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Collective fields are introduced into fermion Lagrangians and graphical rules for a joint treatment of both types of
excitations are derived via Feynman path integrals. For the soluble degenerate-shell model with pairing forces used ini
nuclear and many-body physics the exact collective action is exhibited.

The interplay of collective versus single-particle
modes has recently become the subject of detailed
investigations in the framework of soluble models [1].
Graphical rules for dealing with both types of excita-
tions simultaneously were invented reproducing the
exactly known results. Further it was clarified in which
way the interactions succeed in maintaining Pauli’s
principle in the face of the initial overcompleteness
of the basis.

The purpose of this note is to point out a model
independent access to the same rules via path integral
methods [2] which can easily be generalized to more
complicated systems [3]. Moreover, for simple models,
such methods lead to an explicit specification of all
interactions.

The Lagrangian under consideration consists of
fermions a;rn, b;[n (m=1, ..., Q) with a pairing interac-
tion:

2= 2 1af,() (3, — €)a,, (1) + b} (1) (3, — )b, ()]

+ 27 ab (OB} (0b,,(0a,, (0). Q)

All fermion Green’s functions can be obtained from
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the functional derivatives with respect to the external
sources 1(¢), \(¢) of

Z[nt,n, Xt A] = [ Da' DaDb* Db
X expfi f de[L@) + wha +ATh +hee)] ). Q)

Our goal is the replacement of the action by another
one in which pairing modes described by the compo-
site field %, afn (t)bjn (t) oceur as independent vari-
ables.

For this purpose we first introduce a dependent
field S(z) by rewriting the Lagrangian in the form

2()= %3 {a},(id, — e, +b} (13, — )b,

3)
+ Via), b} SO + ST, a )} — VSt 0)s).

Variation with respect to S(z) displays the desired de-
pendence

sty = 234} 0! (1) )

which upon reinsertion into eq. (3) proves the action
to be unaltered. As a consequence, the generating func-
tional Z of eq. (2) can be calculated with .2 (¢) instead
of L£(¢) if an additional integration over DS* (1)DS(1)

is performed. Introducing two-component notation

for the fermions f); = > Dy )s their sources jj;1

= (n;fM - ), and a matrix
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(ia, —€ VS(®)
vsT ()
this integral takes the form

62l ()= )S(r,r'> )
ST,S(’ ) iat+€

Z(i"./1 = [DriDDSTDS explist—i [VsT(0)S(0)dr}

(6)
with the action:
A= fdtdt’[fT (OIG e, (-
+ (T (O +he) b, )], @)

The integral in the fermion fields f DfT Dris Gaussian
and can be performed after quadratic completion
yielding

Z[i,j1 = [dst s explist[st, 5]

— [ardr' (1) Gyt (2} ®)

where A [ST, §] denotes the resulting collective action:

slst,s] = [ar{-vst@)s@) i (rlogiG Y

©)

Varying #A[ST, S] gives the equation of motion for the
collective excitations:

1 2

—io”.
(10)
By definition (5), Ggt g is the propagator of the fer-

mions in the external field S(¢). Expanding in powers
of 8(¢¥)

Q - , S
S(t)=~ 5 tr(o GSTS(I’ t) fet_gs O =0

GsTs(r’ 1) =Gy(t, ") a1

0 St

+iV fdr"GO(z, t”)( sty o

brings the second term in (9) to the form™

* And dropping an irrelevant constant energy —eS2.

#Multiplication of the matrices Gg(2,¢') is understood also in
the functional sense, i.e. intermediate times have to be inte-
grated over.
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—i fdt (tr log iGS_TIS) (t,t)= —ifdt(tr log iGO_I) (t,1)

n B e o))l o

revealing the (ST.S)" interaction to be due to one-
fermion loops absorbing » collective lines S from the
past and emitting.the same number into the future in
alternative order¥. Notice that fermions appear only
as external sources. By inserting the expansion (11)
also in the source term of (8) we see that an external
fermion may emit and absorb successively an arbitrary
number of collective modes S, ST before leaving the
interaction zone*. There are no fermion loops, all be-
ing contained implicitly in the collective action

ALt S].

The graphical rules stated are in complete agreement
with those found empirically in ref. [1]. It is obvious
that the derivation presented here does not really de-
pend on the specific form of the pairing force but can
be generalized to arbitrary long-range forcest.

Let us now describe the explicit form of #[ST, §].
First we note that the propagator can be written as

0(t—t") 0

Osts 10" U(t)(o —6(t'—1)

)U(r’)-1 (13)

if U(z) is a unitary matrix satisfying
[0, UOI U (5) = eay — V(S,0" —5,0%). (14)

Parametrizing U(¢) in terms of Euler angles exp(iao>/2)
exp(iﬁo2 /2) exp(i703/2) brings (14) to three complex
differential equations*
~Bsina + 7 sin B cos o = =2V, (0
g cosa+ysinpsina= —2VS, () (15)
o +7ycosfB = 2e.

Eliminating the third equation and introducing a field

# The coupling strength is V.

% See ref. [3] for such generalizations in other contexts.

* The solution of eq. (15) corresponds to the kinematic prob-
lem of finding the positions of a rigid body given its angular
velocities.
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é(£) = sin pei® (16)
eq. (15) becomes:
6+ 2iep)V/1 — T 6 = 21iS(p). (17)

Suppose a solution ¢4(z) were known then the equa-
tion of motion (10) would read

S =3 9500). (8)

Differentiating these and inserting (17) yields

S(0) = —2ieS + VS 1/1 . iz stss. (19)
Q

The action «{[S, ST] is highly non-local in S. This
can be illustrated by solving eq. (17) for small §:

14
(1) =2V f e~ Het=g("ar' + . (20)

— o0

such that the lowest order part of the action o , [, ST]
quadratic in the fields ST, §, becomes:

s, [s8T] = [drde’ VST (1) ()5 — 1)
+iV2Q8t ()8t e He =g — 11}
Functional integration of this part in Z renders the bare

propagator for a perturbation theory in the collective
fields S:

QITSOS (£ )Io)

- . 1 —iE(t- 1)
=— i e . 21
Ja v+ V2QE ~26)7
This might be split as

=_._ _ - —iE(t—t’)
o ”*Qon et - (22)

Thus, in addition to a standard propagator of energy
2e — 2V, there appears a contact term. This agrees
exactly with the empirical results of ref. [1].

While the full action is non-local in ST ,Sithasa
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very simple form as a functional of ¢¢(¢). Using
85(1)/6¢(¢") and 5S(£)/5¢7 (+') from (17) and reversing
the functional differentiation leading to (18) one ob-
tains the explicit result:

sloT,¢] = [ dz{
23)
1

) S _ofe
—i%[(¢+2ie¢)¢T _he] YIZ9'e I
¢To

The action #A[S, ST] can now be obtained by solving
eq. (17) successively for higher powers in S, ' and in-
serting the result in eq. (23).

Observe that the static field configuration, ¢(z) =0,
proves to be stable only if v = V€/2e < 1, i.e. for suf-
ficiently small pairing force. Only then does the expan-
sion in powers of S converge justifying the graphical
rules stated above. For stronger pairing force the static
action density

2 -
—Qe(—l LI M 1612 1)_ Qe (24)
V(1

~ 1¢1?)

1 ¢ +2iegl?®

develops a new minimum at |¢> |2 =1—-v" Close to
this minimum, the bare quanta consist of zero-energy
azimuth motions (““‘would-be Goldstone bosons™) and
radial oscillations of energy™® 2e(v — 1), The corres-
ponding rules can be obtained by expanding G st.5° in
eq. (11), or directly the final action (23) around this
mlmmum Certamly, the vacuum expectation value
IS =% Q|q> [=1 1 — v~ 2"can also be obtained
by solv1 ;for constant S, giving S, = 2S0 149
NAE V 18,1“ which is recognized as the standard gap
equation.

A further discussion of the collective Lagrangian will
be presented elsewhere.

The author thanks D.R. Bes, R.A. Broglia, and
M. Feigenbaum for discussions as well as P. Carruthers
and G.B. West for hospitality at Los Alamos Scientific
Laboratory.

* This can also be read off eq. (19).
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