopt an interaction picture.

As usual, the quadratic part of the action,g&zfm']’ serves
for the construction of free-particle Hilbert space.

According to the least action principle, the free equation

of motion are obtained from 80(2.&'][6'“3"9 =0 rendering

m/(x‘-.j) =gz§ D(X"j) (Gn ""GM)("I"S) (3.27)
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Going to momentum space
L( Pz-)‘iP.) p
m' qupt)- gdxz.dx € M (%, x,)

and introducing relative and total momenta

P= /_Pth,)/’J. ) 4 gk/P?-'P')*/'z-

together with the notation
17 = ‘v
\.p\a‘)" m\P'Z-)PI)
the field equation becomes

m'(P\q) = ggt D(P Px; \P\.g_)m 1), (F3)

L)“
(3.28)
In this form we easily recognize the Bethe Salpeter equa-
tionll) in ladder approximation for the vertex functions

of quarkeantiquark bound states

%
pHL/P\q)E NHGM(ch.%_) fre O\TVY \\h ,_))lo}@n Pi)

(3.29)

where h’h is some normalization factor.As a consequance
our free field m'(x,y) can be expanded in a complete set
of ladder bound state solutions. These are the bare quanta
spanning the Hilbert space of the interaction picture.
Because of their bound quark-antiquark nature, they will
be called "bare hadrons". In the special case of QED,

1

" » . .
quarks are electrons and the bare hadrons are positronium

atoms.
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For mathematical reasons it is convenient to solve
(3.28) for fixed q € (0 L&M") and all possible coup-
2
ling constants g, to be called %“(q ) i.e.

T34, )48 De-pe, Pit) P pig) G,y

(3.30)

)"

A useful normalization condition 1is

';SO:Z?* J""[@nuh%) P13 P %_W"(Prq)] 25 )

Here we have allowed for a sign factor e‘k1) which can-
not be absorbed in the normalization fdg of (3.29).

It may take the values +1, -1 or zero.Then the expansion
of the free field m'(x,y) in terms of hadron creation

and annihilation operators (14?(5)‘aﬂ(a) can be written

fewy = N2 S &2 o) (AP
mo('g R Sé’%ﬁ Zk\_bZ%“(s‘) % )g é;)w

— (g gl +P0x-4)) R \
{ g K (PH)"««’M’%)
- / H
! (xtuj)/l. - (<-4 ) =
L EACID M }

where 0N\ are appropriate factors giving Q the
A kg

as

(3.32)

standard normalization

[au(ﬁ.) ) Q:' (Q')] = @T)aﬁ%%-a'ylw“(ﬁ)i#(q) (3.33)
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Now the sign factor Z}Yq) appears at the norm of the
hadronic state Q“* l©> = {H>> . In general there will
be many states with unphysical norms since the "pare
hadrons" are produced by ladder diagrams only and may
not be directly related to physical particles. This
situation presents no fundamental difficulty. There are
many interactions among bare hadrons which are capable
of excluding unphysical states from the S-matrix. In
fact, the equivalence of the hadronized theory to the
healthy original quark gluon version is a guarantee

for physical results (on shell).

The propagator of the free field m'(x,y) can be found

most directly by adding an external disturbance to the

free action
\Az EM'] -2 UA(zcmlJ = Sd“dtj +\" [m I("«‘j)j(’l"] (3-30)

This current enters the equation of motion as

m0ay) = {47 Do) G m G i)
— % g " Doy Jx )

disturbance

(3.35)

rl%(x‘%)"L(S(x-X')(g(&j-tj')(S“:(SPP, (3.36)

It satisfies the inhomogeneous Bethe-Salpeter equation
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%o(,a,o&'ﬁ’ (xllﬂ; X"lj') = Sd@.d'p' u""j) Sd;dg GM(X'i‘)Z

= i 0 G A NG NGt
’> I(;’;'«A'(a' (?:3 i %Y ) M(g-‘j?gp* i“@.@fc&'a D(x j)&’(:()y\ﬂ)
(3.37)

This is immediately recognized as the equation for the
two-quark trasition matrix in ladder approximation (see

equ. (A.19)in App. A .

An explicite representation of the Green's function
. rﬁH
in terms of the solutions CWD\ﬂ) of the homogene-

ous equation (3.30) can now be given.

If ’ F i f
%dp’d,P,(P'P \q) denotes the Fourier transform

H () p /
@v)' & (q-4 )@é“rb.d’{é’(P’P 4 ) (3.38)
. [P&-uj) +q (xeg)e— E '4)- 1’("'*3')/2]

= X g ! (a,
gd d\jAXd.j € %Fﬁ XY,

it can be written as the sum over all hadron solutions:

S, M T
%oﬂ‘sld‘P' (P, P/(ﬂ)=—-(%22‘*(ﬂ) (P(cl) P (Pl 1)

H 442 -9

(3.39)
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where the sum comprises possible integrals over a con-
tinuous set of solutiomns. If quarks and gluons were sca-
lars, the sum would be discrete for qzé (O/L(»M'z)
since the kernel of the integral equation (3.30) would
be of the Fredholm type. A more detailed discussion is
given in Appendix A. Here we only note that a power

series expansion of the denominator
oo n
TSR “ B P,
Baporw PPlg)= 0 3 (T Ne ol o,
= H %H’(q S °(P F"f‘(’

renders explicit the exchange of one, two, three etc.
gluons. Hence one additional gluon can be inserted (or
removed) by multiplying (or dividing) (3.39) by a factor
b *(q2) - This fact will be of use later on.
LIS

Seen microscopically in terms of quarks and gluons,
the free hadron propagator (3.39) is given by the sum
of ladders (see Fig. 1)

P——2‘l P+
> > >
F) > i I‘H(qu)
1“7 = ~ + ™ ] .=
' < le e dLle r(Pl-a)
PLL P4l
2 2 Figure 1

Graphically it will be represented by a wide band. In
the last term of Fig | we have also given a visualisation
of the expansion (3.39). Here the fat line denotes the

propagator
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2
A“@‘) = -i i&({) 3 (3.41)
PP
F@4
while upper and lower bubbles s;and for the Bethe Salpe-
ter vertices P“(PUD and r‘ﬁ(P‘i-ﬂ)Jrespectively.

This picture suggests another way of representing the new

bilocal theory in terms of an infinite component hadron

field depending only on the average position x-"—'&*g)/Z
For this we simply expand the interacting field (ﬂ?iﬂﬂ)

in terms of the complete set of free vertex function

mPigd= ) DHPIImG) e
i
Inserting this expansion into (3.22), the free action

becomes directly

Vdiz[ml-] = Jz'_ AX mﬁ(x\)('\' %ﬁ‘(a\")[{)mﬂ(%)u.am

implying the free propagator (3.41) for the field m&()(‘)
With this understanding of the free part of the action

we are now prepared to interprete the remaining pieces.

Consider first the linear part dk\CﬁV]. The first
term in it can graphically be represented as whown in
Fig. 2 . When attached to other hadrons it produces a

tadpole correction.

alNe

|l
:

Figure 2
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When interpreted within the underlying quark gluon
picture, such a correction sums up all rainbow contribut-
ions to the quark propagator. Also the second term in
u*:[mf] has a straight-forward interpretation. First

of all, the division by %Lﬁ D - .5) has the effect

of removing one rung from the ladder sum (such that the
ladder starts with no rung, one rung, etc.) and creating
two open quark legs. This can be seen directly from

(3.30) and (3.39): Suppose a hadron line ends at the

. '3 ,/ . -‘ - - .

interaction - g:f\xahj '}T'[mkx.ﬂ)g mo’l/\.i Ofx—?&*"‘j)
. -1 . i

Then the factor [E‘ith/x"j)] applied to %(P‘Pi]:')

gives (leaving out irrelevant indices)

2,8“ (§4* DI P
o %Kz(a‘._)_az

(3.43)

[§a0] ﬂ "4

Using (3.30) this yields

-3 Z B (M)
(N TIOR D

As discussed before, the factor iﬁwhz)ﬁaz' amounts to

the removal of one rung. Multiplication by -m, and inte-

) "
gration overs;ipﬁmﬁ yields the total contribution of this

hadron graph
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im, > @) (4
% I q-4> ) () b ):%‘(p*giw[ GISE? 3]
xiﬂ(q) P”{p’(_‘r) (3.45)

As far as quarks and gluons are concerned, this amounts
to the insertion of a mass term M, on top of a ladder
graph with one rung removed (this being indicated by a

slash in Fig. 3 ,

mg m (0% N

I
+
+
E
¥
I

Figure 3

The quark gluon picture leads us to expect that m, must
be a cutoff dependent quantity cancelling the logarith-
mic divergence in every upper loop of the ladder sum of
Fig. 2 . Numerically, m is most easily calculated by
cancelling the infinite contributed by al.(:nﬁ to the equa-
tion of motion (3.28). If we inC1Udeak1Unj, this equation

reads

M @r) 5"(:1) +m(Plq ) [g ‘9 gd_l? Dip- p)G/pf)]ér)"o’Ffé

(3.46)

“'i% g 3oy DLP-P)GMLPT&)(H(PIq) (P’—ek)
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The first term on the right-hand side is exactly the usual

self energy Z(p)(zr)'*éﬂ’)(q) in second order

P) & - AP 1 1 .
de( ) S“P:lfsl @ PR PR (3.47)

Normalizing z:(F{) on mass shell one finds the usual

expression

2(Pd=2,  +F (P-M) ) (B) O

where ZR is the regularized self-energy.

The cutoff dependent term
T =2 35 Mty AYM=+5)
o Ht L 4 (3.49)

must be balanced by choosing moz—za on the left had
side of (3.46). Also the second term EE is cutoff de-

L
pendent:

Lood & (g Wi« 20 2o p70s) oo

and a renormalization is necessary to cancel this infinity.

Most economic is the introduction of an appropriate wave

function counter term (ZL—\)'\{'(tQ—M) in the original
Lagrangian (3.1). Such a term would enter equ. (3.15) as

Sd‘ﬂ ‘[ (12~ W) k)42 - Xea- M) Sy -mfxq)}cfgta
=8 be2) (3.30
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Instead of (3.18), m(x,y) should now be assumed to oscil-

late around [ m° <+ (z;"'\)(I?"M) ] 6(&-3) .

By defining a new wu/(x,y) via
m.'(k.tﬂ = m("(‘j)' [_mo-t(Z:‘— \)(i:é'M)]S‘?:-j), (3.52)

the full action (3.22) is obtained exactly as before
except for the linear parto&in which the new wave func-

tion renormalization term enters together with m_:

A, ImJ = gdxdg ‘fT{ Gu (egdm ey )

(3.53)

— el - m (x,y) Lm,+@;- \)("3"”\]8(‘“1)/‘335”‘“5)}

By choosing

-1

Zz.—|=—-z‘ (3.54)

the cutoff dependent term Z; is exactly compensated in the
equation of motion (3.46). After this renormalization
procedure, only the finite term ZK{P) is left. The

regularized action is

A, (m ], = -gmﬁ Zg(yg) m9)/ gDy .55

Using the expansion (3.42), this can be rewritten as

(/IL‘ Cﬂ‘l']ﬂ = Z ga%gﬂ(-g)m“(’)c) (3.56)
it
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with

2) . \A1P ‘ | NCY
§H(q )-—\ (2?); ‘fT[Z{(?)GM(PM,_)P?Phﬁmlp-i)]%f_)

(3.57)
By momentum conservation, the tadpole momentum always

vanishes such that only §u(0) is needed eventually.

Let us now proceed to the discussion of the inter-

5 [}
action part Ve{ntr'“-l of equ. (3.25). Take as an example
the term of the third order in m'. If a hadron line ends

at every m', it can be represented graphically as shown

in Fig. &4

Figure 4

Employing the expansion (3.42), this interaction term

can be rewritten as
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> hade

‘}J(m. (mJ =- d‘ig ACL‘ dﬁ
t “hll'..“s én* @a)* (i 1’)“*(2 ) g(q‘“"“b)

(Zu‘) #[PHTP (2, ) G (Pt ) Prg e )30

GM (P‘f‘(\) pn'(p*qi“ \Ch )GM(P )] mka(‘(a\mu»z@a)mu.(q \)

= _13 Z d)é “(\9* Q RQ:\) m“3()¢)m“l(>¢)m(,()§)

H.HL“s
P ",
with a vertex funct“lon ’LD“’K.,.H»‘(\ Y Vi \?x) whose
derivatives S are to be applied only to the

argument of the corresponding field rn“;OO) . A cor-

responding formula holds for every power of m'.

Notice that the flow of the quark lines in every
interaction is anticlockwise. When drawing up hadronic
Feynman graphs it may sometimes be more convenient to
draw a clockwise flow. A simple identity helps to write
down directly the corresponding Feynman rules. Consider
a graph for a three hadron interaction and cross the

upper band downwards (see Fig. s ), The interaction appears

now with the hadronic bands in anticyclic order, and the
fermion lines in the hadron vertex flowing clockwise.
This is topologically compensated by twisting every

band once. Mathematically, this deformation displays the
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Figure 5

following identity of the vertex functions

U«, K (45,92 4, )= U, A, W, U,f' " wgq' %43, 59)

where the phase ‘qt’ denotes the charge parity of the
hadron H. This phase may be absorbed in the propagator

characterizing the twisted band.

The proof of this identity (3.59) is quite simple.
Let C be the charge conjugation matrix. Then the vertices

- I
CP¥PR)C =n, 7RI 5.609

Inserting now C:(:-‘ between all factors in (3.58)
and observing Cx""C"‘r-—\é)"T one has
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UH?) &LR‘G\m‘Iz,‘i\)""\h‘\ui‘\u\ CZWY {T_{ P Z(P'*%Hb)
t V. Yo\ (Y
) | P la) G teaia)

Taking the transpose inside the trace and changing the
dummy variable F> to - F>' the vertices appear in anti-

cyclic order and the right hand side coincides indeed

with 0\‘“3*\&&1\“. UH.HaﬂgcqucP:‘D) . Twisted propagators
are physically very important. They describe the strong
rearrangement collisions of quarks and certain classes
of cross-over gluon lines. Fig. 6 shows some twisted
graphs together with thei quark gluon contents.In meson

scattering rearrangement collisions (Fig 6a) have roughly

the same coupling strength as direct (untwisted) exchanges.
In QED, on the other hand, they provide for the main

molecular binding forces.

The exchange of two twisted hadron lines (Fig 6b)
seems to be an important part of diffraction scattering

(Pomeron).

Two more examples are shown in Fig. 7. Notice that in
the pseudoscalar channel these graphs incorporate the ef-

fect of the Adler triangle anomaly.

In this connection it is worth pointing out that
all fundamental hadron vertices are planar graphs as
far as the quark lines are concerned. Non-planar graphs

are generated by building up loops involving twisted
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Figure 6
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l AN,
f‘v‘v‘v‘v‘v VY

Figure 7

propagators.

With propagator bands, their twisted modifications
and planar fundamental couplings hadron graphs are seen
to possess exactly the same topology as the graphs used

2)

in dual models] except for the stringent dynamical pro-
perty of duality itself: In the present hadronized theory
one still must sum s and t channel exchanges and they

are by no means the same. Only after introduction of
color and the ensuing linearly rising mass spectra one
can hope to account also for this particular aspect of

strong interactions.

The similarity in topology should be exploited for a
model study of an important phenomenon of strong inter-
actions: the Okubo, Zweig, and Iizuka rule. Obviously all
hadron couplings derived by hadronization exactly respect

this rule. All violations have to come from graphs of the
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. 1
so called cylinder type 3 (for example Fig 6b). If it 1is
2)

true that the topological expansionl is the correct
basis for explaining this ru1e+)

appropriate systematics for organizing the hadronized

,i1t may also provide the
perturbation expansion.

Let us finally discuss the external souces. From
‘7keté in (3.36) we see that external fermion lines
are connected via the full propagator G wich after ex-
pansion in powers of m' amounts to radiation of any num-

ber of hadrons (see Fig. 8)

Figure 8

These hadrons then interact among each other as quantum

fields. Diagrammatically, every bubble carries again

a factor T—'“(p[q )

It has to be watched out that hadrons are always
emitted to the right of each line. For example, the
lowest order quark-quark scattering amplitude should
initially be drawn as shown in Fig 9 in order to avoid
phase errors due to twisted bands. Then the graphical
rules yield directly the expression (3.39) as they should.
Afterwards, arbitrary deformations can be performed if all

twisted factors 4\“ are respected.

+) See the forth of Ref. 14).
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External gluons interact with hadrons according to

the third term in equ. (3.26)

2 v x -
—cf‘B(o) <y V Go)g Dix-9)jo(y) (3.63)
Hence every external gluon enters the hadronic world only
via an intermediate vector particle and there is a cur-
rent field identity as has been postulated in phenome-
nological treatments of vector mesons (VMD). Here omne
finds a non-trivial coupling between the gluon and the
vector mesons: As discussed before, the division by
%z[) amounts to a removal of one rung from the ladder
of the incoming hadron propagator and takes care of the
direct coupling of the gluon to the quarks without the
ladder corrections. This effect was shown to be accounted
for a factor %“’L(q,_) {%1 in the propagator sum (3.39).
Thus the direct coupling of the vector meson field mH(x)
to an external gluon field G;nt(k) can be written as:

a?‘
R N R N C RO
= %}i;(ﬁ) mu(q)Gft'

In a hadronic graph, the removal of one rung will be in-
dicated by a slash. As an example, the lowest order con-
tribution to the quark gluon form factor is illustrated
in Fig 10. The slash guarantees the presence of the di-
rect coupling. The free propagator of external gluon is
given by the second term of equ. (3.26). The lowest
radiative corrections consist in an intermediate slashed

vector mesons (see Fig 11),
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I
A 1
.
—
—1D-~
+ +

Figure 11

Here the slash is important to ensure the presence of

one single quark loop.

The divergent last term in the extermnal action
(3.26) has no physical significance since it contributes
only to the external gluon mass and can be cancelled by

an appropriate counter term.

A final remark concerns the bilocal currents as
measured in deep inelastic electron and neutrino scat-

tering. These are vector currents of the type
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SV(K.‘j) = q—&)'(v"l'(cj) (3.65)

It is obvious, that also for bilocal currents there is

s current-field identity with the bilocal field V/%&u) .
In fact, if one would have added an external source

term C\?‘,‘j) in the quark action:

Ad‘iod; = Sd.xalg J () Kv(\('(nj) Co(xY)  (3.66)

this would appear in the hadronized version in the form

v
A J(Od: = gd\kauj ;:;_a:tgs \/ (’ch\ Cv(x"‘i) (3.67)

which proves our statement. Again, a rung has to be re-

moved in order to allow for the pure quark contribution
(see Fig 12)

NN Y

T s U i v I

Figure 12
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Bilocal currents carry direct information on the
properties of Regge trajectoriesls). Therefore the present
bilocal field theory seems to be the appropriate tool for
the construction of a complete field theory of ReggeonslG),
which is again equivalent to the original quark gluon
theory. Technically, such a construction would proceed
via analytic continuation of the propagators (3.39) in
the angular momentum (and the principal quantum number)
of the hadrons H. The result would be a "reggeonized"
quark gluon theory. The corresponding Feynman graphs
would guarantee unitary in all channels. Present attempts
at such a theory enforces t channel unitarity on1y17).
Also, they are asymptotically valid by construction and ap-

parently have a chance of approximating nature only at

+)

energies unaccessible in the near future
IV, THE LIMIT OF HEAVY GLUONS

As an 1llustration of the hadronization procedure
we now discuss in detail the limit of very heavy glu-

s”h341Apart from its simplicity, this limit is quite

on
attractive on physical grounds since it may yield a re-
asonable approximation to 18w energy meson interactions.

This is suggested by the following arguments:

Suppose hadrodynamics follows a colored quark gluon
theory. In this theory the color degree of freedom is
very important for generating a potential between quarks
rising at long distances which can explain the observed
great number of high mass resonances. However, as far as

low-energy interactions among the lowest lying mesors

+) See, for example, D. Amati and R. Jengo,
Physics Letters B 54 (1974).
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are concerned, color seems to be a rather superfluous

luxury:

First, many fundamental aspects of strong interact-
ion dynamics such as chiral SU(3) x SU(3) current alge-
bra, PCAC (together with the low-energy theorems derived
from both) and the approximate light cone algebra are

independent of color.

Second, there 1s no statistics argument concerning
the symmetry of the meson wave functions as there is for
baryonslg).

Third, high-lying resonances are known to contri-
bute very little in most dispersion relations of low-
energy amplitudes. For example, the low-energy value of
the isospin odd XN scattering amplitude is given by
a dispersion integral over the mesons g and ¢~ with
907 accuracyzo). Similarly, ‘R’g scattering is satu-
rated by the intermediate mesons 9 and A1 . By looking
at all scattering combinations one can easily convince
oneself that the resonances X , g , ¥, A‘, form an
approximately closed "subworld"of hadrons as far as dis-
persion relations are concerned. As a consequence, it
would not at all be astonishing if the neglect of color
in a quark gluon theory would not change the dynamics

+)

when restricting the attention to this hadronic "subworld"

+) There is one estimate concerning the electromagnetic
decay of X9?. XY which is based on short distance
arguments and therefore depends on color2l), However, the
same decay can be estimated also via intermediate distance
arguments, namely by using the coupling gﬂﬂV'and vector
meson dominance such that color does not come in.
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The point is now that in the limit of a large gluon
mass AA -2 0o », exactly this restricted set of mesons
appears as particles in the hadronized quark gluon theory
(3.1) without color. Thus it might be considered as some
approximation to the low-energy aspects of the colored
version. Indeed, we shall see that the hadronized theory
coincides exactly with the well known chirally invariant
Q° model. This model has proven in the past to be an
appropriate tool for the rough description of low-energy
meson physics23). Our derivation of the { model via ha-
dronization will render several new relations between
meson and quark propertieslg). We shall at first confine
ourselves to SU(2) quarks only, such that symmetry brea-
king may be neglected. The extension to broken SU(3) will

be performed afterwards.

In order to start with the derivation observe that
in the limit fL—bCD s the gluon propagator approaches
a 6 —-function:

(D-q) = }‘:. S(x—g) (4. 1)

The equation of motion (3.27) forces m'(x,y) to become a

local field m'(x):

m’(x,3) — m'(x) S(x-(j) (4.2)

which satisfies the free field equation

mon) =042 § Sty Guley) mi Gy

(4.3)

In the local limit, the action without extermnal sources

takes the form



330 H. KLEINERT

A CmJ - golx '{T'{.GM(\(‘):)N'(’()-%@“M'Q m')('q’d

u (4.4)
) F

(G m)(xx)—/* im(x) -lm(s()mOS

where (GM m GMM )x,r) stands short for
Sd‘jG (x"!)m'(q\sn(ﬂ"‘) etc. As before in the general

discussion, the constant M, 1is determined by the va-

nishing of the tadpole parts in (4.4) which amounts to
balancing the constant contributions in the wave equation.
Due to the singularity of GK (x"j) for X->Y this con-

dition has a meaning only if a cutoff is introduced such

that Gy (0) is finite:
o], (4[] e,

B (4.5)

Here the cﬂF>o integration has been Wick-rotated by 90°
such that the momentum P}- (Po P) becomes (L P* E )
with P"'e(—ao QD) along the integration path. The new
real momentum (P"' P) has been denoted by p# and its
euclidean scalar product by PE = P"f “ =-pP2

The tadpoles can now be cancelled by setting m equal

2
m°= 4 %,_ R M (4.6)

Remembering the relation to the bare quark mass mon-m,

this determines the connection between the "true" quark
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mass M and the bare mass (J( contained in the Lagrangian:

M"m—fo%:?:QM (4.7)

Equation (4.8) is often called "gap equation" because of
its analoguous appearance in the theory of superconduc-—
vivityZ4).

Consider now the free part ()‘(2[:"\'_] of the action.
Performing again a decomposition of type (3.12) but with

the local field m'(x), it can be written in the form

ke [m'] = Qolx {*Lm () :lj(t’))m (x)

'Lz‘- (5:"" Pz) - 2V7(’<) 'ZA'(x))} (4.8)

where mi(x) (i=1,2,3,4) stands short for the fields+)
S, Pix), V(x), A x) and the trace rumns only over
internal SU(2) indices. The coefficients 21361)

are given by the integrals

- A% 1
333(51)" L‘g (2 )H (Pf \-&M (P SL) M Cj(PH)(l"g)

where 't“, (P‘c‘) denotes the Dirac traces

tgj (PH)-—‘- Jq-h&m;:[l (7\ (P—t{«rM)f‘i(p:%i.M)}(a.lo

L . v v .
+) The Lorentz indices of V’ and A fields are suppressed,
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with (—i (i=1,2,3,4) abbreviating the standard Dirac
covariants 4 , ((% s K" ’ K"s . The traces are dis-
played in Appendix A equ. (A.33). Some of them grow qua-
dratically in P . The corresponding integrals ’J«,](?)

are quadratically divergent for large cutoffs. The others
diverge logarithmically. If one introduces the basic inte-

gral

= dqu 1 - 13- N NE
=SNG (e G (R e

the divergent parts of ‘:[;S(a‘) are (see App. A)
Jee @)= R+ L(g-2m*)
Jee(d = R+ F 5 Tpur= Mg
Jyr@)= -13(5(‘3"”-5"‘1”) | (4.12)

Jara*(q)= - 5‘@2%”"{” 1) "M‘S”‘j L5 Jang Y

with all other integrals vanishing.

If we neglect the finite contributions as compared
with these divergent ones, the action a‘qa_Cm'J is seen
+)

to corresponds to the local Lagrangian

+) Since Mix) and mti'*) differ only by a Dirac scalar constant
My A3 there is no difference between primed and unprimed
fields except for S1x)=S9x)-m,
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2= Ay m‘[xi5'<<'>[4a-2(0*w‘n_-—/§ 1St
+5 Poo4Q-20L- %:] )
+ ﬁv#(xs[%(gﬁr‘-’_ W)L+ 27%’]\(,@

4 i Ap("\[ %( D %P-v'farfov) L+ Mzava +2%:]Av(x]

+2ML (farle')A)'(x) + AMO) Y FIx) ) 3

(4

.13)

1f we respect the gap equation (4.7) in this Lagrangian,

the quadratically divergent terms Q can be eliminated.

The mixed terms can be removed by

) via

AX(<) = 7@’(}()—& DNl %

and fixing A as
A= - M/ m,*

'
where (M, stands short for

r“A{L=’ "\yzl* é»“«il

with

™M, = Bﬁlfé%z l—)

introducing a new field

(4.

(4.

(4
(4

14)

15)

. 16)
.17)

This substitution produces additional kinetic terms for

the pseudoscalar fields which now appears with a factor

B ) 2 2\ 2
{T—Su.(?-) ( ) p(X)>(H' AN ML 4.18)
< ﬁ_sucz)(}quaﬁ R5)) E'LP—-I L

Using (4.15), this renormalization factor becomes
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-\
- ' 2
ZP = [-M /m,2 (4.19)
After this diagonalization, the Lagrangian reads

L60= g, & RS'S" ~(4M™ Lmfwm)s”
+RPIP Z - Lmtatv)P?

-1 »nv v 7Y 2 2 (4.20)
> F\; Y + 3 m,, J
N
-4 v & 2 a2 A

where F)*-:R are the usual field tensors of vector sand
axial vector %ields. The particle content of this free
Lagrangian is now obvious. There are vector mesons of

mass mvz s axial=~vector mesons of mass mA?" and scalar

and pseudoscalar mesons of mass

m, > = L;(\/\"‘-u-l_-btr\v2 LM (4.21)
L

(4.22)

With (4.17), the constant (4.19) can also be written as

EE_ = ”‘Vz/%n,:

P (4.23)

As we have argued before, there is a good chance that
the fields P . v, S ’ A describe approximately the
lowest lying mesons % ,3 s T A‘ + Let us test this
hypothesis as far as the masses are concerned. Since

experimentally mA?';-‘.- ZmS—" the factor Z,k’ becomes = 2,
{
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Forthermore, equ. (4.16) determines the quark mass as:
a 2 =
6 M - mk‘ "mg J M x 3‘0 MCV (4.24)

in good agreement with other estimateg§)The small pion

mass yields via (4.22)

T & 15 MeV (4.25)

Thus the bare quark mass has to be extremely small, Aslo
this result has been obtained by many author526). It is
common to all models in which the smallness of the pion
mass is related to the approximate conservation of the

axial current (PCAC).

The scalar meson finally is predicted from (4.21)

to have a mass
My = 2M ™~ G20 MeV (4.26)

This agrees well with the observed broad resonance in
27)20)

K scattering.
One disagreement with experiment appears in connec-—
tion with the SU(2) singlet pseudoscalar mass (thel\ meson).

According to (4.22) it should be degenerate with the pion.

The resolution of this problem wrll be discussed later

when the theory has been extended to SU(3).

After these first encouraging results we shall re-
name the fields P s V s 5 ’ A by the corresponding par-

ticle symbols

TP = {08 =g 30 vA=gF ELAAM

(4.27)
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where a normalization factor has been introduced in or-
der to bring the kinetic terms in the Lagrangian to a

conventional form.

A comment is in order concerning the appearance of
a quadratic divergence in equations (4.7), (4.12). Such a
strong divergence indicates, that the limiting procedu-
re /A.—aw of equ. (4.1) has been performed too care-
lessly. In fact, 1f one inserts (4.1) into the action
(3.4), the theory becomes of the CQ"%)z type and thus
non-renormalizable. In order to keep the renormalizabi-
lity while dealing with a large gluon mass ‘)£z>?'P1z
we actually have to watch out that the gluon mass stays
always far below the cutoff : }*1<K/\z . Then the qua-
dratic divergence becomes actually of the logarithmic

type (compare (3.47)):

Q = S(Z'y I T Sl D g,,a(/\szl Mitafi ﬂ)]

RIM® Bl 28t T e

(4.28)

2
(which in the careless limit M 2@ reduces again to
(4.5)). The logarithmic divergence (4.11) on the other
hand becomes in this more careful treatment independent

of the cutoff which is replaced by the large gluon mass

L dqpe 1 | Ty (4.29)
Y’ (R +MeY RE+™) (zx)‘*( "

xD’.‘LQaﬂ ,lﬁ—f-l-Mz‘/-ﬁ-‘:[ ~ @—’T—S& [_05 ,&-
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Hence all our results refer to a renormalizable theory if
one reads both Q and L as logarithmic expression once in

the cutoff and once in the gluon mass, respectively.

Let us now proceed to study the interaction terms.

The n'th order contribution to the action is given by

0‘(,\ L' ] = %)—Mgalx - (Gn m‘)n (4.30)

In momentum space this can be written as the one loop

integral

(74(.,\ [m'] =L (—‘r‘:) Aga é%{-* Czﬂwg(qﬂ-r...fcl‘)

@m)*

A" Pa A A (4.31)
S (27" (P+q,.f...qS:+M‘ (P+ql);'+Mz -E%-..L.(qunﬂ:"‘;”

+r$u(z) me; CR R m;.(q.)]

where ‘e;‘_“c‘(P\q‘_“_._'q') is the generalization of
the tensor (4.10)

tin sty (p lq“"l""q')zﬁ *‘ [I—?n (‘PW“.'1.__+«‘+M)T-Z._‘. .. (4.32)

M, (PagaM) T2 (P) |

The result is hard to evaluate in general (except in a
1 + | dimensional space). With the approximation of a
large cutoff one may however, neglect again all contri-

butions which do not diverge. This considerably simplifies
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the results. Since {En _._L‘(p‘q‘_“,._'q‘) are polyno-

mials inp of order n, the integral is seen to converge

for n>» 4 . For n = 4 there is a logarithmic divergen-
ce with only the leading momentum behaviour of '&;‘___i.

contributing. For n€é 3 also lower powers in momentum
P of tt,...c‘(P‘q--i.---,m) diverge logarithmically. A
simple but somewhat tedious calculation of all the inte-
grals (see App. B) yields the remaining terms in the
Lagrangian. They can be written down in a most symmetric
fashion by employing the unshifted fields+) S(X)EM-('SI(:;)

rather than S', or in renormalized form

W= -T'M + T (4.33)

Then the Lagrangian reads

263 = Treue, 4 LD O J+2M G5

ol PO . * * (s,
-5 x oY+ o' - 2omer [ BY-LE4, 7Y

2 2 2
+ m (VAN - m I wee §
Here Q‘_Q' and D":}t’ are the usual covariant deriva-

tives:

DPQ‘: QT -1 LV}*T] - ({A)J‘l]
D,x = %r -ty [Vum [ +x { AT

and I:)'“\; ) F-}: are the covariant curls

(4.35)

+) Notice that with this notation m(x)=m°+m’(x)

= (M- A MG = - WL 4 S+ Poys + VAt A" s
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V
Fuv = 9V, -3, V,mty Lo v, |-ty (AL AL

(4.36)

A . .
Fav = 3uAv-3,A ¢ Lvaas Ty [AL v |
The constant X' denotes

X = ig}_' (4.37)

It describes the direct coupling of the vector mesons to
the currents, i.e. it coincides with the coupling conven-
tionally denoted by Kg . Here K has its origin in the
renormalization of the fields. The mass term

stands short for

2Mrs 2M 5~ J?-)mvz wW/M (4.38)

Actually, the so defined mass quantity has an intrin-
sic significance. This can be seen by deriving the La-
grangian in a different fashion from the beginning. con-

sider the tadpole terms of the action

Jt‘ tm'] = gd'l WJIGM("R‘)’“;") -%— M'(x)mo} (4.39)

In the former treatment we have eliminated M, completely

by giving the quarks a mass M satisfying the gap equation
2
M- Wlz=my= L&%QQM (4.40)

Instead, we could have introduced an auxiliary mass Mo

satisfying the equation
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Mo= W &, QM, (4. 41)
/).l

where Q_ is the same function of M, as Q is of M. The con-

nection between this Mo and the other masses is obtained

by inserting M= Mo+6M into Q:
Q= R, "ZMOSM(H SMIZMD)\-— (4.42)

which holds exactly in,SFﬂ with only small corrections
for large cutoffs (notice that at this accuracy L0 = L).

Inserting this into (4.40) we find

Wl =y }3;; L 2M M1+ SMi2m, )§M (4.43)

2
and using My from

W= B, M M (14 §M/2M,)8M (4 44)
A

1f now M%) is split in a different fashion

mix)= i, + Mix) (4.45)

~
with a new My~ Mo"m then the propagator G(k.tj) would

have an expansion

G(".\j) = GM,,(X"‘J) “(GMO"‘" Gno)(""i)* (4.46)

For this reason, the derivation of all Lagrangian terms yields ex-
actly the same results as before only with m", yk .
LO , and Qo occurring rather than m' , M, L and Q ,
respectively. There are only two differences: First, due

to the gap equation (4.41), the scalar and pseudoscalar
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r N
mass terms become L(hﬂo and O rather than (4.21),(4.22)

second, the tadpole terms in this derivation do not cancel

completely. Instead one finds from (4.39)

(,44 CmJ = \&x ‘(‘fil(L(QoMo" M;;Z;)m”(q }

(4.47)
SAX &m m"(k)} mv Salx rr{'ﬂ‘(moﬂ]

These tad pole terms provide exactly the necessary addi-
tional shifts in the fields which are needed in order to
bring the scalar and pseudoscalar masses from ‘fhﬂf and

O to their correct values nnv?' and nm*? . The sym-—
metric form (4.34) of the Lagrangian is again reached by

introducing the original unprimed fields
- « ) [ |
SuE M +5%) ,T=—("My +T

Then the mass term appears as an SU(3) x SU(3) invariant

2MZ (& +3r).

+) With this substitution, the unprimed field S really

coincides with the formerly introduced field S since now
u .
M) = (Mo— W) + St Penivgs +
= - W + SRt Pkiys +

while before

me<y = M-10) + SGa+ Doy i +
= ~QWC + S +Px) g+ -
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Notice now that this coincides exactly with the for-

mer calculation which rendered (see (4.38)
2 k8 2
(am*- g m, WM )
Inserting here M = N1°+i»4 and (4.44) gives
N
2 M % 4 M2 EUYM =2Mo +4MOM+ 26M V- M (it 3 v
- ZMOZ. (4.48)

Hence the SU(3) symmetric mass Mo defined by the gap
equations (4.41) coincides with the mass M introduced

as an abbreviation to the mass combination (4.38).

The Lagrangian (4.34) is recognized as the standard
chirally invariant 0"model. Its symmetry transformations

are for isospin
=] v &7 =t D]
) 4.49)
6\/,‘*3 { Eo(lvl*:( + 4% P h 6/\’"‘: '\CO‘,A"j

For axial transformations the fields change according to

—dIxy ; OW= {ILTF
(4.50)

oV'= [o(A’“] ; §A"=c&‘o§v'j+§fa~ot

The only term in the Lagrangian which is not invariant

is the last linear term. In fact from

L =g m® g (DT = AKX [ s
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one finds

"1l3
QA = .g,‘ mK"Z' TX(x) (4.52)
Introducing the conventional pion decay constant via
r s
’aA(x) = 'g"K M Z‘—sz/x) (4.53)

one can read off

Ve
2. A
—gn My = ‘ZR %mv o &®t (4.54)

Inserting mn." from (4.22) this gives

. FY

—
S =y 2M1L (4.55)
. . . *‘ > .
B h d = b
y squaring this and using !; 3L , one obtains
a r X L 2 2
57( =M™ Mo Ma " Mg (4.56)
Z, X x° :
x 8 g Ma
2 p 8
which for My f'\’zl’lg renders the well known KSFR relation.

The model has the usual predictions

2 2
43rr = &3 (“ 2:;,, A % 53 (4.57)
and
= * A M -
dagx i’Jv—nS X Zx §x 25, ~4 l“'A.str'
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When compared with experiment, the only real defect con-
sists in the d-wave Algx c:oupllngJ h'ASK Ibelng absent.
additional chirally invariant terms are needed in the

Lagrangian, for example, the so called <S—term:

é 'h‘ [\/ :Iu:: ¥ F/L’Z ) DP(W +iK)Dv(6‘—\'x§— (V—>-VJ ﬂ'—»‘k’i
(4.59)

Such terms appear in our derivation if the approximation of
: . . .
large )A. is improved by terms which do not grow lagarith-

mically in /A

Let us now determine the couplings of X , T, 9 R A‘
A, to external quark fields. The external propagation
A

proceeds via
—_— . —~— [} -
('V\G'VL= \’V\GM,"‘\*"'\GM,M GMD"‘( e 4. 60)
If one defines the couplings by

Pl Fxaa ~F (s Ta™ R* *%T&Q’\Tta\fv «
— — _ (4.61)
+4 vaa {/‘% g V): t+4Aaax §7(s g™ A

and can read off

=l z:i_M . .
LALE s - A L i‘?‘f’?_?“‘

x (4.62)

%eaa = 3aaa = Y
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We see the vector coupling to quarks agree with vector-
meson dominance. Due to PCAC also the Goldberger Treiman

relation is respected

%taa - % %\' (4.63)

since the axial charge of the quark is i’& =1 . Since
the quark mass is M ~ Mp [3 , the pionic coupling

to quarks is considerably smaller than to nucleons. Nume-

rically
2 S
%Ea ~ L ?\'_'E'!.” . 6 (4.64)
L 7 Ly ]

The §- meson couples even weaker

-
Beoa fuy 43

Vector- and axial-vector mesons, on the other hand, couple
as strongly as to nucleons which is an expression of uni-

versality:

2 2z 2. 2
Y00 _ Guaa _ ¥ o, (ﬂ' 3w (4.65)
Yx Ly iy L

We are now ready to extend our consideration to SU(3)
(and higher groups). In this case the explicit symmetry
breaking in the Lagrangian is too large to be neglected.
Thus the bare masses Tr( of the quarks have to be con-

sidered as a matrix

mK
W ~ ( m* (4.66)

nné
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The derivation of the Lagrangian presented above (via the gap
equation (4.41)) has shown the complete SU(3) symmetry of
F‘éz . Hence when extending from SU(2) to SU(BL no
change occurs except in the last symmetry breaking term
of (4.34). As a consequence, the mass expressions for

mP?’ and M.SL remain as they are only that the
renormalization constants ZP become more complicated
SU(3) dependent quantities due to the involved mixing
of pseudoscalar and axial-vector mesons. For a complete
discussion of this SU(3) x SU(3) invariant chiral La-
grangian the reader is referred to the review articles23).
Here we only give a few results:

+)

A best fit to K and K meson masses requires

i5
W1~ H:‘S) \% AV (4.67)

Thus the explicit symmetry breakdown of SU(3) caused by *
8)

the bare masses is quite large. The standard parameter

C characterizes this:

C= mg= F’(m“*m S)Q
M T (wr e are)

-1.28 (R-@)u.6s8)

Inserting into (4.44) we find the shifts in the quark

masses caused by dynamics

OM = * 7 >Me\/

4.69
427 ( )

+) For other determinations of see Ref. 26).
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and hence for the '"physical" quark masses

(2
M & ( (2 %z) MeV (4.70)

Thus contrary to the large explicit SU(3) violation the
bare masses U8 ( » the physical quark masses M show only

the moderate violation
C: “4? %H(“4“+@r* Pfi)
M° ['%"(M“'c MAcmsy

Since the quark masses M are produced almost comple-

~ -l °lo (4.71)

tely by dynamical effects we expect some symmetry break-
down to appear also in the vacuum. A measure of this is
provided by the expectation values of the scalar quark
densities

Lo|Git (oD = <OV 2 6 (o>

(4.72)

In the hadronized theorx-the scalar densities are identi-

cal with the scalar fields up to a factor:

’

S w-- %f@'&) ¢, (x) (4.73)
; ]

as can be seen most easily by considering the equations
of constraint (3.14) following from the Lagrangian (3.11)
in the latgejﬁk limit. Hence

Lol (oD =- 15 Zx%o\s o7 (5.78)

3
c,)

3
,{;;w(MAP ke M

N
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Inserting ( 4,.17) and (4.55) the factor becomes simply

T I N N (T e P
B - 2 5 \'4 — .~ ¥
3 3%, > i

such that

Lol o7 A M ==§ [FIM“Aet?) ~ - 3o’
(4.75)

oGP oD A-f"M7= ¢’ LolWloy

This shows that the SU(3) violation in the vacuum equals
that in the quark masses AR~ %% +). Notice that the
three results (4.22 ) (4.44) and (4.73) are in complete
agreement with what one obtains by very general considera-

tions using only chiral symmetry and PCAC (see App. C).

The extension of the Lagrangian to SU(3) produces
additional defects which are well known from general dis-
cussions of chiral SU(3) x SU(3) symmetryZB). For example
the vector mesons UJ,, @ are not mixed (almost) ideal-
ly as they should but ¢ remains close to an SU(3) singlet.
In general discussions, additional terms have been added
to chiral Lagrangian in order to account for this. There

are the so called "current mixing terms':

#‘&(F}-:,,V+ F):, )1(%:.:)(@&1\') +é\«> -A c-2-TC ) }

(4.76)

as well as "mass mixing terms"

+) In Ref. 30),SU(3) breaking in the vacuum was neglected.

For a more general discussion and earlier references
see Ref. 29).
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‘h"{ 6/’*‘* A)‘Y'(W-HN)(T-(KB W”—M)L@‘—(rymm)}
(4.77)

In our derivation these arise as a next correction to the
}debao limit. Another problem is the degeneracy of the
ideally mixed isosinglet pseudoscalar meson t with the

pion. In order to account for the fact that the 9( (}QQ
meson is almost a pure SU(3) singlet and much heavier
than the other pseudoscalar mesons one needs some chirally

symmetric term

det (T+i) + dek (Q‘-CK), (4.78)

Such a term breaks PCAC for the ninth axial current. It

is well known30)

that the quark gluon triangle anomaly
operates in the singlet channel and might be capable of pro-
ducing such a PCAC violation. In fact, if this was not
true, quantum electrodynamics would possess an exactly

1)

massless Goldstone boson with Il quantum numbers.
Also the term (4.78) will appear when /A is not any

more very large.

It is obvious that corrections to the )Az"m
approximation will become even more important if one tries
to extend the consideration to SU(4) since then vector
and pseudoscalar masses are quite heavy.In addition, the
narrow width of the SU(4) vector meson‘\b/f] seems to
indicate that short-distance parts of the gluon propaga-
tor are being probed. Thus the colorless quark gluon the-
ory itself cannot be considered any more a realistic ap-

proximation to the colored theory.
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At this place we should remark that present explana-
tions of electromagnetic mass differences require also an
breakdown of SU(2) symmetry in m32). This is conventio-

nally parametrized by

LALSE e S
e E (wevwlewe)

i

(4.79)

From meson masses (as well as from the electromagnetic

(vL.,a-)c decay) one finds33)

AR ~>% (4.80)

This amounts to the bare quark masses

|O
{1 ~ 20 43S ) Mel/ (4.81)

giving the "true" masses

310 )
M =~ S Me V
Y22 (4.82)

Thus the SU(2) breaking of the vacuum is very small

(4.83)

Al's Lo |G2(oD _ mMm? R - 6o
(O(&o (e > M°

With all parameters fixed numerically we should final-

ly check whether the approximation of a large gluon mass
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is self consistent. From (4.55) we have
2.
o~ L w o~
L_ S -g“’a. ~ .04 6. (4.84)

Inserting this into (4.29) we calculate

Zo%/.l:‘qz; ~Gr)x o.oue 7.3 (4.83)

and hence
f,ﬁ- R (ScoM® > MM* (4.86)

or

P ® 12 eV (4.87)

It is gratifying to note that this value is much larger
than the mass of the vector mesons. In this way it is
assured that higher powers of q”/(PE'fM‘) which were
neglected in the derivation of the Lagrangian remain
really small as compared to unity for all mesons of the

theory (see app. B).

We should point out that the quark gluon theory in
the limit /L‘;aoo coincides with the well-known Nambu-
4)

Jona Lasinio2 model which has proven in the past to be
a convenient tool of studying the spontaneous breakdown
of chiral symmetry and the dynamical generation of PCAC.
Those authors have demonstrated the close analogy of the
dynamic structure of this model with that of super-
conductivity. As we have mentioned before the
equation (4.40) removing the tadpoles 1in the action is

analogous to the gap equation for superconductors.
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A similar analogy to super-conductors exists also
for the hadronized theory. The classical version of it
corresponds exactly to the classical Ginzburg-Landau
equation for type II super-conductors in which the gap
is allowed to be space time dependent. In fact, the clas-
sical hadronized theory can be derived alternatively by
assuming such a dependence in the gap equationsa’ls).

The advantage of our functional derivation is that the
hadronized theory is not merely some classical approximation

but becomes upon quantization completely equivalent to

the original quark gluon theory.

A final comment concerns the Okubo-Zweig-Iizuka rule.
As argued in the general section, the meson Lagrangian
exactly respects this rule. This can be checked directly
for all interaction terms in (4.34). Violations of this
rule are all coming from meson loops. The calculation of
some important loop diagrams leads to straight-forward

estimates for the size of such violations.
v OUTLOOK

We have shown that in the absence of color, quark
gluon theories can successfully be hadronized. The re-
sulting quantum field theory incorporates correctly many
features of strong interactions. It's basic fields are
bilocal and the Feynman rules are topologically similar
to dual diagrams.Our considerations have taken place at
a rather formal level. Certainly, there are many problems
which have been left open. For example, there is need
for an understanding of the non-trivial gauge properties of
the bilocal theory. Also, a consistent renormalization
procedure will have to be developed in future investi-

gations.
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The inclusion of color is the challenging problem
left open by this investigation. If color quark gluon
theory 1s really equivalent to some kind of dual model
the corresponding hadronization program should not pro-
duce bilocal but multilocal fields which are characterized
by the position of a whole string rather that just its
end points. A field theory should by constructed for

gauge invariant objects like

W o) enplicy 3 Gt 9

which depend on the whole path from x to vy.

The difficulty in a direct generalization of the pre-
vious procedure is the self-interaction of the gluons.
Only after the infrared behaviour of gluon propagators
will be known, bare hadrons can be constructed inside
the corresponding potential well and the "hadronization"
methods can serve for the determination of the complete

residual interactions.

It is hoped that hadronic Feynman rules in the
presence of color will follow a pattern similar to

that found here for the non-abelian theory.

Let us finally mention that an interesting field
of applications of our methods lies in solid-state
physics. Semi-conductors in which conduction and
valence band have only small separations may show a
phasetransition to what is called excitonic insulator.
The critical phenomena taking place inside such an
exciton system will find their most appropriate des-
cription by studying the scaling properties of the bi-

local field theory.
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APPENDIX A: Remarks on the Fermion Bose-Salpeter Equation

Consider the four Fermion Green's function

Golpa(z. (xu;) '1 ) <0 [T((LP (xwp{g)"(’ (x)V(g)O?

which becomes in the interaction picture

© ;Sd‘* FVa)(' )G ) _=
GO oy iy = [T 5

;agd'i Wz}x"*{-{e)@,}é) L « (82
<Lol|Tle R ACSANL AR

Expanding the exponential and keeping only the ladder ex-

changes corresponding to the Feynman graph in Fig 13,

xa&— =yg xab— V8 Xa é— —&y8
X o Y8
A ] gt e + AN

y/p! € gt yrﬁg_:—é Xo! Yﬁ’;’_e Xa!

Figure 13
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we obtain

)
Gir».-qb( "'5')'6«.('('*') s(4"9) (4.3)

G, G W oy G 50G g 50, G Dy
-\-%‘*SdX.o(\j,dﬁa(g,_@i.(x-)q) > ‘(x- ‘_)K‘ ‘z’G ("z,'

. .F?Gﬁjﬂ)[)bﬁ'ﬂa)ea¢4(ﬁ-ﬂiyvag’sah’(5;mdxhﬁm§%ﬂJg3)

The series can be summed to the integral equation

) t [ -
G(:, oYX = G e ) Gy (4'-y)
+% SA"cdﬂl Gd_‘(x *)K o, G(‘:)*P' o P ("-3:;""1') (A.4)

Y"“ﬁlp. P.P(‘d\") D(N'ﬂ!)

With the abbreviation

S""P':P«'d{ - \6’:%.' K/‘p.’p.: 4“'P' p‘,*ﬂ-\’s) ,(XS “

(A. 5)

—' '5 Kr o Xr N -4 & \( (Kp\’s , ,

This can be written as

4" Ndw dy, Gy O x ) SR A
§ gx 3 o )Smw Gj‘r«, ((’"“Gﬂ?ﬁ")
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or , symbolically!

M .ceTr GGT {4°D G

(A.7)

The transition matrix T is defined by removing the exter-

nal particle-poles in the connected part of G;B)

G (xy,x'y) = & O\'-‘)G (3-3)

dP d' 1]
+ Sd\'\dtj ‘ob(:.dkd., Go( (= x.)ﬁ? ((j ‘j!-) L‘f ‘pé“‘{.rgg(l\ 8)
Guula™C Gey)

which may be abbreviated by
W)
G =G +6aT T GGET (A.9)

From (A.6) and (A.8) the transition matrix satisfies the

integral equation

—(:‘h“ spa (K‘ﬁ' K;tj&) 3’( "l%‘ D(‘\"il)gé"l'xz)S(‘S"Sa.)

(A.10)

i-‘cp‘ A& g D(K."j )Sd* dy Q ("n"‘t)T gx‘ q‘*“hﬁ Q"l-)

which is seen to coincide with the equation (3.37) for

the propagator of the bilocal field. In a short notation,

this equation can be written as
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U= Y3 D+54°DGeT T A1)

The perturbation expansion

T = 131D+ ggzDGCT‘Sﬁ"Dﬁ-... (A.12)

reveals the one, two etc. photon exchanges of the ladder
diagrams. In momentum space the four particle Green's func-

@r)' 634 GG”(P P'lq)

[(P+a>~+a> g )y Cg)y€42)K]
gdxd;jdx'd..j’ e G@(—}, k g,ly)

ong,g

(A.13)
where the momenta are indicated in Fig. 14,

a
P+3 <z P-%
<

AN

LD
—>

Figure 14
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The corresponding scattering matrix ‘ (P,P(lﬂ)
satisfies the integral equation

T(P,P'lq)= §3"D(P-P') *53182%‘)(?‘?9@(?!‘9 (A.14)
TP, Pla)C (P*3)

The ladder exchange is in general expected to produce quark

anti-quark bound states. Suppose lHC-_p) is one of them.
Inserting it into (A.1) as an intermediate state gives for

7 / . .
xo;"jo > ¥, 1Yo a contribution

(+)
6 » xy ! -R'_1 (o) +l2s

x Lo \T( ’\"OL(xY\‘E(g‘))\H @%H@ ) \T('\E &) "'I'ﬁ,( 3')) lo>

where Qsé‘uj)(’l and T = "‘3 . The @ function is

non-zero if
min (xo,g.,j > mox (xo'ys' )

Using the integral representation

—QXQ

O(xo)- L Sm e 4

a+le

we have
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-~ 4.~ &, XBoRy)
Stee. ey~ 5, Qi

(A.16)

T (q,-e‘)iéema;u y
ﬁa—Eq*Ct

-

Introducing Bethe~Salpeter wave functions

Bp (x51) 5 <o | T (46T 0)) Hig) D
(A.17)

P lyxtq) = < H(a)\T('\(—P,(cj')‘CE(H))\o)

and their momentum space versions

-G Ro—g & )g ~fe-g)

4
%5,)., e f el
(A.18)

L( = R,-% R ) dq.P (Ph-y’)
5,,  (y'xl-q) = @ %/mq)

Cpoﬁp( <ylq) = <

the four-particle Green's function in momentum space is

q

seen to exhibits a pole at Qo0 & &

Gy (PPl . C0F, fh
Lo’ q)%* S (P  {Phq) (A-19)
P ZE“(%_E‘ua) “° g P"‘( )
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The opposite time ordering Xo (.3,4 xe',‘jo, contributes
{

a pole at Q= - Eq . Both poles can be collected by

writing in (A.19) the factor

-

[#
qL-M:+CE

This factorization is consistent with the integral equa-
tion only for a specific normalization of the Bethe-Sal-
peter wave functions. In order to see this write (A.7) in

the form
CMecoT+ ceT ;)%zDCm

= ([- GGT%%/"D)-‘GGT (A.20)

-1
= GG ((-3%4°D ceT)

Suppose now that a solution is found for different values

of the coupling constant % . Then the variation of

6@) for small changes of 6" is

A

=)
- (i-Ge™{4*D) CCT{D

(A.21)

* GGT([_g%Z.D)-'
_ G(‘-ﬂ§ DG(‘G)
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If one goes in the vicinity of the pole q A M“??z)

this becomes

-2 [ 2
99 s-M,%5*) P PRI P
(A.22)

P A 3 D293
dﬁ?(P "al)s-M G*)

This can be true at the double pole at o{ xM“ (33)

sn‘cg

”/M G2 APAP '
o5 %(2«)‘*@«) Pe Pl DO HR oo

If we go over to the Bethe Salpeter vertex function (3.29)

'04) = N, Gy (Pea YR Ple) G P-a )

(A.24)

7(Pl) = Ny G (02 ) F o) G (e 5 )



362 H. KLEINERT

%(‘\9—-3-‘5”’- ([Nel® gdj,’fg,).,w{@(pmwph)

(A.25)

A (P-2)97G2 DP-P )G (R4 ) P PRGPe

Using the integral equation (3.30) this reduces to the nor-

malization

S« éfz) [N ‘2 o(P
WG @ @ 7y’

4342-

(A.26)

This determines lhdkrz as

A
),V“\‘l:: %‘“’ (“2) /?_%fﬁ:) (A.27)
ql

Notice that this normalization is defined for all 2

with some Nu.(q") . For real p(plq) one may choose
hJ“CkL) real such that

T(Pl14) = (7(Pl-q)

(Both satisfy the same integral equatlon)

The orthogonality of m“(Pla‘) and P“’(P\—.‘) for dif-

ferent hadrons is proved as usual by considering (3.30)

once for (S%"D 3 r“‘ and once for(iS‘D)" pﬂ’ ,
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multiplying the first by 1=5“l and the second by
r)“ » taking the trace and subtracting the results
from each other (assuming no degeneracy of %*(1‘) and
%“l(qt) ) The normalization (A.27) is seen to be con-

sistent with the expansion of the T matrix given in (3.39)

- ( : P )l , ,(P'I )
I oy (PP (q>="8 ( T -1A 28
P HZ @) -4

. z . . . .
If q runs 1into a pole fda this expression is singu-

lar as

- , A
‘ot(mu(*' (PP'lq)~ 3( 2 M. )’agu q % Fa) (f:bz)sn
q

o
According to (A.9) this produces a singularity in (;()

(in short notation)

S ~ - B GricYerte)
99 4° Mu
242
= "( —gk:;-
’a_ﬂ;_i(:‘t" q* M“

which coincides with (A.19) by virtue of (A.27).

(A.30)

lN \ CP“CPH

For completeness we now give the Bethe-Salpeter
equation (3.27) the form projected into the different

covariants:



364 H. KLEINERT

m(Plg) = S(PIR) + PR ig) cxs + VIPIR) K,
+ AlPlg) Yr¥s (he3h
If Nlc(qu)(i=l,2,3,4) abbreviates S,P,V,A, one has

AP’ 1 1
o) =4 §°Y B i B

(A.32)
x { {Oo!
tfj(PH) m;\P\ﬂ)
f:l(P‘iG‘) being the traces defined in (4.10)
S: = (4, +4, -2, -2). Explicitly one finds

with

and

ty, (P = P2L+M® | £ (Plg)=tys = 2MPH
b (PH)= P2E-M* | telbly) =~ b= M9
€ ar(PQ) = - (P2 E-M2)gr 4 2" P ~4 qrq”
Eae(Plg)= (P §-HRr 12P1P° - p qrgam g

with all other traces vanishing. Notice that in the
’
Bethe-Salpeter equation for Mthere is no tensor contribu-

tion due to the absence of such a term in the Fierz trans-

form of \("@ xf‘ . The integrals in (A.31) go directly

over into (4.9) for large gluon mass /f&
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APPENDIX B: The vertices for Heavy Gluons

Here we present the calculation of the vertices
dk 043 , Uk for large /M . As discussed in the text,
all hlgher vertices remain finite when the cutoff and /~

go to infinity in the order /\ 37)# > Mand will conse-
quently be neglected.

Consider first oALz_as described in (4.10) and (A.33).
The integrals . are aluated by e ndi
g .’Jﬂ (q) ev u e v Xpa ng

[P<a), +m ‘]"L@- %) M‘]_\

(B.1)
_ 2> 41+ 22 @) L oym L

x®
Since {'-(P( grow at most like PE (see (A.33))
the terms J“/e lq“’/%‘f) contribute finite amounts upon
integration and will be neglected. At this place we have

assumed ql to remain of the same order of MZ. Actually
+

this is not true for vector and axial vector meson fields

but since numerically m m < the neglected
9 A ~ 100}
terms are indeed very small.

The following integrals are needed in addition to

(4.5), (4.11) (neglecting finite amounts)

my*~ (2ZM* 5 A 4GV
[}
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d_‘*_f_E I S
RG]

AP, l 2

Gy (M) o@D

6&“{%3 i
NG
I-t

S d(zf)i (pgzl‘l'M’-)" e"p" x (%"'%"**%’ > 3"**’&1‘3«)

The results are displayed in equ. (4.12).

o —(@-mr)

F;;FZ,= -_l—' aE?’ (B.2)

There is one subtlety connected with gauge invariance
when evaluating the integrals :’w(q> and UAA(G‘) . In
fact, the first of these integrals coincides with the stan-
dard photon self-energy graph in quantum electro-dynamics.
There the cutoff procedure is known to produce a non-—gauge

invariant result. The cutoff calculation yields:

:3V¢ﬂ($h)=:_'é;<jq%%pv-"mpﬂv:>L-“%i(?jlfh‘aw_:scafn,

(B.3)
Tamak )= - 4326 M) g gty - -4 (@+M*L)g,,

There are many equivalent ways to enforce gauge invarian-—
ce. The simplest one proceeds via dimensional regularization
If one evaluates the integrals Q and L in D = 4 - €

dimensions with a small € >0 , then
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% . S BN k20"
@w)“ (Pe=emd* ~ @t (M2 Ty

é%z %‘- + X))
e
A% 1 _w L i1eR)
a S (2.1')"' p M2 @ﬂ')" (‘V\?-)\"uz '——‘-P {2.)

:@.IE;“* M*(-%2) +0(e)

Hence at the pole i-‘:O) R and L become related such

z - . -
that GZ24fM L =O, cancelling the last terms in (B.3).
Notice that when dealing with the renormalizable theory
with large gluon mass f*? <k./\1 , this cancellation 1is
still present while the other Q integrals in 'J;J(q) become

unrelated with the L integrals, the first being essentially

}L z%/\/z the other Loa/l-‘/ﬂ" )

Consider now the interaction terms 043 . Here the
3 .
traces grow at most as FD . Thus as far as the divergent
contributions are concerned the denominators in the inte-

grals (4.27) can be approximated as

1 1 1
(Pracalern Pradgon® gt am”

(B.4)

H(24,tqa
TR P
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A

Since this expression decreases at least as 1/PE
the traces have to be known only with respect to their

leading PE} and PEZ behaviours. These are

{'695(‘7‘1&11)&3‘377"\ , tSPP

topu{Plact )T I PP+ 2P [Aaean] — PR
tsprp(Plgeq)s - (P pac P 2’@1.\«4 )

(B.5)

t S vﬂ(PH:q.)g PQP'“ -quz" +2pP ,‘Cq‘hf‘(aj "’fppvzf%)
t SVMS (% Hc'i\)g' PPy Pz(21 ‘_(_11)/*3 fpvrp (Pfqm 3

tSV"VV(PlKL“)Q L—('M P/“P"_M PL P
kﬁA"‘A'(‘)IQzQ.SQ L " P"P"-’b Mpza}v

tyvrvrv=(Plre) & Y prpre- p2(pr 8 "+ P %P )
+ 2 pMP‘qun + 2 P>~ Pt(%'tq,_sg-r ZPAP*(Q,“.WJ

- 2P | A x N ~
PGI;*“?) qf" zpt Pq. ?"\_pz(,aﬂkz-{-c‘ 5‘:3 (2"_.1‘»

Using (B.2) one obtains exactly the third order terms in

the Lagrangian equ. (4.29) (if this is written in the

o' form).

The fourth order couplings in U‘H are the simplest
to evaluate. Here only the leading p"" behaviour of

{-i,.(p|q3.qa_'q‘) contributes proportional to L
and the propagator can diractly be used in the form

LPez*M zj ) :
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0

€555 (Plgageq, )= Cospp T tppop & pt

!

ote .
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APPENDIX C: Some Algebraic Derivations

Here we want to compare some of our results with
28,29)

traditional derivations obtained by purely algebra-

ic considerations together with PCAC.

The vector and axial-vector currents
o. S— Qo < a ~rs g
\//u 6 = 66) X}* >—;, Mk Aﬁfk) NN T ey

generate chiral SU(3) x SU(3) under which the quark gluon

Lagrangian transforms as

I~ ¢ — wl-cuf-du’

chiral invariant

where
Wtcuf+du® = MmN =5 Wr Y X
= @(m“««m‘:m’}@f‘-ﬁ\f (c.2)
+ (-%(m“u-m*—zms)“-('é—:*f
G T
s e i (cwCE) e

e ° (C.4)

Ve = m°'¢c(5 Ny N (c.s)
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then W® and O* form the (3351:(?3) representation of
SU(3) x SU(3):

@‘;Lu u'q'j = (A**cp¢ :@S"a uhj=_‘-d""u_¢-
(C.6)

From the equation of motion one finds the conservation

+)

law
CAVMNDOE %”\Txp—‘g\( = W‘[-}gm:{\p (c.7)
= (& Wt N2 a=0,,..,8

W6 = g N = L WY

a'‘vc ~— c
=d T RO IN as

(Cc.8)

Let us neglect SU(2) breaking in WTI . By taking (.9

between vacuum and pseudoscalar meson states one finds

Srkme = é’(@mo+mg) ’%’&TD Z:’L

(c.9)

T - 4 o_1 i n}.\_[z Tz
Se m = F@RmMe-Lw™) WD 2

etc. for the other members of the multiplet, where one has

used (see the pseudoscalar version of (4.73)):

a - S
LPVPAIIC D =feme™ - <oV Fy D D= £ s Sinin)
) = p*2 T s - 1
etc. 23° r—:‘l 3 © ZR'Z
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By writing W1 as

/e 2w +m?
= a 1o A
KIHC &\ ‘r[}Nt 2 riaarzckﬁrtﬂ’
22 M>ams
(C.10)
equ. (C.9) takes the form
« . 1. 2

.szn“:L_= (N1 +Uﬂf()éL_ 25, %%"N’ rEJ

(c.11)

{sz‘z. - (m“+ m’)/z. E‘h'-z:; m, T

which agrees with (4.54)
By evaluating (C.6) between vacuum states and saturating
the commutator with pseudoscalar intermediate state one

finds
Uz
'gT ma L):. 2]-. = J—'\ (]’ﬂ <0iU.°l07 + <ol (.).9{07)
K (C.12)
(\"—3 (r?’)(o‘ w°le) "-'2(0{(&9\07)

S,
A

_ z 2 '
SR, A S _

n gk
and similar for the other partners of the multiplet.

Inserting the result of equ.( 4.73)

(3
Lol UtloD = WL°Lo G (o7= - LA, WM™
(C.13)
and writing M in the same way as ]xt in (C.10) brings

(C.12) to the form
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1
'S’war’-: (LJ(M“*M")
(C.14)
Ua w s
Sede = 0 (M“+M*)
which agrees exactly with (4.54 ) (written there in SU(3)

matrix form). Considerations of this type have led to

the determination28’29’33)

C /R —-1.29

or (C.15)
(m p m*)/z
w*t " Za

Including also SU(2) violation in such a consideration

. 33)
gives

AR -.03

or
(C.16)

mu‘md
M. +Wiy

A -1
“

There are numerous extensions to SU(4)35)

but they have
to be viewed with great caution since it is hard to see
how the large pseudoscalar and vector masses occuring
there can dominate the divergence of the axial current

and the vector current, respectively.
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DISCUSSIONS

CHATRMAN: Prof. H. Kleinert

Scientific Secretaries: B. Freedman and B. Mathis

DISCUSSION 1

-  GOURDIN:
Why is colour so difficult to introduce into your formalism?
- KLEINERT:

When you have colour, a gluon self-interaction coming from
Gﬁv = _9pGy — 96y - g(GU,G\))_2 will be present which cannot be
directly integrated out in the generating functional.

— GOURDIN:
Is what you have done just a formal transformation?

- KLEINERT:

No, this is a re-summation of the perturbation series that
yields results which cannot be obtained by a perturbation expansion in
the coupling. This we know from solid-state physics where one reaches
a new phase by such a technique; to describe superconductivity, one
sums bubblewise, while for a collective effect, such as plasmons, one
sums ringwise. Here, in hadron physics, we sum ladder by ladder.

It is important to note that one does not expand in powers of
the quark-gluon coupling constant. Let me remind you that in
electron—-positron scattering with two—photon exchange, the parameter
in the expansion 1is not g, but becomes something like g* log (s — 4m?).
When s is near threshold, the effective expansion parameter becomes
large. Thus, we have to sum the whole ladder in order to get finite

results, and the ladder can be a good approximation even close to the
threshold.
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- FROSSI:

Turning the heavy lines in your diagrams into Preparata's
double lines, one obtains the same graphs describing the same pheno-
mena. Did you find a theoretical framework into which Preparata's
point of view can be inserted and justified, at least as far as
quark-antiquark bound states are concerned? Did you find anything
like vector-meson dominance and the direct-coupling term? What
about multihadron production in fire sausages?

- KLEINERT:

My rules contain all of Preparata's rules but the reverse is
not true. For simplicity, Preparata only keeps three— and four-
point couplings among hadrons. However, in order to have a hadronic
theory that is equivalent to the original quark—-gluon theory, one must
must keep all n-point couplings. The photon couples via vector me-
sons, and there is an additional direct-coupling term as Preparata
wants it. The direct coupling is taken care of by slashing the propa-
gator as I have explained in the lecture.

- BUCCELLA:

Preparata's unconventional model incorporates many hadronic fea-
tures, such as confinement; these are put in so as to agree with
known experimental facts. Your formulation provides a natural frame-
work for explaining current algebra, PCAC, etc. lHow is confinement
and the colour-singlet nature of hadrons introduced into your func-
tional integration method?

~ KLEINEKT:

The quark theory that I have hadronized is not yet unconventional
because there is no confinement in it. The whole structure that I
have shown works for QED for electrons and positrons. The success
of Preparata's model indicates that this new structure can be general-
ized to the confined situation more easily than the original quark-
gluon theory. The graphical rules for hadrons may be independent of
whether or not there is confinement in the original quark theory.

- GARCIA:

In connection with the introduction of colour, you would like
to have infrared slavery? What happens to the gluon mass at long
distances?
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- KLEINERT:

This is difficult to answer within my framework because the
gluon field has disappeared from the theory upon hadronization. In
the colour quark-gluon version, there will be a massless gluon pro-
viding the long-range force to confine the quarks. However, this
will be true only within the confinement region, the hadron. Outside,
the gluon should acquire a dynamically generated effective mass, Y ~>
> o, to prevent the quark—-gluon system from escaping.

— FREEDMAN:

Ultimately, when you look for the bound states in the SU(3) X
X SU(3) theory, you want to ensure that the poles correspond to had-
rons and not to quarks since that is what one means by confinement.
Would you care to speculate about how you want to achieve this in
the context of your program?

- KLEINERT:

There has been a very exciting talk by Migdal at the Tbilisi
conference which will be very helpful here. Migdal has assumed
confinement and has calculated the hadronic spectrum following from
quantum chromodynamics. He looked at the vacuum expectation value
of operators like T Y(x)y(x)y(0)Y(0) , etc., Fourier-transformed
to momentum space, and used the behaviour in the far space-like
region known from asymptotic freedom. He then assumed a simple
pole structure for q° positive and found a unique meromorphic_func-
tion that fits the required asymptotic behaviour: _log (—qz)_Y,
with exponential accuracy.

- FREEDMAN:

This new development seems very interesting; however, the absence
of coloured states from the pole structure as used by Migdal is still
an input to the calculation.

- KLEINERT:
He never looked at coloured currents.

- JONES:

Could you amplify your claim that a colourless theory forms a
reasonable description of meson interactions at intermediate energies?
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- KLEINERT:

I would claim that the low-mass mesons, the m, p, 0, and A,
and their low—energy, < 1 GeV, scattering amplitudes form a closed
set of physical phenomena. This approximation may work to within
207 accuracy. The fact that higher mass resonances do not interfere
here shows that colour, which is respomnsible for the existence of

these higher-mass states, can play no role at this level.
- ORZALESI:

Your hadronization corresponds roughly to treating hadrons as
bound states in a ladder approximation. My first question is whether
your approximation is a first step in an iterative approximation
scheme and, if so, what is the prescription for calculating hadronic
amplitudes to arbitrary order? My second question has to do with
gauge invariance: 1in QED, the ladder approximation is not gauge
invariant, and the position of bound-state poles depends on the
gauge chosen; furthermore, if one only keeps ladders and rainbow
type graphs, the theory is not even renormalizable. How do you deal
with such difficulties?

- KLEINERT:

My bare hadrons are certainly a first approximation, as is any
bare field in an interacting field theory. However, after taking into
account all hadronic interactions specified in my Lagrangian, there
is no more approximation but a complete equivalence to the original
quark theory. This also answers your second question: gauge invari-
ance 1n the original theory has a counterpart in the bilocal theory
causing relations among hadron graphs.

- FREEDMAN:

T propose that, for gauge theories, it would be useful to work
in an arbitrary covariant gauge and let the gauge parameter keep
track of the cancellation between gauge-dependent term when calculating
physical quantities., I think this is especially useful here where one
does not have an intuitive picture of the cancellations occurring in
the perturbation series in the effective hadronic coupling.

- KLEINERT:

Yes, you will always find the correct family of hadronic diagrams
which throws out the gauge dependence.
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~ PAULI:

Today, vou wrote down an equation: m' = £g?DGem’G, , which 1is
essentially a Bethe-Salpeter equation for quark-hadronic vertices.
Can this, or should this, give results similar to the constitutent-
interchange model of Blancenbecler, Brodsky, Farrar, and Gunion for
hadron-hadron scattering?

- KLEINERT:

I think you are referring to those rules that apply to rearrange-—
ment collisions. An example of this is electron exchange in molecular
collisions which give rise to the Van der Waals forces. Certainly the
rules given by Brodsky et al. can be rephrased in terms of my ladder
re-summation of scattering graphs.

- POSNER:

Could you please reassure us that the expansion of
log (1 + iGym’) converges?

— KLEINERT:

The convergence has not been studied on rigorous grounds., I
can only assure you that my re-summation will converge better near

thresholds and bound states where normal perturbation theory certainly
fails.

- POSNER:

In your process of functional integration, you first eliminated
the gluons and then the quarks. If you integrate out the fields in
the reverse order, another equivalent theory is obtained, which is
very different in appearance. What is the theory like? 1Is it worth
studying?

— KLEINERT:

If you do it in the other order, you will get what may be called
"plasmonization'. By first integrating out the fermion fields, you
will leave only a dressed photon field, which is now a very complicated
object. Plasmonization occurs by eating up all the fermion degrees of
freedom bubblewise. Although this theory plays an important role in
solid-state physics and in some two-dimensional field theories, e.g.
the Schwinger model, I have not explored it further because it seems
uninteresting for hadron physics.
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DISCUSSION 2

- MARCIANO:

Can we understand how infrared divergences emerge from your
hadronized version of QED? Their role will be very important in
providing confinement in 0CD.

- KLEINERT:
I have not examined the infrared properties of my formalism,
- PHAM QUANG HUNG:

This morning you mentioned the n - 3m problem and the neutron-
proton mass difference. Do you have any idea how to solve these
problems?

- KLEINERT:

For these two problems one usually introduced an explicit
SU(2) breaking term into the quark mass matrix. Taking the d quark
to be 10 MeV heavier than the u-quark yields the correct (m, - mp)
value. This choice also gives the correct 1 = 37 decay rate. 1 do
find this an unsatisfactory procedure, and I hope a more natural
explanation will be found.

- ALVAREZ:

How do you propose to recover the sigma model in the colour
non-Abelian theory?

- KLEINFERT:

The sigma model can be recovered by neglecting the effect of
higher resonances. Within quantum flavour dynamics, the same thing
was achieved by sending u® to infinity. By this trick, quantum
flavour dynamics reduces exactly to the sigma model.

—  FREEDMAN:

One cannot introduce a gluon mass Y due to renormalization re-
quirements. What mass parameter do you plan to use to implement
confinement?
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- KLETNERT:

The only mass parameter available in the colour gauge gluon-—
quark model, other than the quark mass, 1s the infrared cut-off that
one needs to define the Green's functions. Many people believe that
this parameter is related to the momentum cut—off of the quarks in-
side the confinement region.

-  FREFEDMAN:

But this parameter is arbitrary. How can it determine the
hadron masses?

~ KLEINERT:

I think that eventually one will get an infinite family of solu-
tions, and that the infrared cut—off will be fixed by the lowest
hadron mass in the spectrum. All other masses are then determined.

- WILKIE:

Are you going to have difficulties forming Regge poles, which
are long-distance effects in a g > ® limit?

- KLFEINERT:

The pu > o limit of quantum flavour dynamics gives the sigma
model which corresponds to the zero-slope approximation in Regge
theory where all higher-mass states have moved to infinity. I
assume that when colour is introduced and we make contact with the
dual aspect of hadron dynamics, the correct Regge behaviour will
be regained.

- WILKIFE:

Is it obvious in your treatment of the sigma model that the p
is a 7T resonance?

— KLEINERT:

The p appears here as a fundamental field as well as a resonance.
This is similar to the situation encountered in !I/D calculations;
one gets only a narrow contribution to the 0 when treating it as a
pure 7T system. One has to put in an elementary p as well.

— BERLAD:
In performing the functional integration over the gluon field,

there should appear not only ladder exchanges but also crossed lad-
ders. Where do these appear?
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-~ KLEINERT:

This is a point I was trying to explain by showing some examples.
The cross—ladder diagrams can be obtained by topological rearrangements
of ladder diagrams.

- PAULI:

In order to derive the sigma model, the mass of the gluon must
be 2 12 GeV. This would result in point-like hadrons, yet we know
that the hadronic size is roughly the Compton wavelength of the pion.
Could you elaborate?

- KLEINERT:

In this model, mesons are fundamental fields after the large
p-mass limit has been taken. Obviously, the form factor for the
mesons will be point-like. Radiative corrections due to heavy gluons
should broaden the form factor by a small amount only. However,
for this purpose, this is not a realistic model of hadrons.

- VON DARDEL:

What does your model give the for magnetic moments of the bary-
ons? Do small bare quark masses make it difficult to obtain small
enough magnetic moments?

-~ KLEINERT:

No. The magnetic moments are determined by the dynamical quark
masses M = 312 MeV. Hence
1 1
N o x 3
Mo © oM 2ty
becomes thrice the nucleon Bohr magnetic moment, thus coinciding with
the magnetic moment of the proton, as it should.

-  POSNER:

When you consider the three-point hadronic interaction, a mass
relationship involving m’ is obtained. Would you give a physical
explanation of why the four—point function depends only on m', m'?,

and m’ 37
- KLEINERT:

I only took leading order in p = « into account. The higher
powers of m’™ (n 2 4) are lower order corrections. They certainly
exist, but remember: M?/u? is very small (< 1% ).
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- POSNER:

The quantity C’ = Mg/Mp (3 -16%) plays a role in mN and KN
scattering. Please elaborate on its significance in these inter-—
actions.

-  KLEINERT:

In the exact SU(3) x SU(3) symmetry limit, the TN and KN cross-—
sections would be equal, but experiment gives (Ugy — Ogy) = 6 mb.
One would expect this difference in the elastic scattering amplitude,
governed by the Pomeron, to be caused by the breakdown of the symmetry
in the vacuum of the underlying quark dynamics, specifically in the
mass matrix. This is only a rough argument, not a quantitative one.



