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Abstract
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A general quantum field theory of collective excitations is presented for many-body systems. La-
grangians involving fundamental particles are transformed to collective fields exactly via Feynman
path integrals. Graphically, this amounts toa complete resummationof the perturbationseries without
the danger of double counting. Plasma and pairing effects provide special examples corresponding to
mutually complementary transformations. Bose and Fermi systems can be treated on equal footing.
The methods are illustrated by giving the exact collective Lagrangian for the BCS model and ap-
proximate ones for type II superconductors and 3He.
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I. Introduction

Under convenient circumstances, many-body systems can well be approximated by a
gas of weakly interacting collective excitations. If this happens, it is desirable to replace
the original action involving the fundamental fields (electrons, nucleons, 3He, 4He atoms,
etc.) by another one in which all these excitations appear as explicit independent quan-
tum fields. It will turn out that such replacements can be performed in many different
ways without changing the physical content of the theory. Under certain circumstances
there may be a choice of fields associated with dominant collective excitations dis-
playing weak residual interactions which can be treated perturbatively. In such situations
the collective field language greatly simplifies the description of the physical system.
Consider a system of fermions interacting via a two-body potential which may be genera-
ted by the exchange of some more fundamental particles such as photons or phonons.
It is well-known that, depending on the band structure, two distinet collective modes
will be important: plasma oscillations or pairing vibrations. The first effect is seen if
the exchanged particle generating the potential couples strongly to virtual fermion-
hole states. The second case is observed if the fermions are likely to form two-particle
bound states. Examples are the plasmons in a degenerate electron gas, or the excitons
in a semi- and the Cooper pairs in a super-conductor. Graphically, it is known that one
of the two effects will be dominant depending on whether ring or ladder graphs provide
the main contributions.

It is the purpose of these notes to discuss a simple technique via Feynman path integral
formulas in which the transformation to collective fields amounts to mere changes of
integration variables in functional integrals. After the transformation, the path for-
mulation will again be discarded. The resulting field theory is quantized in the standard
fashion and the fundamental quanta directly describe the collective excitations.

For systems showing plasma type of excitations, a real field depending on one space
and time variable is most convenient to describe all physics. For the opposite situation in
which dominant bound states are formed, a complex field depending on two space and
one or two time coordinates will render the more economic description. Such fields will
be called bilocal. If the potential becomes extremely short range, the bilocal field de-
generates into a local field. In the latter case a classical approximation to the action of a
superconducting electron system has been known for some time: the Ginzburg-Landau
equation. The complete bilocal theory has been studied in elementary-particle physics
where it plays a role in the transition from inobservable quark to observable hadron
fields.

The change of integration variables in path integrals will be shown to correspond to an
exact resummation of the perturbation series thereby accounting for phenomena which
cannot be described perturbatively. The path formulation has the great advantage of
translating all quantum effects among the fundamental particles completely into the
field language of collective excitations. All radiative corrections may be computed
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using only propagators and interaction vertices of the collective fields. The method
presented here is particularly powerful when a system is in a region where several collec-
tive effects become simultaneously important. An example is the electron gas at lower
density where ladder graphs gain increasing importance with respect to ring graphs
thus mixing plasma and pair effects. In *He pair effects are dominant but plasma effects
provide strong corrections.

We shall illustrate the functional approach by discussing first conventional systems
such as electron gas, superconductor and 3He. After this, we investigate soluble models
in order to understand precisely the mechanism of the functional field transformations
as well as the relation between the Hilbert spaces generated once from fundamental
and once from collective quantum fields.

II1. Path integrals

II.1. The Functional Formulas for Vacuum Amplitudes

Consider the general case of many-body system described by an action

& = fd% diy (@, t) (16, — e(—V)) y(x, ) — —;— fd?’x dt d3x’ dt'p+(a’, t') pt(a, t)
X VX, t;2't) px, t) p@', ) = oy + A, (2.1)
with a translationally invariant two-body potential
Vie, t;2',¢) = V(e —a',t —t). (2.2)
In many physically important cases the potential is, in addition, instantaneous in time
Vie,t; 2, ¢y =0t —t') V(e — x')

allowing for great simplifications of later results. The fundamental field (x) may des-
cribe bosons or fermions. The full solution of the theory amounts to the determination
of all Green’s functions in the Heisenberg picture:

G(arky, ...y Byl s Bty ooy Tyety) = <O| T(V’H(witl) tot Yy (@atn) Yut @ty 'PH(ml’tl’))l 0).
(2.3)

It is convenient to view all these Green’s functions as derivatives of the generating
functional

Zln*, ) = (0T exp {i [ d3x dt{y+(at) nieet) + o+(at) p(xt))} |0) (2.4)
namely
G(®@, by, ooy Xty s Xprly, ...y x2p7ky)
0" Zn*, n]
St (@aty) .t Ot (@aty) O(@ptyr) -+ Oyp(®yrty) [y yimo

— (—i)"“’”’

(2.5)

Physically, the generating functional describes the amplitude that the vacuum will
remain a vacuum in spite of the presence of external sources.

The calculation of these Green’s functions is usually performed in the interaction pic-
ture which can be summarized by the operator expression for Z:

Zlnt, n] = N (0] T exp {isdinlvt, ] + 7 [ &z de{y+(®t) p(at) + h.c.)}|0).  (2.6)

43*
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Here the fields y possess free-field propagators and the normalization constant N is
determined by the condition (which is trivially true for (2.4)):

Z[0,0] = 1. 2.7)

The standard perturbation theory is obtained by expanding exp (i2/in) of (2.6) in a
power series and bringing the resulting expressions to normal order via Wick’s expansion
technique. The perturbation expansion of (2.6) often serves conveniently to define an
interacting theory. Every term can be pictured graphically and has a physical inter-
pretation as a virtual process.

Unfortunately, the perturbation series up to a certain order in the coupling constant is
unable to describe many important physical phenomena, for example bound states in
the vacuum and collective excitations in many-body systems. Those require the sum-
mation of infinite subsets of diagrams to all orders. In many situations it is well-known
which subsets have to be taken in order to account approximately for specific effects.
What is not so clear is how such lowest approximations can be improved in a systematic
manner. The point is that as soon as a selective summation is performed, the original
coupling constant has lost its meaning as an organizer of the expansion and there is
need for a new systematics of diagrams. Such a systematics will be presented in what
follows. '

As soon as bound states or collective excitations are formed, it is very suggestive to
use them as new quantum fields rather than the original fundamental particles . The
goal would then be to rewrite the expression (2.6) for Z[#+*, 5] in terms of new fields whose
unperturbed propagator has the free energy spectrum of the bound states or collective
excitations and whose &7, describes their mutual interactions. In the operator form
(2.6), however, such changes of fields are hard to conceive.

A much more flexible description of the quantum physics contained in the functional
Z[n*, 7] is offered by Feynman’s path integral formulas [, 2]. There, changes of fields
amount to changes of integration variables. Feynman’s formula is based on the obser-
vation that the amplitudes of diffraction phenomena of light are obtained by summing
over the individual amplitudes for all paths the light could possibly have taken, each of
them being a pure phase depending only on the action of the light particle along the path.
In the general field system (2.1), this principle leads to the alternative formula for the
amplitude, Z[n*, 7], that the vacuum goes over into the vacuum in the presence of
external sources:

Zyt, y) = N [ Dy*(x, t) Dy(x, ¢) exp {ist [y, p) + [ B di(y*(x, t) n(e, t) + h.c.)}.
(2.8)

Notice that the field y in this formulation is'a complex number and nof an operator. All
quantum fluctuations are accounted for by the fact that the path integral includes also
the classically forbidden paths, i.e. all those which do not run through the valley of
extremal action in the exponent. -

The integral may conveniently be defined by grating the space-time into finer and finer
cubic lattices of size § with corners at (x, v, z, t) = (31, %, ¥3, t4) 8, introducing fields at
each such points,

Visiaiai, — ’l’(xip Yios Riys ti,) VSUI, (2.9)
and performing the product of all the integrals at each lattice point, i.e.
dwl . . Ay
fDQ/ﬁ-(wt) Dw(wt) — H y)’h’tn’tsu- WYi'is 45" (2.10)
iliziSi.t’ l/27l’L 1/27'6%

Z‘l'ig'isllg
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where the double integral over complex variables f f dy* dy stands symbolic for the

+
real integrals f f (1/’ v ) ( 7 7 ) This naive definition of path integration is
21

straightforward for Bose fields. A slight complication arises in the case of Fermi fields.
Here the fields must be taken as anticommuting c-numbers?).

All results to be derived later will make us of only one simple class of integrals which are
the generalization [2] of the elementary (Gaussian (or Fresnel) formula for 4 > 0:

oo dE (i ‘- ) ,
——exp|— £AE) = A-12, 2.11)
f ]/2:757,' P 2 (

First, one considers a multidimensional real space (&4, ..., &, ...) in which clearly
f 7= exp > ka,,gk) — [ 4] 2.12)
) k

Now if A4,, is an arbitrary symmetric positive matrix, and the exponent has the form

12 kZ‘ &p A&y, an orthogonal transformation can be used to bring 4,, to diagonal form
N

without changing the maesure of integration. Thus an equation like (2.12) is still valid
with the right-hand side denoting the product of eigenvalues of A4,;. This can also be
written as

fHV leXP E Zz‘ §kAkl§z) = [det A}1/2, (2.13)
27

If, more generally, £ is complex and 4 hermitian and positive, the result (2.13) follows
separately for the real and for the imaginary part yielding

f]] e’ exp (z 3 &t A“.E,) — [det A]L. (2.14)
]/27n ]/271@ .1

If the integrals are performed over anticommuting real or complex variables & or £*, &,

the right-hand sides of formulas (2.13) and (2.14) appearin inverse form, i.e. as [det A]'/2,

[det A* respectively. This is immediately seen in the complex case. After bringing

the matrix A, to diagonal form via a unitary transformation, the integral reads

g, dé, s " dEy* dEn
—_— / n An>n — e o—
f1 V2ni V2ni P (22 S ) i / V271 V20

Expanding the exponentials into a power series leaves only the first two terms since
(£n*ém)? = 0. Thus the integral becomes

= exp(té,,t Anéy) . (2.15)

d&, +d& ] .
——=— (1 + i€ A pdn). (2.16)
]/an ]/2m
1) Such objects form a Grassmann algebra G. If &, £ are real elements of G, then £& = —&’E such that

&2 = 0. If £ is complex € @G, then (§¥£)? = 0.
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But each of these integrals can immediately be performed using the very simple inte-
gration rules of Grassmann algebras?)

—d;é_j:ﬂ; ——dg—_ﬁ‘:l; fﬂif": , n>1 (2.17)
]/Qm ]/271:1 N ]/m

for real & and

dé+ + o dE dé&+ d

e de 0 (A8 4 ey, [EL L (e -0, w1
V2ri Y2mi V2xi Y20 V2ai V20

for complex &+, £. As a consequence, the right-hand side of (216) becomes the product

of eigenvalues 4,, (apart from an irrelevant factor)

[T Ay = [det A1

which is exactly the inverse of the boson result (2.14). The case of real Fermi fields is
slightly more involved since now the hermitian matrix A, can no longer be diagonalized

by unitary transformations (i.e. without changing the measure of integration [ [ d&,, ]/Q;z_i).
m

The integral can be done after observing that A, may always be assumed to be anti-
symmetric. For if there was any symmetric part, it would cancel in the quadratic form

3 &4, due to the anticommutativity of the Grassmann variables. But an antisymmet-
Kl
ric hermitian matrix can always be written as A = iAgp where Ap is real antisymmetric.

Such a matrix is a standard metric in symplectic spaces and can be brought to a canonical
form € which is zero except for 2 2 matrices C' = 702 along the diagonal. Thus
44 — —TTCT. The matrix —C has unit determinant such that det T = det!/2(74).
Let Ekl = Tklfls thenz) nd&k == (det T) dek’.

k k

Hence, the integral can be evaluated using (2.17):

d m - dé:m, ’ ’
f[[ iexp (%2 EkAszz) = (det 7' fﬁ = €Xp (_2 &' Cuéy )
m V21 k.l : m o4} Kl

V2
= (:det 1A)\2 [a}f

dsq A&5nin
V22 2

Again, the result is the inverse of the boson case (2.13).

In order to apply these formulas to fields p(x, f) defined on continuous space-time both
formulas have to be written in such a way that the limit of infinitely fine lattice grating
8 — 0 can be performed with no problem. For this one remembers the useful matrix
identity

(1 + S;'ﬂ"‘lféﬂ) = (det 7'A)1/2.

[det A]F! = exp [i(41 tr log A)] (2.18)

where log A may be expanded in the standard fashion as
i 1
logA =log(l + (4 — D)= =2 [—(4 — D" —. (2.19)
n==1 ’

2) Notice that these rules make the integral sign an unusual way of denoting the operation of
differentiation: For a real Grassmann element &, a function F(£) has only two terms in an expan-

sion: F(§) = F, + F'E. F’ is defined as derivative F' = djdSF(E). But: de F(& = F’ from
274
(2.17)! For this reason, changes in the integration variable do not transform with the Jacobian

but with its inverse: | d&f}2ai = a | d(af)/}2xit
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This formula reduces the calculation of the determinant to a series of matrix multi-

plications. But in each of these the limit § — O is straight-forward. One simply replaces
all sums over lattice indices by integrals over d3x di, for instance

tr 42 = 3 Ay Ay = [ dPedid® di' Aat, 2't') A@'t', wl). (2.20)
kl

With this in mind, the field versions of (2.13) and (2.14) amount to the following func-
tional formulas:

[ Dy (xt) exp [% fd3:c dt d3x" dt’¢(xt) A(xt, 2't") gn(ac’t’)] == exp [i (j:—— tr ]og 1 } A)}

2.21)

[%

J Dyr(eet) Dy(aet) exp [i [ do di d3a’ dt'y*(et) A(at, @', ") p(a', t')] = exp [{(47 tr log 4)].

‘Here ¢, p are arbitrary real and complex fields, with the upper sign holding for bosons,
the lower for fermions. Notice that the same result is true if ¢, ¢ have several, say spin,
components and A4 is a matrix in the corresponding space.

Finally, we may include an external source for the fields ¢, v into the integral and solve
by quadratic completion. In the elementary forms, (2.12), (2.14) one has for bosons
as well as fermions (dropping produet and summation symbols):

hdw(w+@ me[

d&+dé

1/2712 Vum

derds
‘ﬁ/wmthﬁpm“+7A”A“+A7*’”A7L

Lo ~

@+MUE+A%*%Mﬂ

exp (PE+AE + ij+E -+ &)

The shift in the integral & -» & -+ 4-1¢ gives no change due to the infinite range of
integration such that

7 | . T
f e (6 ) = 47 )
dede
Ve Vout

A corresponding operation on the functional formula (2.21) leads to the generalized
form:

exp (1A + ijtE + i§h)) = AT exp (—1jrA7Y).

[])(p(.t, tyexp {% fd"x dt d3x’ dt' [p(aet) A(xt, 'ty p(x't") + 27 (xt) p(aet) 6% — x't) 6(1 — t’)]}

&

— exp {z (:1: % tr log { 11 }A) — © [ dxdide di'jlat) AN at, 'F) j(:v’t’)} (2.244)
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ot

f Dyt(ax, t) Dy(x, t)
X exp {-ifd“x dt d3a’ di' [y*(axt) Aaet, 'ty p(@'t’) 4 (i (aot) p(aet) 6% — &) ot — £y + h.c.)]}
= exp [¢(+7 trlog A) — if d3x dt d3x’ din*(xt) A2 (xt, 2't") n(xE't)]- (2.24Db)

This form collects all information about functional integration necessary for the under-
standing of the remainder of these lectures.

11.2. Equivalence of Functionals and Operators

As an exercise we shall apply (2.24) to present a simple proof of the equivalence of
Feynman’s path integral formula (2.8) and the operator version (2.6). First we notice
that the interaction can be taken outside the integral or the vacuum expectation value
in either formula as

16 1 6
+ _— ), . _—— — + 2_‘
Zn*, n] = exp {zﬂmt [Z il 57/*]} Zo[nt, n} (2.25)

where Z, is the generating functional for the free fields. Thus in egn. (2.8) there is only
o, of (2.1) in the exponent. Since

o[yt pl = [ dediy*(at) (10, — e(—1V)) p(aet) (2.26)
the functional integral is of the type (2.24) with a matrix
Afwet, x't') = (16, — e(—V)) 6® (@ — &") 8¢t — ') (2.27)
This matrix is the inverse of the free propagator

A(axt, 'ty = Gy Y (xt, x't") (2.28)

where

| dEd? .
Golowt, 21’ = f_(2_n)4£ exp [ 3{B(t — ) — ple — 2|

Inserting this into (2.24b), we see
Zolnt, n] = N exp [i(ii tr log 1Gy™1) — f d3x dt d3x’ dit' s (aet) Golxet, x't') n(w't')]
= exp |— [ ddzdtd3x’ dt'n*(xt) Golet, x't') n(®'t)] (2.30)

where N has been chosen according to the normalization (2.7).

But this result coincides exactly with what one would obtain from the operator expres-
sion (2.6) for Z,[n+, 5] (i.e. without &/in): According to Wick’s theorem [2], any time
ordered product can be expanded as a sum of normal products with all possible con-
tractions taken via Feynman propagators. The formula for an arbitrary functional
of free fields y, yp* is

. 0 0
+ ;Y . 3 ’ ’ 7 gyt
TF[yt, p] = exp [fd xdtd3x’ di Spah Golaet, x't") —_6w+(w’t’)]

Fly*, vl . (2.31)
Applying this to

(O] TFy+, 9]0y = (0] T exp i [ de dity™n + n*y)] 10)
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one finds:
Zoln, n) = exp [— [ dw dt do’ dt'y(aet) Golt, 2't') 5(@'V)]

(0] :exp [¢ [ da di(ypry + qty)]: 0). (2.32)

But the second factor equals one, proving the equality of this Z, with the path integral
result (2.30) (which holds for the full Z[5*, 5] because of (2.25)).

I11.3. Grand Canonical Ensembles at T = 0

All these results are easily generalized from vacuum expectation values to thermo-
dynamic averages at fixed temperature 7' and chemical potential u. The change at
T = 0 is trivial: The single particle energies in the action (2.1) have to be replaced

by
E(—W) = e(—V) — p (2.33)

and new boundary conditions have to be imposed upon all Green’s functions via an
appropriate iz prescription in Gy(xt, &'ty of (2.29):3) [3]

dEd3p )

By PR O iple = ) e e )
(2.34)

T=0G,(xt, X't") :f

In order to simplify the notation we shall sometimes employ four-vectors p = (p°, p)
and write the Green’s function as

)

p® — E(p) + i sgn &(p)’

T=9G (@t ') = X exp[—ip(x — 2')]
4

The resulting formulas for 7=%Z[»*, 5] can be brought to conventional form by perfor-
ming a Wick rotation in the complex energy plane in all energy integrals (2.34) implied
by the formulae (2.32) and (2.6). For this, one sets £ = —p% = 1w and replaces

27 PO

— a0 — 30
Thus the Green’s function becomes

dwd? , ) , 1
=00, (xt, ¥'t') — — _(L;—n)%-)- exp [w(t —t') 4 iplx — x")] m (2.36)

With this Green’s function, formulas (2.30), (2.25) for T=%Z{#*, 5] coincide exactly with
the grand-canonical partition function in the presence of sources [3].

QT =0, p, V) =T=2[y*, 1] (2.37)

3) In this way, fermions with £ < 0 inside the Fermi sea propagate backwards in time. Bosons, on the
other hand, have in general £ > 0 and, hence, always propagate forward in time.
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I1.4. General Grand Canonical Ensembles at 7" =+ 0

The generalization to arbitrary temperature is finally achieved by imposing the boun-
dary condition on Gy(axt, 2't'), and thus, by virtue of (2.25), (2.30) on all Green’s func-
tions [3], to be periodic or anti-periodic with period 1/7" after the analytic continuation
to imaginary time ¢ = —r via the Wick rotation:

1
(, (a‘ —t (r + T); ', —irl) = +TGy(, —i7; X', —77). (2.38)

The plus sign holds for bosons, the minus sign for fermions. This property is enforced

automatically by replacing the energy integrations f dw/2x in (2.36) by a summa-
tion over the discrete Matsubara frequencies —o0

oC
de

— =T} ="T) (2.39)
2n i ”

i

— o0

which are even or odd multiples of zT'?)

n
w, —al2 14 for { hosons } (2.40)
n + 3 fermions
Thus: :
P, w'r) = —T 5 [ AL exp[ i )il 2 —— . (241)
oler, X't") = :: e exp|[—iw,(rt — 7') P o Ep) 2.

Also in the case of T' == 0 ensembles, the notation is simplified by the use of four-vectors.
One writes

= (1w, P)
x = (—1t, &) (2.42)
pr = wt — Ppx
and collect integral and sum in kEqn. (2.41) under one four-summation symbol.

1

S — (2.43)
i — &(p)

TGo(x — a')= —" X exp[—ip(x — )]
f2]

It is quite straightforward to make the general T = 0 Green’s function emerge from
a path integral formulation analogous to (2.8). For this one considers fields (2, 7)
with the periodicity or anti-periodicity

1
ple, 1) = +vy (SL‘, T+ ;P—) (2.44)
They can be Fourier decomposed as

p, ) =T Y X exp (—iw,7 + ipx) alw,, p)="2 exp (—ipx) a(p)  (2.45)
»

wp, P

1) Throughout these lectures we shall use natural units sucht that kp=1,k=1.



Collective Quantum Fields 57D
with a sum over even or odd Matsubara frequencies w,.
If now a free action is defined as
1/2T
Aoyt 9l = —i [ dr [ By, ) (—8, — E(—V)) pla, 7) (2.47)
—1f27
formula (2.24) renders [1, 4, 5]
1/2T
TZol1*, n] = exp [:F trlog 4 + ff drdt’ fcl“x d3x'y+ (er) A (T, 2't") 77(;1?’1')] (2.48)
~1ar
with
AQer, x't') = (8, + &(—1V)) 6¥(@ — ') 6(v — ) (2.49)

and henceforth 4-! equal to the propagator (2.41), the Matsubara frequencies arising
due to the finite 7 interval of Euclidean space together with the periodic boundary
condition (2.44).

Again, interactions are taken care of by multiplying TZ[#*#] with the factor (2.25).
In terms of the fields y(x, 7), the exponent has the form:

1/2T
1
KA > fd'c dr’ [d"x A3y, ) (@', )y, ) pla, ) Vie, &', —ir, —i7').
Tl T (2.50)

In the case of an instantaneous potential (2.2), the potential becomes instantaneous in 7:
Ve, &', —ir, —it') = V(e — &) i(r — 1'). (2.51)
In this case 27,y can be written in terms of the interaction Hamiltonian as
1/2T
A it = Z-fdtlyint(‘r)' (2'52)
—1727

Thus the grand canonical partition function in the presence of external sources may
be calculated from the path integral [4, 5]:

Qp, T, V) 7, n) = TZ[n*, 7]

1/2T
= [ Dy*(x, 7) Dy(x, 7) exp [ﬂd+ [ dr [ dx{yp+(er) n(er) + h.c.)]

—1jeT
(2.53)
where the grand-canonical action is
/2T o aper
iT.ﬂ’[w+, 1/)] = —[drfdaxw+(wr) (5‘[ + 5(‘—“7/17)) 'l/)(w'[) + —;‘ffdr dT,
—1j2T 2T

X fd’*x d3x"y* (@) pH(E't’) p@'t') pler) Ve, &', —ir, —ir’). (2.54)

It is this formulation for £ which offers the advantageous flexibility with respect
to changes in the field variables for arbitrary grand-canonical ensembles.

Summarizing we have seen that the functional (2.53) defines the most general type of
theory involving two-body forces. It contains all information on the physical system
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in the vacuum as well as in thermodynamic ensembles. The vacuum theory is obtained
by setting 7' = 0, u = 0, and continuing the result back from 7' to physical times.
Conversely, the functional (2.8) in the vacuum can be generalized to ensembles in the
straight-forward manner by first continuing the time ¢ to imaginary values —ir via
a Wick rotation in all energy integrals and then going to periodic functions in 7.

There is a complete correspondence between either formulation (2.8) and (2.53). For
this reason it will be sufficient to exhibit all techniques only in one version for which
we shall choose (2.8). It should, however, be pointed out that due to the singular nature
of the propagators (2.29) in real energy-momentum a proper definition of the theory
in the vacuum via path integrals always has to take place in the thermodynamic for-
mulation. This has to be kept in mind when performing the path integral manipulations
in the following sections.

II1. Plasmons

Let us give a first application of the functional method by transforming the grand
partition function (2.41) to plasmon coordinates.

For this, we make the basic observation based on formula (2.24a) that an interaction
(2.1) in the generating functional can always be rewritten in terms of a functional
integral involving a new auxiliary field ¢(x) as®) [6]

exp[—% [ dzda'y () p (@) pia') pla) Vi, x’)]
= eonst.j D¢ exp {% f dedx'[@(x) V-, 2") p(x') — 2¢(x) pH() p(x) d(x — x')]} (3.1)

where the constant is simply const. = [det V]-1/2. Absorbing this constant in the nor-
malization factor N, the grand-canonical partition function Q = Z becomes

Zln*,n] = [ Dy*DyDg exp [if + 0 [ da(i (@) p(x) + v+ () n(=))] (3.2)
where the new action is

& [yrye]
1
= fdxdx'le*(x) (10, — &(—) — p@)) 8@ — o) p(’) + 5 @) V-1(x, ') qo(x’)}.
(3.3)

Notice that the effect of using formula (3.1) in the generating functional amounts to
the addition of the complete square in ¢ in the exponent:

1
5 [ dede(p@) — [ dyV(z, y) v () p(@) V(@ ) (p@) — [y V', o) v () py)

together with the additonal integration over Dg. This procedure of going from (2.1) to
(3.3) is probably simpler mnemonically than formula (3.1). The fact that the functional
Z remains unchanged by this addition follows, as before, since the integral Dg produces
only the irrelevant constant [det V]2,

%) We shall write in future 2 = (@, ), da = d% dt, 5(x) = 63%(x) &(¢). The symbol V—1(x, 2") denotes the
functional matrix inverse of the matrix V(x, '), i.e. f dz’ V- (z, 2') V{z', 2”") = S{ax — x”').
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The physical significance of the new field ¢(z) is easy to understand: @(x) is directly
related to the particle density. At the classical level this is seen immediately by extre-
mizing the action (3.3) with respect to variations dg(x):

bt
Sota) — &) [ dyVix, y) v) ply) = 0. (3.4)

Quantum mechanically, there will be fluctuations around the equalities (3.4) and
(3.6), making the Green’s functions of ¢(x) and of the composite operator f dyV(z, y)
X y*(y) w(y) different. But due to the Gaussian nature of the D¢ integration, the fluc-
tuations are quite simple. One can easily show that, for example, the propagators of
either field differ only by the direct interaction, i.e.

(Tg@) @) = Ve — &) + (D(f dyV @, y) v ) vw) ([dy' V', ) vHy) p))-
(3.5)

For the proof, the reader is referred to Appendix B. ,

Notice, that for a potential V' which is dominantly caused by a single fundamental-

particle exchange, the field ¢(x) coincides with the field of this particle:

if, for example, V(z, %) represents the Coulomb interaction

v <
. N - t — ’
(') = g 0~ 1)
equ. (3.4) amounts to
4re? .
@, t) = — g VT e o) (3.6)

revealing the auxiliary field as the electric potential.
If the particles y(x) have spin indices, the potential will, in this example, be thought
of as spin conserving at every vertex and equ. (3.4) must be read as spin contracted:
p(x) = f dyV(x, y) v+ (y) ya(y). This restriction is just for convenience and can easily
be lifted later. Nothing in our procedure depends on this particular property of ¥V
and ¢. In fact, V could arise from the exchange of many different fundamental particles
and their multiparticle configurations (for example n, @z, o, g, ect. in nuclei) such
that the spin dependence is the rule rather than the exception.
The important point is now that the auxiliary field ¢(x) can be made the only field of
the theory by integrating out ¢+, y in the formula (3.2), using formula (2.24). Thus
one obtains

At ] = Qv+, n] = Neto/ (3.7)

where the new action is

A[p] = L7 trlog (7G,~1) + —;— fd:c doe'g(x) Vi, ') ')

+ 7 f dx da'nt(x) G (x, ') n(x') (3.8)

with G, being the Green’s function of the fundamental particles in an external classical
field g(x):

(16 — &(—V) — @(2)) Gy, &) = 1d(x — 2'). (3.9)
The field g(x) is called a plasmon field. The new plasmon action can easily be inter-
preted graphically. For this, one expands G, in powers of ¢

Gylz, ') = Gole — 2') — ¢ f do,Go(x — ;) @(x)) Gylxy — ') + -+ (3.10)
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Hence the couplings to the external currents #*, % in (3.8) amount to radiating one,
two, etc. ¢ fields from every external line of fundamental particles (see Fig. Ia). An
expansion of the tr log expression in ¢ gives

+itrlog (1G,"1) = 4-itrlog (1G4™1) 47 trlog (1 + Gop)

= +1itrlog (1G,Y) F itrf (—1Gop) (3.11)

n I
n=1 n
The first term leads to an irrelevant multiplicative factor in (3.7). The »'™® term corres-
ponds to a loop of the original fundamental particle emitting » ¢ lines (see Fig. 1b).

—1
=1 ¢ |
———— . + + +a-n Fig. 1a

‘——O & M i‘“‘"*‘.\—q +... Fig. Tb

Fig. Ya). This diagram displays the last, pure current, piece of the collectivé action (3.8). The original fundamental particle
(fat line) can enter and leave the diagrams only via external currents, emitting an arbitrary number of plasmons
(wiggly lines) on its way

Fig. 1b). The non-polynomial self-interaction terms of the plasmons arising from the tr log in (3.8) are equal to the single
loop diagrams emitting » plasmons

Let us now use the action (3.8) to construct a quantum field theory of plasmons. For
this we may include the quadratic term

gt (Goqa)z%- (3.12)

into the free part of ¢ in (3.8) and treat the remainder perturbatively. The free propa-
gator of the plasmon becomes
T
T ' = G (x — z') = ). 3.13
(0] Tp(a) gla) [0} = 6%z — 2) = Jr—ga—rr (&%) (3.13)

Here |0} denotes the vacuum of the free plasmon field and G A G, is a matrix including
the trace over (2s - 1) spin indices: ‘

Gy A Gy) (, 7)) = (25 + 1) Golzr, &) Gole', @).

This corresponds to an inclusion into the V propagator of all ring graphs (see Fig. II).

Fig. II. The free plasmon propagator contains an infinite sequence of single loop corrections (‘“‘bubblewise summation’”)

It is worth pointing out that the propagator in momentum space ;@*!(k) contains actual-
ly two important physical informations. From the derivation at fixed temperature it
appears in the transformed action (3.8) as a function of discrete Euclidean frequencies
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v, = nT2nr only. Inthis way it serves for the time independent fixed 7' description of
the system. The calculation (3.13), however, renders it as a function in the whole complex
energy plane. It is this function which determines the time dependent collective pheno-
mena for real times.5)

With the propagator (3.13) and the interactions given by (3.11), the original theory of
fundamental fields ¢*, p has been transformed into a theory of ¢ fields whose bare
propagator accounts for the original potential which has absorbed ringwise an infinite
sequence of fundamental loops.

This transformation is exact. Nothing in our procedure depends on the statistics of
the fundamental particles nor on the shape of the potential. Such properties are impor-
tant when it comes to solving the theory perturbatively. Only under appropriate phy-
sical circumstances will the field ¢ represent important collective excitations with
weak residual interactions. It is then that the new formulation is of great use in under-
standing the dynamics of the system.

As an illustration consider a dilute fermion gas of very low terhperature. Then the func-
tion &(—1V) is e(— V) — u with ¢(—iV) = —V?3/2m.

Let the potential be translationally invariant and instantaneous

Vi, o) =t — ) Vie — ). (3.14)

Then plasmon propagator (3.13) reads in momentum space

. 1
pl £) — N
GPY(v, k) (V(k)) T (3.15)
where the single electron loop is?)
Ay, k) =2 7Y L ! (3.16)
B , p? . (p + k) -

zww%+uz((1)+'v)— —+ u

2m

The frequencies » and » are odd and even multiples of 7. The sum is caleulated in
the standard fashion by introducing a convergence factor ei“” and rewriting

d3p 1
av, kY = 2 -
7 B) f @7 Ep F R —Ep) —

X T 3 eioan ( ! S ) (3.17)

Wy %(wn + V) — E(p + k) 0y — 5(1’)

via the basic formula®)

. T 1 1 1
T 5 o - - f e . — — Fa(p)

on 1y — ez/T +1lz—= efP 1 esP)-6 T 1
\T (3.18)

‘frr

|
+ :

¢) See the discussion in Ch. 9 of the last of [3] and G. Baym and N. D. MErwmIN, J. Math. Phys. 2,
232 (1961).

?) The factor 2 stems from the trace over the electron spin.

#) This formula is written for bosons and fermions, only the lower sign applying in the present case.
The contour encireles all Matsubara frequencies along the imaginary 2z axis.
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as
Pp  n(p + k) — n(p)
(27)3 e(p + k) — e(p) — o

n(v, k) = 2 (3.19)

If one performs a long wavelength, small frequency expansion of one finds for 7' ~ 0:

A, k) ~ —2PE (1 _ g . arc tan oY) (3.20)

72

where pp denotes the Fermi momentum and p the ratio p = mv/py|k|?).
The analytic continuation to physical energies k, = v yields, with § = mk/prlk| = d0:

Dr 0+ 1 2 B
(ko ) = —‘n—(l —31 gIQ —| — i3 lel 6(1 — IQI))- (3.21)

The real poles of G*' determine the elementary excitations. Suppose (V(k))‘l has a
long-wavelength expansion

(V(k))_l — (V(O))—l + ak?® + --- (3.22)

Then there are real poles at energies ky for which

1 2 mpF( __Q_ é+1 %
(V(O) + ak?® + ' = \1 5 lo glé — (3.23)

as long as (V(O))‘1 is finite and positive, i.e. for a well behaved overall repulsive potential
( f 3z V(x) > O) The value §, for which (3.23) is fulfilled at kK = 0 determines
the Zero-bound velocity ¢, according to

m kg 1
. B 3.24
T TR ( )

o

In the neighbourhood of the pole the propagator has the form

k|

Gk, k) ~ . i,
(kos k) cons T

(3.25)

The case of an electron gas has to be discussed separately since the potential is not
well behaved:

62

such that
k2
(Vi) = - (3.27)

Hence, (3.23) has to be solved for (V(O))—1 = 0 and @ = 1/4x=¢? Obviously, ¢ has to go
to infinity as k — 0. In this limit
5 3 L2
kg, k) — i%— _pr k (3.28)

n? 3n2m ko?

%) For a discussion of this expression, see a standard textbook, for example Ref. [3].
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and there is a pole at energy*)

3
Ja n

ko = 4dme? L =— = 4me? —
em m

which is the well-known plasmon frequency. Thus the long-range part of the propagator
can be written as
ko2 7
_2 .
Byt — dmer
m

GV (ky, k) ~ dne? (3.29)

Using the plasmon propagator (3.15) and the multi-plasmon interactions from (3.11)
one can develop a fully fledged quantum field theory of plasmons.

Great simplications arise if the system is investigated only with respect to its long-
range behaviour in space and time. Then expressions like (3.25) and (3.29) become good
approximations to the propagator. Moreover, the higher terms in the expansion (3.11)
become more and more irrelevant due to their increasing field dimensionality. Such
discussions are standard and will not be repeated her [7].

IV, Pairs

IV.1. General Formulation

There is a collective field complimentary to the plasmon field which describes dominant
collective excitations in many systems such as type II superconductors, 3He, excitonic in-
sulators, ete. A pair field A (at, 2't') with two space and two time indices, called bilocal,
is introduced into the generating functional by rewriting the exponential of the inter-
action (2.8) different from (3.1) as!?) [&]

exp [—% J dwda'y* (@) (') (') p(a) Viz, x')]

= const.fDA (x, ') DAt (2, x")

) 1
X exp [% f dxdx'{m(x, gy — A ) ¥ v — yr@ v ) A, x)}]
(4.1)

Hence the grand-canonical potential becomes

Zy, yt] = f Dy+DyDA*DA exp {i&e/[qﬁ, yp, At A+ 2 f dx(yﬁf(x) 7n(x) + h.c.)} (4.2)
with an action

1
Ay, p, 45, 4] = fdx dx’ {1/)(96) (18, — &(—)) 6(x — @) (') — 5 At 2) p(@) ()

1 1 1
— = yH(a) (@’ N+ = "2 . 4.3
*} n is the number density: » = 2 {2::5 T — pp®/3n2.

1) On the right hand side, 1/V(z, z’) is understood as numeric division, no matrix inversion being
implied. The hermitian conjugate of A(x, ") includes the transpose in the functional sense, i.e.
Az, &') = [A(x, x)TH.

44 Zeitschrift ,Fortschritte der Physik®“, Heft 11/12
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Notice that this new action arises from the original one in (2.8) by adding the complete
square /2 f de dx’ |A(x, ') — Via',2) p') p)]| 1/V(2', ) which is irrelevant upon
functional integration over f DA+DA but has the virtue of removing the quartic interac-
tion term.

At the classical level, the field A(z’, x) is nothing but a convenient abbreviation for the
composite field V(xz, #') y(x) p(z'). This follows from the equation of motion obtained
by extremizing the new action with respect to é4+(x, 2’):

oot
M+, ') 2V (x, x')

(A (x', ) — Vi, ) p(x) t,u(x’)) = 0. 4.4)

Quantum mechanically, there are again Gaussian fluctuations which are discussed in

Appendix B.

The expression (4.3) is quadratic in the fundamental fields v and can be rewritten in
matrix form as

1
5 F @) A ) @)

(16, — &(—W)) bl — ') —Alz, 2)

— At (a, @) (i, + £0F)) S — x')) fley @)

— 5|

where f(x) denotes the fundamental field doublet f(x) = :)fa)))
Now f(x) is not independent of f+(x) such that f*Af can also be written as

01
+4f = T )
frAf = f ( ] O) Af
Therefore, the rule (2.24a) applies in the real field version giving

Zln, nt] = NfDA+ DA exp (id[zﬁ, 4] — %fdx dx'j+(x) G 4(z, «') ?'(x’)«} (4.6)

where j(x) = ( n(®) ), with the collective action
(%)

A4, A] = +-L trlog (1G i, @) + — [ do da'|Aw, )2 (4.7
2 2

Vie, z')
and G, denoting the propagator 74! satisfying

 ((i0— §(—W)) b — =) —A(, 2") o ,
fdx (—A+(x, 2’ F(eo, + @) oo — x”)) Gala”, #') = 0 — ).
(4.8)

Writing G, as a matrix e o) we recognize a structural equality with the Gorkov

equations in the theory of type II superconductors.!)

Notice, however, that Z[n*, 5] is the full partition function and unlike the Gorkov deri-
vation no approximation is implied by (4.6), (4.7).

Let us now leave the functional formulation of Z[#*t, n] and consider A as a collective
quantum field. In order to develop the corresponding Feynman rules we shall assume

11) See, for example, p. 444 of [3].
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that the Green’ function G4 can be expanded in powers of 4 as

{0 A
G, = G, — G, (A+ o) G, — - (4.9)

where

Go(z, #') = | . (x — ).

— 7 S

T+ &)

We shall see later that this assumption is justified only in a very limited range of thermo-
dynamic parameters, namely close to the critical temperature 7',. With such an expan-
sion, the source term in (4.6) can be interpreted graphically by the absorption and emis-

sion of lines A (k) and A+(k), respectively, from virtual zig-zag configurations of the under-
lying particles p, y* (see Fig. I11I)

i
E-Z(F) -

Tg(a:‘,__—_p.) . \M + Y
i Ava) -
v-v'+E-E (G-0%p)

— g

AN'q)

Fig. I11. The fundamental particles (fat lines) may enter and any diagram only via the external currents in the last term
of (4.6), absorbing » pairs from the right (the past) and emitting the same number of the left (the future).

Notice that the submatrices in G, consist of

Gol, x) = z/‘: m exp [—i(p% — px)]

(4.10)
. 7
G ) = L e

exp [—i(p% — px)].

The first matrix coincides with the previous Green’s function
Go(x — ') = (0] T(p(@) y*(@")) |0). (4.11)
The second one is obviously the opposite configuration

Golw — ') = (Of (Ty*(2) p(a')) |0) (4.11a)

= (0] T(p(") p*()) 10) = +Gylz’ — 2) = +GT(x — @)

where T’ stands for the transposed of the functional matrix (i.e. z <> &’ exchanged).
After the Wick rotation, the matrices read

’ — .u._l___ ; o
Golx — X', w) % o ) exp [ip(e — x')]
(4.12)

~ 1
Go(m _ m’9 (U) - q:Z

p —w — &(—p)

exp [ip(x - x)] = FGya’ -, —wo).

44%*
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The tr log term in eqn. (4.7) can be interpreted graphically just as easily by expanding
according to (4.9):
. ) ? . 0 A\*1
4+ tr log(tGy1) F 5 tr [—’LGO (A+ 0)] — (4.13)

The first term only changes the irrelevant normalization N of Z. To the remaining
sum only even powers can contribute such that we can rewrite

. - . oo (_)n . l . $l n
A A = Fil - [(i&t — g(—q:l/)é)" (iat T E@V) 5) A+]

1 1
— 14 ’2__
+3 fdxdx (=, 2)[* 77

(e, ")

— ¥ o[ A", A] —}-—;—fdxdx’ld(x, &) ! (4.14)
n=1

(2, )’

This form of the action allows for an immediate quantization of the collective field A.
The graphical rules are slightly more involved technically than in the plasmon case
since the pair field is bilocal. Consider at first the free quanta which can be obtained
from the quadratic part of the action:

sttt 1= = e (—gy?) () 4

+ %—fdxdx']d(x, x')|2

(4.15)

Vix, 2')

Variation with respect to 4 displays the equations of motion

A, o) =iV (z, x)[(wz — =7 a) / (z'_—at T a)] (4.16)

This equation coincides exactly with the Bethe-Salpeter equation [9], in ladder approxi-
mation, for two-body bound state vertex functions usually denoted in momentum
space by I'(p, p') = f dx dx’ exp [¢(px + p'2’)] A(x, «'). Thus the free quanta of the
field A(x, «’) consist of bound pairs of the original fundamental particles. The field
Az, ') will consequently be called “pair field”. If we introduce total and relative
momenta ¢ = p + p’ and P = (p — p’)/2, then (4.16) can be written as'?)

el =—i [ G VP =P —
| Ly py & (L4P) +in sign
% I(P' | g - ' @1
% — Py mf(%—P')ﬁ— iy sign &

12) Here ¢ stands short for g, —= ¥ and q.
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Graphically this formula can be represented as follows:

9_4-P

\
0
H

Fig. IV. The free pair field follows the Bethe-Salpeter equation pictured in this diagram

The Bethe-Salpeter wave function is related to the vertex I'(P | q) by

@+P0—§(2 +P)—}—'zfiysgn&@—PO—S(g—P) + iy sgn &
2 2 2 2

x T(P| q). (4.18)

&Plq) =N

It satisfies

. . dP’" .
a (g + p) ¢y (g_ _ P) PP | ) = f S VP P 0P 1)

thus coinciding, up to a normalization, with the Fourier transform of the two-body state
wave functions

plat, x't') = (0] T(p(xt) p(x't)) | B(g))- (4.19)

If the potential is instantaneous, then (4.16) shows 1(x, «’) to be factorizable according
to
Az, 2’y =6t — ¢’y A(xe, ' ; 1) (4.20)

such that I'(P | ¢) becomes independent of P,.
Consider now the system at 7 =0 in the vacuum. Then u = 0 and &(—iF)
= ¢(—11F) > 0. One can perform the P, integral in (4.17) with the result

3 D

CE oy py !

(2m)* q , q , :
Qo — € §+P ~—‘1’5‘5—1) +?/77

Now the equal-time Bethe-Salpeter wave function

I'(P|q) =

I(Pq). (421)

’. _ danQo d3q o . £ +CD’ . __ ’
p,x'; )= N Tﬂ)?——exp[ 7 (qoz q 3 Px —x ))]
|
X I(P|g) (4.22)
qo—e(%—+P)—e(%~P) Ty

satisfies
(16, — e(—W)y — e(—V")) plae, @' ; 1) = Ve — &) p(x, 25 1) (4.23)
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which is simply the Schrodinger equation. Thus, in the instantaneous case, the free
collective excitations in A(x, 2) are the bound states as they follow from the Schrédinger
equation.

In a thermodynamic ensemble the energies in (4.17) have to be summed over Matsubara
frequencies only. As a result, the Schrédinger equation is modified as (g, = )

a:pP’

e |g) =~ G

VP — P (P |q) I'(P" | q) (4.24)
with
. q ~ q

_ v—?,.,Z ? 1

_}_TZ 1 1
®, Z‘(wnﬁ—;)—g’:(%—i—l’) i(m"—— 2>+§(%—P)
T 1
T i
BRI
1 1
X —_

TR g

e gt
(g

2

Here we have used the familiar sum (see (3.18))

1 1 '
T —_ 1. —_—
2 s TEmTE Tnlp)
with n(p) being the acupation number of the state of enerqy &(p).
The expression in brackets is antisymmetric if both & — —& since under this substitu-
tion n — F1 — n. In fact, one can write it in the form —N(P, q) with

. 5(%—+P) 5(%— P)
N(PIQ)El:]:(n(-g——{—l’)—f—n(%—P»:Z)_ thﬁtl_ﬁT_+t,h¢1 7
such that

NP q)

P |q) = —

(9 _ (9 _p\
o) e

Defining again a Schrédinger type wave function as in (4.22), the bound state problem
can be brought to theform (4.21) but with a momentum dependent potential V(P — P’)
X N@P'| q).
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We are now ready to construct the propagator of the pair field A(x, ') for 77 = 0. In
many cases, this is most simply done by considering equ. (4.17) with a potential AV (P, P’)
rather than V and asking for all eigenvalues 4, at fixed q. Suppose this eigenvalue leads
to a complete set of vertex functions I',(P | ¢). Then one can write the propagator as

L(P1q) (P | q) .
— (27)* 6¥W(q — ¢ . 4.26
pa—r (272)* 6¥(g — ¢') . (4.26)

Obviously the vertex functions have to be normalized in a specific way ; this is discussed
in Appendix A.

Expansion in powers of (Z/An(q))" displays the propagator of 4 as a ladder sum of
exchanges (see App. A)

1
AP ML) =—1 X

m - __._4_' + PR ..I.<_..l__.._ + ___..‘..___._.' ! ! — *..

Fig. V. The Iree pair propagator amounts to summing a ladder of exchanges of the fundamental potential which is revealed
explicitly in an expansion of (4.26) in powers (A/Z,.(q))

In the instantaneous case either side is independent of P,, P,". Then the propagator
can be shown to coincide directly with the scattering matrix 7' of the Schrédinger
equation (4.21), (4.23) (see equ. (A.13)).

Il
ANt = AT =V + <V

—5 " (4.27)

Consider now the higher interactions &7, n = 3 of equ. (4.14). They correspond to zig-zag
loops ‘

st T é(i) ritsk] ke

+ +...

S R

Fig. VI. The self-interaction terms of the non-polynomial pair Lagrangian amounts to the calculation of all single zig-zag
loop diagrams absorbing and emitting » pair fields

which have to be calculated with every possible I, (P | q), I';,(P | q) entering or leaving,
respectively.

Due to the P dependence at every vertex, the loop integrals become very involved. A
slight simplification arises for instantaneous potential in that at least the frequency
sums can be performed immediately. Only in the special case of a completely local
action the full P dependence disappears and the integrals can be calculated at least
approximately. This will be done in the following section.

IV.2. Local Potential, Ginzburg-Landau Equations

As an illustration of the methods consider the latter case of a completely local potential.
In order to be as general as possible let us allow for Bose and Fermi statistics. Then we
are forced to carry along a spin index. Let us assume the fundamental interaction to be of
the form

Sty = 5 5] [ & dtpe (@, ) 9@, 0 pel@, 0 pule, 1) (4.28)
a8
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Following the psneral arguments leading to (4.1) we can rewrite the exponential of this
interaction as!3)

i
exp [— g 2 | @z dtyrysygp.(x, t)}

1
= const. [ DA(axt) DA+(a:t) exp [— —fdaa: dt Z ([/Lﬁ xt)|? 7 As¥a¥p — watygt Aaﬂ)]
(4.29)

where the new auxiliary field is a (2s + 1) X (2s + 1) non-hermitian matrix which
satisfies the equation of constraint:

Acxﬁ(w’ t) = gwa(w’ t) V)ﬂ(w? t)' (430)
Thus the matrix A of (4.5) reads

(16, — §—)) 60 (x — x') 0, —Augl) 8P (x — )

Ax, t; ', t') = (—41+(x)a3 (@ — ) F(i6, + £@V)) 04 — ') bap

) (4.31)

and the action (4.14) becomes

7T A+ — o (=) . l 1. i _ +. "
1, 41 = Fi 32 bt [( (_W)a) ( a)(. - a)(A a)}

n=1 | 'Lat - 5 28, + <Y
1 1 .
— 5 opin [ At A4(e) A(w) — (4.32)

where trg,i, is only over spin indices while tr is restricted to the functional matrix
space.

Let us now confine our attention to fermions of spin 1/2 close to a critical region, i.e.
T ~ T, in which long-range properties of the system dominate. As far as such questions

are concerned, the expansion &Z[A4+, 4] =} o,[A*, A] may be truncated after the

fourth term without much loss of information (the dimensions of the neglected terms
are so high that they become invisible at long distances [7].
The free part of the action, &7,[A+, A], is given by

o[+, A] = 1 tr trspm[( - E(—?V)é) (. ]é)(iat TE) 6)(A+é)]

1 1 ).
~ 5 trepin f dzx At(x) A (x)—g—. (4.33)

The spin traces can be performed by noticing that due to Fermi statistics and remember-
ing the constraint equ. (4.4), (4.30), there is really only one independent pair field:

A(x) = Ay(x) = gy)(a) yi(x) = — Iy (). {4.34)
Thus &7, becomes: |

[t A] = —z'fdx da' Gy, ') Gola’, ) A+ (x) — —j dx |A(x (4.35)

13) In analogy to!?), the hermitian adjoint 4,4(x) comprises transposition in the spin indices, i.e.
A5(2) = [A ()]
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In momentum space this can be rewritten as

o[ A, A) = X A+(k) L(E) A(k) (4.36)
k

where
Lk 5 i 7 1
) — —1 - - —_——
p PP+ A —&(p 4+ k) +insgn&(p + k) p® + E(p) — ipsgn E(p) ¢

1
=3 Up|k) ——
P q

as pictured by the diagram in Fig .VII.

ek Pk
L(k) PANIE — s + 422*5&
Kk Kk 1
g
-p-p

Fig. VII. The free part of the pair field 4 Lagrangian contains the direet term plus the one loop diagram. As a conseqguen-
ce, the free 4 propagator sums up an infinite sequence of such loops

The expression I(p | k) was discussed before in general and brought to the form (4.25).
For the present case of Fermi statistics this leads to

1 1 1
Lo k) = — ¥ - — (th k)27 4- th £(p)/2T) — —. 4.37
k) =3 - ;-(p—i—k)—}—f(p)—w( §(p + K)J2T + th &(p)/2T) p (4.37)
At I = 0 one has4)

1 th&p)2T 1 fw?lg i (wp 26V) i

LO) == 3 —""" & NO) | —th&/2T — — = NO)log (=2 =) — —

(0) 2%‘ Ep) p (0) E.:S/ ; (0) log { 77 — p
0 (4.38)

which vanishes at a critical temperature determined by

2e?
T, = — @p X (—I/N(O) g). (4.39)

In terms of 7',, L(0) can be rewritten as

L(0) = N(0) log %,_ ~ N(0) (1 — TE) (4.40)

The constant L(0) obviously plays the role of the chemical potential of the pair field.
Its vanishing at T = 7', implies that at that temperature the field propagates over long

8

1) Here we have used the approximation )’ = (Z }; ; = (2m)73 f Pt -3—? dé ~ N(0) f d& with
p 7T

N(@©O) = mpp 3 m . and the Debye frequency wp, which is typically of the order of a few hundred

22 4 u
K, i.e. much larger than 7', which lies in the K range. Notice that the Fermi energy is usually an
order of magnitude larger than wj which acts as a short-distance cutoff, due to the lattice system.

’ 1 . y
The consant y is Euler’s: y = ——1%—((1—)) = 0,577, hence 2 ﬁ—m 1,13.
7
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range (with a power law) in the system. Critical phenomena are observed [7]. For
T < T, the chemical becoines positive indicating the appearence of a Bose condensate.
If v 4= 0 but k = 0 one can write (4.35) as in the subtracted form

Ve <
th —

1 1 §p) . ds 27

L, 0) — L(0, 0) = Z(Qg( e 25(p)) th oy~ W 0) / 5F o 2E

Since the integral converges fast it can be performed over the whole & axis with the
small error T'/wp, <€ 1. For v < 0, the contour may be closed above picking up poles
exactly at the Matsubara frequencies & = #(2n + 1) 2T = 1w,. Hence

L(v, 0) — L0, 0) ~ vN(0) 2T 5 :

0, >0 Yooy
©n T

P

The sum can be expressed in terms of Digamma functions: For |v| < T one expands

te ¥ 4l y

n>0 wn wp>0 wn wp,>0 (’)n

and applies the formula

1 1
_ — 1 — Q_k ]\' . 4'451
wZ;O o F AR ( ) C(k) (4.41)
For example:

y L 1L 32
wf';g w2 A*T* 4 6 8T

oo L LT
o—p ;% a3T3 8

wéom AT 16 90 967t

Using the power series for the Digamma function

p(l — @) :—y—ZC ) ot

the sum is

2 1 » 1 v\, ol 1 1)__/ (l r
T Y\ T ) T T mm) P TR T e |Y\T) T e T T

with the first terms

1 1
g7 ¥ 37

p2

49678

7
<3 +

For v > 0 the integration contour is closed below and the same result is obtained with
—v». Thus one finds

Ly, 0) — L(0,0) = N(0) ( (;) v (1 + 4]-:;’))
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The k dependence at » = 0 is obtained by expanding directly

LO, k) = 3 1 1 1
T Sl — Ep + k) —io —Ep) g
< I 1 P k2\" 1 1 6
_ngo wZ,p (i — §(P))”+1 (W k+ Zﬁ) m T (4.43)

- The p integration may be split into radial and angular parts as

d2p (dp

The denominators are strongly peaked at & ~ 0 such that only the narrow region
|§] < T contributes. Hence, the momentum p may be replaced by the Fermi momen-
tum pp with only a small error O(T'/u) (~ 10-3). Introducing now the Fermi velocity v
= pr/m, for convenience, and performing the &-integrals

1 1
= (—1s n n 1 4.45
‘[dé Go — 8" i _F (—2sgn w)® 7/ (2% w|mH1) (4.45)
one finds
~ o T 7 @ o E2\n B l .
L0, ) ~ 2N(0) Re 31 2 (i sy f a7 (Lppk YL

For k = 0 we recover the logarithmically divergent sum

L(0, 0) = N(0) % — %.

which was made finite before by the cutoff procedure (4.38). The higher powers can be
summed via formula (4.41) with the result

0 —\n [ 4 W2\ 7
L0, k) — L(0, 0) +2N(0) Re 5 - u—%ﬂmmm+14§§@mk+§ﬁ

1 Qupn/pin

= L(0, 0) - N(0) Re fz—f; [1/) (%) — (_;_ i (vak + 2";) /4:@)]. (4.47)

Comparing this with equ. (4.42) one sees that the full k and » dependence is obtained by

adding A—L—]KlT to the arguments of the second Digamma function. This can also be checked
4

by a direct calculation. In the long-wave length limit in which kvp/T <€ 1 one has also
(k2/2m)T ~ & FVr < %

T and one may truncate the sum after the quadratic term
as follows: PF

L(O, k) = L(0, 0) + X Ay (0) ks (4.48)
where
1

, 7 ap .,
A (0) = —2N(0) 12T ] &(3) ?«’t‘zfﬁ PiPi - (4.49)
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The angular integration yields

dp 1
Zg P = T Ok - (4.50)
Hence, the lowest terms in the expansion of L(v, k) for kvp < T and » <€ T are
7
L(v, k) ~ L(0,0) — N [ |+ — T 2Tz — {(3) ?;les:z:’. (4.51)

The term (4.49) may also conveniently be calculated in x space, since there, for large «
(> 1/pg),

Golx, ) ~ —

exp [ipplm] sgn » — Ivﬂ ]wl} (4.52)

m
27| x| F

~such that the second spatial derivative contributes to (4.32):

fdx(% [d“’:r T) Gy —x, 0,) Gl —x', —w,) (x — x'); (x — x))A+(x) Vil A(x).

The parenthesis becomes
)2
2| ( )

1 m
— | d3:T
2[ ) §(2n|

1 1 7¢(3) vp? '
8T - A F 4.5¢
51 i f V2 e, — % g YO (4.53)

making (4.51) coincide with (4. 48)
For many formulas to come it is useful to introduce the characteristic length para-
meter (using T'p = u = pp%/2m)

75() vp 10(3) 2T ppyp? N 1 Ty 1
°= )V Tas :zT_l 8 ar, aT Pr

Irp

(4.54)

which, in most superconductors, is of the order of 100 nm. Then, in the action (4.36),
the low-frequency and long-wavelength result (4.51) corresponds to*)

m[m,d],@—iN(O)T2/1+(v,k){(1—T£)_ 22— lv!} (i k).  (4.55)

vZT,k ¢ B _ST
T 1
T ) B L,Ozlﬁz) .

(4.56)

For T' = T,, the field A can now be quantized with a propagator

] I 1 1 7T
T A "no— 3 83(F I’y Y B -
Ay, BY A(vy, B (2m)3 0%k — K T On. m N0) ( ST vl + (1

The spectrum of collective excitations can be read off this expression by continuing the
energy back to real values from the upper half of the complex plane:

8 8T
kg = —i— (T — T,) — 7 —— £2k2.

T

These excitations are purely dissipative.

*) Notice that only Matsubara frequency v, = 0 satisfies the condition » <€ T. The neighbourhood
of vy = 0 with the linear behaviour |v| becomes visible only after analytic continuation of (4. 56) to
the retarded Green’s function which amounts to replacing |v,| — —ik,.
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If the system is close enough to the critical temperature all interaction terms except
&[4+, A] become irrelevant because of their high dimensions [7]. And in &7, only the
momentum independent contribution is of interest, again because it has the lowest
dimension.

Its calculation is standard:

7 7 | i 2
M,A[A A] —_ Z tr t'rspin [(Zat — f(—’l'/)é) A(S (m (S) A+5]

?/' ) . " .
=73 f d_xl davy divy dayGo(@:120) Go(Taw3) Go(@s®a) G o (421 ) A*(201) A(25) A*(205) Ay

1
R —EfdxM(x)]‘lfd%z d?x; d3x4T2 [Gole — x5, 0,) Gyl — 22, —y,)

Wn

X Gol@s — Xy, wg) Gol@ — Xy, —w,)] = —gfdxlzl(w)l‘l. (4.57)

The coefficient can be computed as usual

1
== V
=", o (0,2 + & ()) T%fds 2+§2)
TC(3 &2 . 3 '
= % wZ o "]3— N(0) 8(74;(1,0))2262\7(0) v,:z A 2.6 X 1073 Tﬁ’f (4.58)

The time independent part of this action at the classical level has been derived a long
time ago by Gorkov on the basis of Green’s function techniques [3, 17]. Certainly, his
technical manipulations are exactly the same as presented here. The difference lies in the
theoretical foundation [4, 4, 6, 7] and the ensuing prescriptions on how to improve upon
the approximations Our action of (4.7) is the exact translation of the fundamental theory
into pair fields. These fields are made quantum fields in the standard fashion by leaving
the functional formalism and going to the operator language. The result is a perturbation
theory of A quanta with (4.56) as a free propagator and <7, n > 2 treated as perturba-
tions. The higher terms =74, 274, ... are very weak residual interactions as far as long dis-
tance questions are concerned. In fact, for the calculation of the critical indices, &7,
and &7, contain all information about the system.

1V.3. Inclusion of Electromagnetic Fields into the Pair Theory

The original action o of (2.1) can be made invariant under general spacetime dependent
gauge transformations
p(@, 1) = exp [—id(®, )] p(, 0 (4.59)

if an electromagnetic potential
A= (p, A4) (4.60)

is present, capable of absorbing the generated derivative terms via

1
(p-—>(p—-?3t/l

(4.61)
Ai - Ai + % Vl/l
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The complete action including electromagnetism in the Coulomb gauge, ' A =0,
becomes:

&/comp}. :*ﬁ][ilﬁy 1/)] (iat - iat + e, —l; — _“7@' -+ ‘%Az)

1 1
" 72 2 ¢
+ = fdx ( W+ — A AV A) (4.62)

where the arrows denote the gauge invariant substitutions in the action (2.1). Since the
final pair action (4.14) is an exact translation of (2.1), it certainly has to possess the same
invariance after inclusion of electromagnetism. But from the constraint equation (4.4)
we see

Az, ') — exp [—i{A(x) + A@"))| A=, ') (4.63)
For the local pair field appearing in (4.29) this gives
A(x) — exp [—2iA(x)] A(x). (4.64)

Hence the final action (4.55) with &7, from (4.57) added is gauge invariant after re-
placing

i6, = 10, 4+ 2ep,  —iVi—> —iV; + 2 -Z- A
(4.65)
ko —> ky + 2eq, ki—>k,-+2—(-2-A
C

This leads to the full time dependent Lagrangian close to the critical point

N(O) =
8T

F =

[

A+(@) (— 8, -+ 2ieq) A(x) + N(0) (1 — Ti) A+A

— N©) 502(7,- 9 —2- Ai) A+(x) (17,- + 2 %Ai) Al)

50

— 3N(0) 2 |4@)* + -8-1;; (—~<p|/2<p + ciz 42 + AVZA). (4.66)

The discussion of this Lagrangian is standard. At the classical level there are, above 7',
doubly charged pair states of chemical potential

fpair = L(0) = N(0) (1 — —;[;—) <0; T>T,. (4.67)

[

Below 7', the chemical potential becomes positive causing an instability which settles,
due to the stabilizing quartic term, at a non-zero field value, the “gap”:

ir _l’ 1/2 T 1/2 ,
LIO(T) == V pa 7&—(-‘;— 7'[ c T ) _ 3'1TC (1 — —17—) . (4:.()8)

The new vacuum obviously brakes gauge invariance spontaneously: the field /1 will
now oscillate radially with a chemical potential

tiraa = —2N(0) (1 — _qu_) <0; T<T,. (4.69)

c
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Due to this, spatial changes of the field | 4] can take place over a length scale, defined as
coherence length [3, 11]

ici f VA2 T \~1/2
ET) — Vcoefflclent of [V 4| _ g (1 . __) . (4.70)
| Mpair] T,

The azimuthal oscillations experience a different fate in the absence of electromagne-
tism; they have a vanishing chemical potential due to the invariance of .# under phase
rotations. As an electromagnetic field is turned on, the new center of oscillations (4.68)

is seen in (4.66) to generate a mass term 1/8z p 4242 for the photon. The vector potential
aquires a mass

4 2
1;® — 8z coefficient of A2 from |4]? = 8x C_Z N(0) £.24,2. (4.71)

This mass limits the penetration of magnetic field into a superconductor. The pene-
tration depth is defined as [3, 11]

3 c T -1/2 3n T \-12
TY= us 't = 1 —— — —1 — . 4.72
AT) = 4 V'zN(O) devp ( Tc l/ Vg Dr Tc) ( )
The ratio
AT Ind ¢c T, c T,
(T = = — ~ 41 | — — 4.73
= 7 V14c(3) l/w T, vpx Ty (4.73)

is the Ginzburg-Landau parameter deciding whether it is energetically preferable for the
superconductor to have flux lines invading it or not (x > 1/}/2 yes, type 11 superco-
ductor, » < 1/ ]/2 no, type I superconductor).

IV.4. Far below T,

We have seen in the last section that for 7' smaller than 7', the chemical potential of the
pair field becomes positive, causing oscillations around a new minimum which is the
“gap” value 4, given by (4.68). This formula is based on the expansion (4.9) of the
pair action and can be valid only as longas 4 L T, i.e. T &~ T,. If T drops far below
T., the gap value is expected to increase and the expansion (4.9) shows bad convergence.
In this case it is appropriate to account for 4, non-perturbatively by inserting it as an
open parameter into G4 of (4.8). In the general bilocal form one writes

A(x, x') = Ao(x - x,) -+ A,(xa .’E')

and expands G, around

n [ty — &—=i)) e —4, -1 ,

instead of (4.9). This leads to the replacement G, — G, in every term of (4.13). Observe

that in the underlying theory of fields ¢*, y the matrix G, collects the bare one-par-
ticle Green’s functions:

., |
Gz, 7) = f.;}(w)w(w) p(x) p(x') _ (4.75)

pi(x) pr(x') oyt (x) pla)
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Contrary to (4.9) and (4.11) the off-diagonal Green’s functions are nonvanishing, since
at T < T, a condensate is present in the vacuum. The presence of 4, causes a linear
dependence of the action on 4'(x, «')

0 A 1 1
ﬂl[ﬂ’+, A'] = +tr (GAo (/.1'+ B )) + “2—fdx dx’ (A0+(x — ') A (x, x’) P ) -+ hc)
(4.76)

The gap function may now be determined optimally by minimizing the action with
respect to 64’ at A’ = 0 which amounts to the elimination of o7,[4"*, 4']. Taking the
functional derivative of (4.76) gives the “gap equation”

Aolx — 2') = £ V(e — &) tr (Gdo(x, x') %) 4.77)

' 0
where 7-/2 is the matrix ( 1 g) in the 2 X 2 dimensional matrix space of (4.8).

If the potential is instantaneous, the gap has a factor 6(f — t'): Ao(x — 2') = o(t — ¢')
X Ag(® — x’) and the Fourier transform of the spatial part satisfies

T -
Ao(p)=x2 V(ip—p)tr (Gdo(w, P %) (4.78)
w,p’
Inverting (4.74) renders the propagator:
4 : | 1 Fiw +&(p) Ao(p) )
G, (r,x) = exp [—1 — px : ]
o) = T exw Litor — pol) s (1) i — £(p)
“ ) (4.79)
such that the gap equation (4.78) takes the explicit form
g Ao(p’)
Afp) = - Vip—p 2 N— 4.80
oP) =2 VP = P) e F AP (59
Performing the frequency sum yields
_ ’ Aﬂ(pl) F1 E(p’)
where .
E(p) = V&(p) T [4o(p)I*-
For the case of the superconductor with an attractive local potential
Vie —2') = —gé® @ — x') 6t — t')
this becomes
r 4 1 E (p))
Ay = 4 = ( th A,. 4.82
o= 9L e T 1A\ 2 e ) 52

The integral is evaluated in the standard approximation [3]. There is a non-zero gap if

1 E(p) ,
g%‘m{p)} th—m = 1. (4.83)
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Let T' = 7', denote the critical temperature at which the gap vanishes. There: E(p) = &(p)
such that equ. (4.83) determines the same 7', as the previous equs. (4.38), (4.39) which
where derived for 7' ~ T, in a different fashion. The result (4.83) holds for any tempe-
rature.

The full temperature dependence of the gap cannot be obtained in closed form from
(4.83). For T ~ T, one may expand directly (4.82) in powers of 4,.

o reEm 05 (0T Ep)
. ®p € 10(3)
— gN(0) (log D2l A )
7 7(3)
— 14 N(0) ((1 - ?) — A o+ )

and finds

AT ~ 7;3) 72T 2 (1 - —T—)

in agreement with (4.68).
For very small temperatures, on the other hand, equ. (4.82) can be written as

" _
1 == gN(O)f]/(E—z———{——E—A—; (1 — 2exp (—)& + 42/T) — o)

= gN(0) (log 2;’” — 2K, (flipﬂ)) 4o (4.84)

For small 7', K, vanishes as
A 1 —
2K0 ("'Z—:L) —> Z]—;' VznTAO e_A"/T .

Hence one finds at 7 = 0 the gap

Ag(0) = 20pe-1/o¥(0
or, from (4.39),
A4(0) = meT, ~ 1.767T,,. (4.85)

This value is approached exponentially as 7' — 0 since from (4.84)

A(T)  Ao(T) 1

—_— oA —

g 7@ ~ 2,00 1~ T 1,0

V2T 44(0) exp (—A44(0)/T). (4.86)

Let us now study the free pair quanta. The action quadratic in the pair fields 4’ reads

; 0o A 0 A 1 1
o — L " /(2
&42[1] t A ] + 1 tr (Gdn (/I’*' 0 )GAO(AH- 0)) + 9 fdxdx ]J(x’ * )I V(x, xl)
(4.87)

with an equation of motion

A (x, 2" T, "o 0o A 0 ANy
( ):;Ev<x,x>m(cm(4,+ O)Gm(d,+ 0)3) (r,2)  (488)

Az, )
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rather than (4.16). Inserting the momentum space representation (4.79) this amounts to
the two equations

T
AP g) = =2 V(P — P)[ln(P| Q) 4P| q) + ho(P" | q) A(F" | g)]
P
(4.89)
T
APl g) = =2 V(P — P) [P | @) AP | q) + La(P' [ q) A' (P | ]
P

where (Py;= iw)

v2 q
% el en)de
(P | q) = - T T
((w+-z-)+E2(a (O R )
(£.90)
2¢(3 )
La(P | q) = + 2

R e e |

Thus for 7' <€ 7', the simple bound state problem (4.24) takes quite a different form due
to the presence of the off-diagonal terms in the propagator (4.79).

Notice that the parenthesis on the right-hand side equs. (4.89) contain precisely the
Bethe-Salpeter wave function of the bound state (compare (4.18), (4.19) in the gapless

case)
: ) 0 A (P ' +
w0 = g (6u(§+7) (g o eufr- 2)5)

-

= (P q) A (P | q) + Lao(P" | ¢) AP | q). (4.91)

Not much is known on the general properties of solutions of equations (4.89). Even for
the simple case of a 0¥(x — «') function potential, only the long wavelength spectrum
has been studied. There is, however, one important solution which always occurs for
T < T, due to symmetry considerations: The original action (2.3) is symmetric under
phase transformations

Y — ei“dp

guaranteeing the conservation of particle number. If the pair fields oscillate around a
non-zero value Ay(x — '), this symmetry is spontaneously broken (since the complex c-
number A, does not take part in such a phase transformation). As a consequence, there
must now be an excitation of the system related to the infinitesimal symmetry trans-
formation (Goldstone’s Theorem). If the whole system is transformed at once thiscorre-
sponds to ¢ = 0. The symmetry ensures that this corresponds to energy g, = 0. Indeed,
suppose the gap equation does have a non-trivial solution A4y(P) =£ 0. Then we can easily
see that

APl g =0)=74,P) (4.92)

is a solution of the bound state equations (4.89) at ¢ = 0. In order to prove this take

w? + £(P)

hWPlg=0)= o® F E*P)

(1.93)
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AP
Lo(P g = 0) = i?ﬁﬁ(Tz)(P) (4.93)

and insert (4.92) into (4.89). One finds

r ’ [ 1 1\ & 4 4
Py = = D VP P | 0+ 4P = 4P|
I r 'y 1 '
= =L VP = P) gy AP (4.94)

i.e. the bound state equation at ¢ = 0 reduces to the gap equation. Moreover, due to
(4.91) the expression
1 .
Plg=0)= ——F=— AP 4.95
1/)()( ]q ) (1)2 _{—_ Eg(P) O( ) ( )

is the Bethe-Salpeter wave function of the ¢ = 0 bound state.
If the potential is instantaneous, one can go to the equal-“time” amplitude yy(® — ', 7)
= y(xr, ') by summing over w with the result

d3p L
Wl — ', 7) = [ G P [iP(x — x')] 3 po(P | ¢ = 0)

d3pP EP) Ay(P
—f 5 exp [«P(x — x')] thT! Q(T) 22,((19)) (4.96)

Actually, there is really no “time” dependence at all since the bound state has no energy.
The ¢ = 0 bound state described by wo( — @) is called the Cooper pair.
Notice that in configuration space (4.94) amounts to a Schrodinger type of equation.

—2B(—iV) pyla) = V(@) p(a@). (4.97)

This may be interpreted as the ¢ = 0 bound state of two quasi-particles whose energies
are

= VE(P) F |44(P)2.

The equation (4.97) is, however, non-linear since Ay(P) in E(P) depends itself on yy(x).
In order to establish contact with the standard discussion of pairing effects via canonical
transformations (see Ref. [3]) a few comments may be useful. Let us restrict the dis-
cussion to instantaneous potentials. From equation (4.79) one sees that the propagator
G, can be diagonalized by means of an w-independent Bogoljubov transformation

a K *!
B(p) = (_:"’ ;va ) (4.98)
‘p P
where
e A £(p) RV | E(p)
wi =g (gl =g (1 )
(4.99)
Ao(p)
, k 0
Zup?,p — E(p)
Since
[up® T vp|2 =1

45%
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one finds

vp  Up B+(p)

Thus B(p) is a unitary spin rotation in the Fermi case whereas for bosons it is a non-
unitary element of the non-compact group SU(1, 1) [12].
The diagonalized propagator

B(p) = (,lf” i:p*) = {G3B+(p ) G‘"’}. , (4.100)

1

iw — E(p)
GY (o, p) = B(p) G% (w, p) B(p)* = — ) (4.101)
Sia T Ep)
may be interpreted as describing free quasi-particles of energy

E(p) = V&(p) + AP (+.102)

In fact, if one would introduce new creation and annihilation operators

(P, 7) a(p, 7) )

= B(; : 4.103
P e 4105

their propagators would be

1 |
x(p, 7)ot (P, 7)) a(p,T) B=P, )

a - — —tw(t~1"
GAO(T T )p)— ﬂlj——)—-l+( ’) ﬂm( ’) Z € /Ju(wy p)
—P, T) X ), T —P, T —PpP, T
P ! P P (4.104)
At equal “times”, 7" = 17 + &, the frequency sums may be performed with the result
L (p) O
¢ (w, p) = 4.105
%‘ GAo(w’ p) (O :}:1+%qu(p) ( )

where n9%(p) are the usual Bose and Fermi occupation factors for the quasi-particle
energy (4.102):
1

ne(p) = EPITF 1

The corresponding frequency sum for the original propagator becomes

2 G lm,p) ZB 1(p) G¢ (o, p) B(p)*

E(p) -, E(p)
i [Z’pl?‘ t‘th1W 4= 'n(p) levp* th¥! 97
— Ep ) (4.106)
p £APp)
up*ip th¥1 -_QT_ j—_— K Plz th 1 2T — ?’L(p)

The off-diagonal elements of G, describe, according to equ. (4.75), the vacuum expec-

I t
tation values of {(p(x) yp(z’)

>r’:,+£, i.e.
<w%ﬂwww»=j"ffemww*ﬂﬁmﬁg
M>w (@A()
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But from equ. (4.96) this coincides with the Schrédinger type of wave function of the
bound state (yp(x7) w(xr) | B(g)) at ¢ = 0.

After this general discussion let us now return to the superconductor. The action
quadratic in the pair fields A’ reads (instead of (4.33))

) 0 4 0 A 1
tjf2[A’+: A’] - “Etr [GAO (J'+ 0 )G4o (A"" 0 )] —gfdxld’(x)ﬁ (4108)

where the spin traces have been taken. This action can be written in momentum space
as

A y[A*, N'] = —2( H(R) Loy (k) A'(R) + A7(R) Lyp(k) A+(—K)
+ A"H(k) Lyg(k) A+ (—k) + A'(—k) Ly (k) A’ (k). (4.109)

The Lagrangian matrix L;; is obtained by inserting the Fermi form of (4.79) into (4.108)
(compare (4.89), (4.90)). Setting v = 7k, one has:

T
A A= — 5 5 X L !
£ owp N oep e B o2V v elp -k
otz +EpEG) o3 D
} v k
z(w+§)+§(19+§) Ay

(o A (k))
) '+ _k
Agt z‘(w+;—)——5(p+§) ATk 0

(4.110)

tr

17 v\? K\ y k\\]
ST I R (R Rl |
) p2 kE\ k , , ) ,
x {( S (p n 5) : (p - ;)) (A=) V() + A/ E) A™(—)

— [ AHAH (k) A+ (—k) + J’(lc)/i’(—k))} — Ly gy . (4.111)

g &

For temperatures close to zero, the 3’ may be performed as f dw /27 with the result®)

w

v BB+ & E 4 K 1

1 —_—

Ly (k) = L l k) — —
11() 22 2 11 g 7 ZEE, (E+El)2+v2 q

(4.112)

. . 1 I
Lig(k) = Loy (k) = S Tua(p | B) = — 1,2 5 —— :
12( ) 21( ) = 12.1 l : iTol > 2EE (E +E)2—+‘ vz
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where we have set

k k
EEE(P"‘:;)? E'EE(p*{“?)

(4.113)
. kY . _ k
s—tlp-5) #=:p-3)
for brevity. Notice that due to the gap equation (4.83) at T' = 0:
1 1
—_ = . 4.114)
g ‘i; 2E(p) (

The energies of fundamental excitations are obtained by diagonalizing the action
& [A'+, A'] and searching for zero eigenvalues of the matrix L(k) via

Ly (k) Loa(k) — Lyp(k)* = 0. (4.115)
Since Ly;(k) = Ly, (k) this amounts to the two equations
-Dll(k) = ing(/l'). (4.116)

These equations can be solved for small k. Expanding to forth order in » and % one
obtains (using (4.114)) [13]

m2vp p2 vpk? vp2r2k? pt vptlkt
Lk = ———(1 —_ — —
n(®) 43‘52( + 34,2 T 94,2 3044 204,0  1004,4 +
(4.117)
m2up 2 vptk?  vp%2R2 i vpilet
Liyk) = ——— (1 — —
12(k) I ( A T84z T a4 T 3043 T 1B044) T
such that the first of equ. (4.116) has the small £, & solution (k, = —v)
By = dolk] (1 — ph?);  c=15 5= _'F 4118
o = tolk| (1 — yk%); C:V? Ty (4.118)

The other eqn. (4.116) can be solved for small k and all 7» directly. Using (4.112) and
(4.114) one can write — L,;(k) — L5(k) = 0 as*)

1 A2 — EE" — EE"Y (B 4 B
=zt ( 02EE'((E + E’>)2(+ v?) )] - -
For small k this leads to the energies [13]
ko™ = 244 4 4, (ﬂ)z “ (4.120)
24,

with 2, being the solutions of the integral equation

1(1 Ood _ToE 4121
f’xfryx2+y2_z: ) (4-121)
—1 —0

’

*) For T' == 0 each result appears with a factor % (th % + th —;—DT—) to which one has to add ouce

more the whole expression with £’ replaced by —E’.
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Setting ¢t — (1 — 2z + 1)/(]/1 — # —1) this is equivalent to

sht +t=0 (4.122)
which has infinitely many solutions £, starting with
t, = 2.251 4 7 4.212 (4.123)
and tending asymptotically to
t, ~ In [2(dn — 1)] + z(2~m — %) (4.124)

The excitation energies are

Fym — 24y — 2 g L

0 44, sh2t, 2’
Of these only the first one*) lies on the second sheet and may have observable conse-
quences while the others are hiding under lower and lower sheets of the two-particle

branch cut from 24, to oo (which is logarithmic due to the dimensionality of the surface
of the Fermi sea at 7' = 0).

(4.125)

V. Plasmons, Pairs, and the 3He System

V.1. General Considerations

Under many circumstances, the two-body potential V(x, 2") will consist of several pieces
favouring different collective excitations

Ve, 2"y =N Vi, o). (5.1)
2

Thus V' may have a long-range part supporting plasma oscillations and, in addition, a
strong short-range contribution giving rise to tightly bound pairs. It is obvious that in
such sitnations it is convenient to eliminate each potential V; separately by the intro-
duction of different collective fields. Only then has a perturbation expansion a chance of
showing fast convergence.
Also, for one fundamental potential there may be different domains in 7', u, V' with
different collective phenomena being dominant. Thus a system of electrons will, at
lower density, not be governed by plasmons due to ring graphs

but corrections of the type

ﬂQ—‘ + h@“ + ““VV{ i i ""“ +..
will become increasingly important. The path integral formalism has no formal problem
in incorporating such effects. One simply performs, in the grand-canonical action, an
artificial splitting
Vg, o) = Vilx, 2) + Vil ) (5.2)

) at kD~ 24, + (24 — .300) v,2/442 k2
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with an arbitrary V,(«, ') which may depend on g, T, V and defines
- Volx, ') = Vix, 2') — Vi(z, 7).

Then V, may be turned into plasmons, V', into pairs. The full final answer should not
depend on the parameters characterizing the splitting (5.2). But at every given order in
the collective perturbation theory there will be an optimal set of these parameters mini-
mizing the free energy.

Certainly, physical intuition and experience has to guide the selection of V', and general
rules have yet to be worked out.

V.2. The 3He System

As an illustration of how to treat the situation (5.1) we would like to discuss the Fermi
liquid 3He. This system may be described by a model action

Syt y) = ALyt 9] + Syt ] = [deyr (@) (16, — H(—)) p@) + Syt v]  (5.3)

with &/, being the sum of several terms [13—18]: There is first a Zeeman coupling
of the magnetic moments y ~ 2.04 x 10* (gauss s)! of the 3He atoms to an external
field

Ayt pl =y ] dayp*(x) —g y(x) H, (5.4)

Among each other, the magnetic moments have a dipole interaction!)

6 .% (x - x’),bt (‘r - x,)v

V2 P e — x| ke — ] o

> + _— T — A (L ,, v (Y 2 P + 4
o glyt, vl 3 dx dx g pH(x) 3 pla) pr(x)

X 8t — 1) (3.5)

where Greek labels u, » = 1, 2, 3 have been used to denote spin-one indices (not to be
confused with the four-vector labels of Ch. II).
The main interaction among the atoms is due to van-der-Waals forces [14, 15]

a,
2ty

1
oy, ]l = —5 [ dx dx'y+e(x) pP(@') gla — ) pa(x’) palx) (5.6)

giving rise to the most important phenomenon in 3He: the formation of § = 1 P-wave
pairs. A complete understanding of this phenomenon requires the knowledge of the inter-
atomic potential (see Fig. VIII). This has a sharp rise at about 2,5 A6) thus preventing
the atoms from getting any closer than this distance. At about 3 A there is a mini-
mum of energy —10°K. From then on the potential goes to zero from below with
an R-%powerlaw. A treatment of the full microscopic interaction has not yet been attemp-
ted. The problem is quite difficult since the average distance of ~ 4 A between the
atoms is only a little beyond the point of deepest potential. Thus one is really con-
fronted with a strong-coupling problem. The only feature giving a chance to make the
problem tractable, theoretically, is the powerful screening effect in the Fermi liquid.
The atoms being very mobile form shielding clouds around any source screening away
large potentials. In particular, the atoms themselves are dressed with such a cloud

15) Repeated indices are understood to be summed.
18) This is about twice the Fermi wave length.
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thereby forming quasi-particles. These in turn have a much smaller residual interactions
than the original atoms. In fact, in the normal state, the *He liquid behaves in many
respects like a weakly interacting Fermi system (¢, ~ T, 3 ~ const. »x ~ T2 as T
becomes small (but remains above the super-liquid transition). If this picture is to be
consistent, the effective mass of the quasi-particles should include the screening cloud.

V(°K)
average spacing in liquid
- g
—t1+— —_—
40°K

Fig. VIII. The potential between two *He atoms. For r < 2.5 A the potential has essentially a hard core

This is indeed so. If the specific heat is calculated for free 3He particles, the mass spec-
trum on the Fermi sea must be taken as

Al p2
E y _ 7
(p) 2me;g
with
= —3 —hg 3—6 (p ~ 0 — 34 bar)
Mege = Cy R - M R ar).
£ 1 P ) Maspge

Thus one is encouraged to investigate this system by considering the Fermi fields ¢
in the action (5.3) directly as quasi-particles. The screened interaction is simplified and
may be weak enough to permit a perturbative calculation. The simplest approximation
sharing the important feature of the interatomic potential of giving an attraction in the
S =1 P-wave is

4 :3g 723 ! y,:d—
gl —x') = ——WVCHJ’—J/‘)- (8.7

The factor 3/4pp? has been chosen to make the resulting pair theory most similar to that
of Ch. IV. This potential will turn out to explain many of the super-liquid properties
of *He.

There are, however, some features which cannot be accounted for by this potential. In
particular, the strong paramagnetic susceptibility of the liquid in its normal state
remains nnexplained. The reason is that the screened potential still shows considerable
deviations from (5.7): There are many molecular field effects which, when working with
the potential (5.7), must be accounted for separately. It has become customary tointroduce
the strongest correction of this type in the form of a paramagnon interaction among
the quasi-particles:

Oy

Lilypty] =1 [ dayt(x) f;—” p(@) yriz) 5 p(2). (5.8)
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It is generally believed that the four pieces of interaction 7, /4, .o, &/ contain
the most important microscopie forces in 3He [29] (using Mie).

Before we begin it is useful to perform a few manipulations on the pairing interaction.
After some partial integrations, .«/; can be rewritten as

1 3gq
o= A, o=
(=l =g

f daly 37 Pyt g, + Gilwoys) GlyPypal. (5.9)

The coupling in the first term takes obviously place in a P-wave, due to the gradients
in the relative coordinate. Statistics force the spins to be in a triplet state. This is seen
by using the Fierz identities

1
845087 = — CL,OPY + o) (6#C')yy (Cor)P? (5.10)

Lo| =

together with the anticommutativity of the fields » among each other to rewrite
P e - 14
peiV iy, = (6“CHpypi Vil 5 (5.11)

such that the coupling is now manifestly P wave triplet:

P e e O e L, O -
YV i PypaVip, = 2 (yfrzvz- %— C’ﬂ/ﬁ‘) (wV;C =3 1/)) . (5.12)
Another Fierz transformation
Lo .
047075 = = 0.705” + 5 (0")a Po")y (5.13)

brings the second term in (5.9) to the form

1, o\, " = 4
3i(proys) Gilytipa) = 5 Cilyry) Gilyty) + 2 (w* > w) 9; (w* > w)- (5.14)

-

Thus «/;, , become

3¢ es OF s oy OF -
o = 429‘;2 f(lx [y)ﬂvi ) Crytyi Vi C 5 y):| (5.15)
3¢ L, 1, o \ . { o -
"C{iu — —4pF2 u[d;r [Z- (12-(1/)*1,0) C"i(‘/ﬂ QP) + 'g d; (yﬁ 7 y)) ¢; (wr —2- y])} ) (5.16)

The first part, o7;, has exactly the quartic form which can conveniently be used to
introduce a pair field. The second part, &7;,, on the other hand, offers itself to a plas-
mon type of treatment. This' term vanishes in the long-wavelength limit and will be
neglected in these notes.

V.3. The Pair Field

We are now ready to introduce the most important collective variable by eliminating
the first part of the interactions 7;, according to formula (4.1) (now in the local case
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Vix, 2") o< o — )

i 3g b PN e
%p{z Ap? / daly TV tyaV i ‘9]}
1

= const. f@At@A exp {— —%— fdx [A+°‘ﬂ(x) A (x )—;g — A+ () iy

- wﬁwmlﬁ(m]} (6.19)

where we have introduced the dimensionless derivative ¥ = 1/2p, ¥/, for convenience.
The pair field, therefore, corresponds from the equations of constraint analogous to

(4.4), to the following composite fields
Aﬁa(x) - 39%(30) lﬁwﬂ(?ﬂ) »
. (5.18)
A (@) = Bgy+(x) iV y*h ().

The fields are symmetric in the spin indices due to Fermi statistics. Because of (5.11)
one may prefer to use the alternative form:

3 ) o
A,@) = 5 r(Co,d) = 3= y@)iVC T y(e)
(5.19)
A~ 1 3g
t (.76) ? (A'—GMCJF) = :‘E‘P ( )7\7 C+ ( ).

Let us restrict our attention for a moment only to an action &7, -+ &7, . Inserting (5.17)
in the generating functional one obtains expressions of the form (4.2), (4.3), but in
a local version rather than bilocal. Introducing again the fermion fields f and their
sources § as in (4.5) the f dependent part of the action reads

(1 (18, — E—V)) (& — ') 0y Augl@) iV
— f N
f dde {2 @) (Aam) oY (0 -+ &) Sl —a') 0 )f a
-+ (f*(:v) Jx) + h.c.) oz — :‘v')} (5.20)
and integrating out Df renders, for j = 0, the collective action
?: P 1 "N 1 =)
A|ArA] = 5 trlog(iGig™t) — —Q—W/Adx tropin( At (@) Al)) e (3.21)
with the propagator
0, — &(—1)) 00, ) i .
Gal, @) :((Z S At TG ) (5.22)
Aa}(w) (Y4 (7/01 + & )) 0043

where the derivatives ¥/ ignore the fields A,3(x). The expanded action (5.21) takes the
form analogous to (4.14) and (4.32)

_)n
AAYA] =7 Z‘

=

i
tr trgpin [Goi T AR T A — — j it Srpen (A+(2) A () 3 B

where the derivatives act only on the Green’s functions before and after and not on

the A(x) fields.
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The caleulation of the lowest powers in A is hardly different from that of the super-
conductor in Section IV-2. Consider first the quadratic term &7,. In analogy with (4.32)
one has

Lo AYA] = —i f dx da’ {[Go(x, 2) i%,Go(, ) iV, — '313 S — x') ai?.}

1
X ? trspin (Aer(x) A](x,)) (524)

where the right derivative of ¥/; is meant to act on the x variable of the left Gy(x, x')
due to the descendence of this expression from the functional trace (5.23).
Expanding again

A@) = Al) + (¢ — 1) Al) + @ — 2)T&A () + - (5.25)
one can rewrite this action in momentum space as
[ A+, A] = I trgpm (At (k) L¥(k) A;¢k)} (5.26)
ke
with an expression analogous to (4.37)
" T 1 2 kY (¢ k)i |
Lty ) — 5" . 1 (2p + )(222)+ )__‘_(W
= o+ vy —E&p + k) w0+ E(p) 4pp 39
1 2p + kY 2p + k)ij4p? . 1 ..
=2 ~ (th&(p + k)/2T + th&(p)[2T) — 5= o¥.
5 S T R (- W27+ 2T ) —
(5.27)
Expanding in powers of », k one obtains the lowest order result
1 1 P3pr? |
Li(0,0) = — 6% — }] th &(p) 2T — 5 oY
! ot L(0) ! ot N(O) (1 Y- (1 (5.28)
~ 3 ~3 ) T, — #a o=

with L(0) from the superconductor formula (4.38). The chemical potential u, of the A
field as given by (5.28) and (4.38) vanishes at T' = T, of (4.39).17)

The full », k dependence is calculated in complete analogy with the superconductor
expression (4.37). There is only the minor modification of the factor (p -+ &/ 2) (p -+ kp/2)1]
pp® inside the sum. But since the p integral is sensitive only to p ~ pr and since
pi << pp, this factor is simply pip/ with the small error 7'/Ty. Thus the final expres-
sion (4.47) takes the form now

Lif(y, k) P~ Lii(O, O) + 2]\7(0)R8 20 P
n:

di) i ! N Py 1 lc_z " ikj

: [ In {”" B (p B Zm)] P
~ L0, 0) L NO) Re | 2L, (L
47 2

o [ (o )| o)} (5.20)

17) In 3He, the critical temperature is of the order of 2.5 m °K.

(1 — 270y (e + 1)



Collective Quantum Fields 609

As a consequence, the low-frequency and long-wavelength expansion, analogous to
(4.51), emerges as before with the following slight changes: The terms linear in » receive

a factor
f P i % &, (5.30)

The terms proportional to k.k;, on the other hand, are accompanied by a tensor

/5

rather than (4.50). This amounts to replacing in the k2 terms (4.51) according to

1 1
5 ki = X = ket 4 2kin). (5.32)

1)

<

PP o (399K 4 ko - o) 5.31)

ﬂ>~|&

Thus the free, quadratic part, of the action of 3He reads:

MQ[A%-, A] R 2 trpin Az+(’°) {N(O) [(1 a ]z,‘)
- :

7
822

(3 ep2(l20H 1+ Qkil\'f)}}Aj(k) (5.33)

Whele 1/2 trepin A;7(A) A;(k) may also be ‘written in terms of the fields (5.19) as
Ak A, k). The quartic term finally becomes in the same approximation as (4.57)

A A, A ~ ~% Jdz trgm (A¥i(z) Ai(z) A% (@) Al@) T 2
X f A3y A3y dPry[Gol — X5, ©,) ive'(m(wz — 3, y) b%y
X Goliey — &g, 00) 1 00(@4 — 2, 0,) 1] (5.34)

With p only close to the Fermi momentum, and due to the rotational invariance of
the integral, one obtains, using (5.31), the result

, B
sy =5 15 [ datrgpin (244,404, + AFA;AFA) (5.35)

with the same 8 as in (4.56). In terms of the field variables (5.19) this becomes

Ly~ +ﬁ [ da[ Az A Az A,y — 2AAL AR — 244,454, — 24;54,454,,

15 ui

A AZA). (5.36)

+ 247

ne

One can establish contact with the general analysis of Refs. 17—19 in which the classical
phenomenological couplings are defined via the free energy expansion:

1 1
F :fd3x |:_“MA A/:zAMl —|— — A/za}A#? + — KT |€i]'k BjAHklz
+ ﬁl‘[‘l+ A A,uZAV} + ﬁ2 ,u@ + ﬁ3A,ulA#] + 64‘4:11“4”‘4 ui

il "

+ BsA A, ARA, ] + - (5.37)



610 H. KLEINERT

The results (5.33) and (5.36) imply the well-known relations

1 T 1 T

_ 1 . - 38
pa =5 NO) log T~ 3 N(0) (1 TC) (5.38)

, 2 &o 1 753) ps ‘
— 2 3 i _ e _ — —_ — — y = 5.- 9
/Jl 52 /33 /34 ﬁs 5/15 5 A(O) 'Up2 6074 8 TFTCZ ( 3 )

and (compare the definition of the coherence length &; in (4.54)):
. N0 ., 1 TEd) Ts Ty
== —_ -_— ~ 1 s 5-4
N(O

K, =3K; =6 é ) £o2. (5.41)

The derivative terms can also be written in the form:

~»

1 1 1

w

such that, up to surface contributions

(5.43)
N(0)

K2+K3:KL—KT:4_5_C02'

Notice that for fixed size of the order parameter 4,; (ie. 3 4,4, = const), Fyin

ut

describes the change in free energy due to spatial distortions of the field lines. There-
fore it is often referred to as “bending energy”.

The phenomenological parameters K;, ; are directly measurable. Particularly interes-
ting, from the theoretical point of view, is the determination of satellite frequencies in
nuclear magnetic resonance experiments. It appears that they correspond to spin waves
trapped in domain walls (solitons). The ratio » = 2K,/(K, + K,) found from the ana-
lysis of such data agrees quite well with the prediction of (5.42). The coefficients §; will
be discussed in Sect. V.5, and V.6.

V.4. The Magnetic Interactions

The dipole interaction .%/; and the Zeeman term &, can both be treated with the same
formulas. For this we note that an interaction

ot 1 .
o = f‘l-’” (VWE pet 7 4, S Ai'/zAi)

with a fluctuating quasistatic magnetic field produces exactly the dipole interaction
74 of (5.5) by integrating this field out in the path integral:

A " o 1 ,
/ ZA exp {L_] dx ('yqﬁr % el A, + 3 Ail/2Ai)}
Z 7T

2 1 i
= const. exp {—z’ /2 fdxdx’yﬁ(x) % p(x) pH(a) % (') Dij(e— x") 6(t — t’)}. (5.44)
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From the functional formula

A | 47
D”(CU — x’) = —lHi(x) H](ﬂ'),) == E',lmf;‘][ m 8[6{' l_ (3(3 (x — & )
1
— (2s.. __ Y V0 P
— 0% = )
Sl — ) (@ — o), 1 87 _
(s _ S s 5.45
((3Z] 3 ’m _ wrlg |x _ wr,:} 3 17 (w) ( )

such that .o/, is indeed reproduced.

In addition, there is a contact interaction which, however, cannot become active due
to the short range repulsion in the potential between the He atoms. (See the discussion
after equ. (5.61).)

But then 27; + &7, can be written as

\

i 1 o
A g4y = fdx {V‘P+ % p(H + Hf) — o Hifz} (5.46)

where H = g, ¢;4; denotes the fluctuating H field. Setting H = He** 4 Hf, the
action modifies the matrix 4(x, «') of (4.5) by adding y ¢;/2 H; in the diagonal entries
such that the propagator (5.22) becomes?®)

-1

(o= ) 4y SH)s At i
Ganulx,x') = B . (5.47)
Alw) 041, (z bt SV +y g H) )
The expansion part of (5.23) now reads
- n V%H 4 40"V "
A A = _f)_ X Sl trepin | Go . (5.48)
“ p=0 7 B N o
AiomiN oy 5 H

The purely magnetic terms of the form H" give rise to plasma type of corrections to
the propagation of the 4 field. These corrections are of order « and can be neglected
with respect to the much stronger paramagnon effects described by the interaction
(5.8) which will be discussed in Sect. V.7. Since it is quite obvious how the calculation
would proceed, in the light of chapter I1I, we shall not write down the results explicitly.

Fig. IX. The lowest order coupling of the pair field to the magnetic field Hext - H/S arises {rom these diagrams

1¥) Here we have slightly changed the 2 > 2 matrix space of (5.22) by using the Fermi fields

= ( ) = (y*() p(x)C) in (4.5) rather than | = ( ngaj) ) .
Cry( ()
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The mixed terms describe the coupling of H to the pair field A. The lowest, second,
order contribution in H as well as A has the form

o & 4

’ ygH - 0iVid,,
7

—g— t‘l' t’rspin GO . G

) G”l'ﬁiAm' Y —2— H

JZ/[A_F’ A’ H]IA‘*Aﬂzpart -

A+ A H*part
2
=1 %_ tr trepin {Goo* zv A LG o0 H G0 szAv,GOa M,

- Goori$ A G HGooH Gooi 1A,
+ (IOGMV i A i Gy0” iV 4,,G 0 "H G ooxH ) (5.49)

corr cspondmg to the diagrams pictured in Fig. IX.
Again ¢¥7; - +¥/; can be set 1/3 §;; with little error. For very small space time variations
of 4, H, the flelds can all be pulled out of the traces leaving each functional trace in

the form

T ! _ 1 . (5.50)
o T, + E(p) fo, — Ep) io, 2 Pp) io, 2 EPp)
The integrals over f d£ can be performed leaving via residues
1 1
] 1
=Y , 1 73 15 <
2T 2 = XV 24, 5.51
NO) wZ;O an 2 Vi) n2l% 8 (8.51)
1 1
2 2

Collecting the tensors arising from the spin traces gives a factor
414,:H,? (5.52)

together with the upper result. Thus the lowest order magnetic interaction becomes

, 1 { 72(3)
A gram = — 5 NO) 55 é 2 [ Ay H 2 d'. (5.53)

If Fermi liquid corrections to the Landau molecular fields are taken into account (see
Sect. V.7) each H field is multiplied by an enhancement factor (1 + Zy/4)™% The correc-
ted interaction can be written as [14 19]

"Q/A"AHE = ———qu IAMiIIlllz dix (554)

with

(e 7 \-2 2 7 \-2
g, — N(0) 1 j_é’_%_z)ﬂ 1+ ﬂ = N(0) _‘?"_ y2 1+ Z0y . (5.55)
il . 4 ’UFZ 4
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For magnetic fields fluctuating strongly over small distances, the approximation after
(5.49) is no longer valid. This is the case if the effect of the dipole coupling upon the
pair fields is to be calculated. As we see from (5.53), a single photon loop

(5.56)
would give a linearly divergent contribution
A =1y, f ded ;(x) A () D,.(0) 6(0) (6.57)
with the photon propagator at x = 0:
3k R*,, — k,k 8x
D — _4 “y AL . 5.58

This strong short-distance divergence is smoothed out to only the standard logarithmic
divergence of the gap equation which characterizes the spatial extension of the pair
wave function and renders a natural ultraviolet cutoff to the above diagram. To see this,
more care has to be taken in the calculation of (5.49) by leaving the fluctuating fields #
inside the trace. If the contractions of the magnetic fields are included immediately,
the following diagrams are to be calculated:

Fig. X. By closing the fluctuating part of the magnetic lines in Fig. IX to a loop, one obtains the change of free energy
due to the magnetic dipole interaction among the *He atoms in a Cooper pair

The first two of these amount to electromagnetic corrections to the self-energy of the
He atoms. They do not have to be calculated since their effect can be accounted for
by using physical input values for atomic mass and chemical potential everywhere.
The third graph represents the analytic expression:

Ly 1 1 1 1 D ,
Ay~ l?;—TZ{ by @Diy'(P"'P)}

oo 10" — E(p') o —&(p) do +E(p) o' + Ep') P
X tr(c#cic’c’) f dixAf(x) A,y (x).

Performing the frequency sum gives

g Tty [ L S L ) PP , }
~ -3 th th Dip —
‘ 8 o {25(19') 2T 2&(p) 2T pg2 ip—p)

’
ww

X (84167 4 9isr — owoV) [ diwd (@) Aum(a).

Since the momentum integrals are to be cut off at & = w) <€ u the momenta remain
all in the neighbourhood of the Fermi surface. To this approximation the propagator
D;;(p — p’) depends only on the directions of p, p’. Similarly p,'p,/pr®> &~ P;"Pn. Then
one can perform the integrals over the magnitudes of p, p’ at fixed directions using

46 Zeitschrift ,,Fortschritte der Physik®, Heft 11/12
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the formula

Bp 1 Ep) NO) fop 2\
~ log (22 2} 1 g2
f(zn)a sty P or N a2\ T J &

with the ultraviolet cutoff frequency wj, being the same as in the calculation of L(0)
in (5.28). This brings &7, to the form

v2 [ N(0) wp 2ev ]2 .
o — 1 utSvi uiSrt __ SuvSij
p 8[4n°chnJ(‘”+’” pungi)

><8 [f di),di)pl,i)nil)i]’(ﬁl _ i))] f dxA/il(‘%‘) Arm(x)' {‘359>

In the final integrals over the directions some care is in order. According to equ. (3.43),
the propagator

Dij(k) = —4a(0;; — kik))

contains two contributions: one long-range dipole force and a §-function force. In momen-
tum space this splitting amounts to

Dijk) = —4n (% 8ij — /‘c,i/‘cj) — %—” di; (5.60)
respectively. Now we remember that in the approximation (5.15) for the pairing force,
the short-range repulsion of the interatomic potential, which sets in at about 0.25 nm,
has been completely neglected. This “hard core” prevents the atoms from getting close
enough to “feel” the o function part of the dipole force. As a consequence, only the
first traceless part of D;;(k) has to be included in {5.59). Now the directional integra-
tion in the brackets of (5.59) can be done in a straight forward manner. From symmetry
arguments it is obvious that it must be a combination of Kronecker symbols

a(ailéjm + éim(sjl) + baijélm . {561)
The tracelessness in the indices ¢, j ensures b = —2/3a. The constant a is fixed by setting

[ =7, m = j and summing over both.
Then the integral becomes

[ apne papnliT =) = [ an (3 o — A5 B ol 7))

— 4 (4m)? [d,: (iz 1 0 z)) _ 4y

2 3 2 2

while (5.61) gives 10 a. Hence a = n/5 (4x)% Inserting this with (5.61) into (3.39) one
finds the collective form of the dipole interaction

, , wp 2e'\12 # | 2 _
J&/d X "}/2 [1’\7(0) lOg (‘T£ —’7'5—)] E ((3,”-6,,]- + (SM'(SM' — ? 6uv(§i]’) f dl'A;,L(Q') A,,j(ir) .
4 v "
(5.62)

Since the photon exchanged in the diagram may travel, on the average, a few atomic
distances, the numeric factor in front is expected to receive an enhancement due to
the same molecular field effects occuring in the magnetic energy (5.54)19). It may

19) See Sect. V.7 for a general discussion.
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be shown that the corrected dipole coupling is [74]

~ p2 ] wD% 2_,""6_ ! O:
Ja &y [V(O) lOg(Tc - 10 . (5.63)

V.5. Discussion of the Collective Action

The different terms in the collective action of 3He may be ensembled together in the
form:
aN(0)

== [ AL @A — [AF oA,k ot (5.64)

where £ is the free energy expression of (5.37) and 7, &/, are the magnetic interactions
(5.54) and (5.62). If we neglect these for a moment the collective action can be seen
to be invariant under the group U(1) x SU(2) X O(3) of separate rotations in phase,
spin, and orbital space, just as the original action (5.3). (For the nontrivial groups one
just has to observe the separate invariant contractions of Greek and Latin labels in
equ. (5.37)). Now consider small oscillations in the A4,; field. Just as in the case of a
superconductor, these are stable for 7’ > 7T, with 7', of (4.39) due to the negative chemi-
cal potential

I T
us == N(O) (1 -

) <0; T>1T,.

For T < T, the sign of u, changes, making the point 4,; = 0 a maximum. Fluctuations
will drive the field to a new minimum at non-zero value. Physically, this corresponds
to the formation of a Bose condensate in the ground state. This goes on until stabili-
zation is achieved, usually via the quartic terms in #. A complete discussion of the mini-
mal surface of the complicated energy (5.37) is not yet available [20]. Among the
known types of stable minima, two are apparently observed in 3He at no magnetic field:

3 i / iz o
A, — V/— A, d (DD — iD.2Y- A, = 5.05
A% = AgRy(h, ) éie; Ap= |/ —L4_—. (5.66)
():8]2 + 25345

Here, f;, By are abbreviations for g; + B, B; + f; + Bk, respectively, R,;(#, 0) is
an arbitrary 3 X 3 rotation matrix around an axis # by an angle f and d,, @1V, ®,/? are
unit vectors with @,V and @;? being orthogonal to each other. The first minimum
has been identified with the A phase, the second with the B phase of 3He (see Fig. XI
for the phase diagram). The two unit vectors can also be replaced by one: I = @ x @
and a phase ¢ indicating the azimutal angle of @ in the plane orthogonal to 1.

Once the vacuum expectation of the field A4,; has settled at the new values (5.65) and
(5.66) of minimal energy, the original U(1) X SU(2) X O(3) symmetry of the action
is obviously broken. Certain infinitesimal group transformations do not leave any
more the systém invariant but transform it into another one of the same energy with
a different orientation of the ground state. It is a well-known consequence of this situa-

46%*
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tion that the system has necessarily?®) low-energy excitations associated with such
degree of freedom of the original symmetry (Nambu-Goldstone bosons). For, if one
performs a symmetry transformation on the values (5.65) and (5.66) with a very smooth
dependence on space, say in form of a wave-like modulation, the system as a whole is
transformed into itself but it now has a larger energy. From the symmetry of the action,

30
Taen \
B 378 GAUSS 7
e 3He-B
3 20F n
.\‘3h

NORMAL 4

FERMI
= LIQUID 4
10F .
8 2 1 A 1 1 1
19 20 22 22 26

T/mK

Fig. XI. The phase diagram of *He plotted for different temperatures and pressures

this energy must go to zero as the wave-length of modulations becomes longer and
longer. The above symmetry group has 1 4+ 3 4 3 parameters. Hence, there are at
most seven Goldstone bosons. In the A phase, there are five of them, consisting of
two transverse vibrations of d and l vectors (spin and orbital waves) and one torsional
oscillation of @M and @ around 1 (longitudinal zero-sound). In the B phase, there
are four modes, two transverse vibrations of the # vector, an oscillation in the rotation
angle, and a zero-sound mode in the angle ¢. The subgroup of transformations which
do not change the vacuum expectation values (5.65), (5.66) remain as a residual symmetry
of the spontaneously broken theory.

Let us now turn on the dipole coupling <7, of (5.62). Since it contracts spin and spatial
indices, the groups SU(2) X O(3) are no more independent symmetries. Only the joint
total angular momentum is conserved. As a consequence, the Goldstone bosons asso-
ciated with the group transformations orthogonal to these, i.e. those in which spin
and orbit are rotated in opposite direction, are no more massless. Explicitly, the symme-
try breaking dipole actions reads in the two different phases

oA g = 3gq1 42 [(dl)2 — %] (5.67)
1\ 1 .
A g = —8gaAg? [(cosﬁ + Z) — E:I (5.68)

20) If no zero-mass gauge particles are around which hybridize with this state as in the case of the
superconductor, where the photon eats up the would-be Goldstone boson becoming one massive
particle with an additional longitudinal degree of polarization.
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The effect of the dipole energy is to bend d parallel or antiparallel tol in the 4 phase
and to force the angle 6 to arc cos (—1/4) ~ 104% in the B phase. The interesting feature
about 3He is that the dipole energy is very small. Inserting the microscopic values
(5.39) into (5.65) or (5.66) one can estimate the energy density to be ~ 10-3(1 — 7/T')
% erg/em3 near 7',. For this reason, oscillationsin d - I and 6 have quite small energies
and can easily be excited. Also, due to this low cost in energy, nonlinear effects can
be observed in whichd, I are parallel in one and anti-parallel in another domain. The
domain walls act like pseudoparticles (‘“‘solitons™) and can form traps for other collective
excitations of the system. There is a rich set of phenomena which can be calculated
theoretically and tested experimentally [21]. A more detailed discussion of such pheno-
mena, will be presented in Sect. V.8. Here we just mention that the nontrivial topology
of the symmetry group U(1) X SU(2) X O(3) gives rise to many different singularities
among the solutions of minimal energy [22]. The mathematical possibilities are similar
as in the pseudoparticle solutions studied recently in field theory [23]. Contrary to the
field theoretic situation, however, the He System offers the physical advantage of
being able to prepare definite singularity structures in the laboratory. The principal
means of enforcing a specific configuration in the pair field 4,; are the following:

1) Magnetic fields. They couple to the system via the action (5.54). In the A phase,
the energy density can be written as

4 = 3g.12(d - H)? (5.69)

such that the d vector points in the plane orthogonal to the magnetic field. The external
magnetic field is quite efficient. The field strength at which this orientation effect
exceeds the dipole energy is only about 35 Oe. In the B phase, the magnetic energy is
constant

8 = g.4,2H? (3.70)

and has no directional dependence to lowest order perturbation theory. To higher
order, however, such an effect does appear since the magnetic field causes a distortion
of the isotropic gap [24]. Its energy is negative:

8 = —g,/ Ag*(RH)? (5.71)
and pulls the # vector in the direction of the magnetic field.

2) Walls. On the boundaries of a container the super-liquid certainly becomes normal
such that 4,; has to vanish. If the walls are sufficiently flat, the derivative terms (5.42)
of the free energy will ensure that the direction of the field 4,; does not change when
approaching the boundary and only its magnitude does. Writing close to such a boun-
dary

A,i(x) = AL2() (5.72)
the derivative energy 1s

1 , 1
fein = 5 Eal A% V2 4 5 Ko dUr ALV AV 2. (5.73)

Inserting the form of the A phase this becomes

frin = %1' ALK, + Kyg) (V)2 — Kos(l - VA, (5.74)
As a result of the microscopic calculation (see (5.43)) the constant Ko; is

N
(50 ) &2 >0, (5.75)

K23EZKT =4
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Hence the derivative energies are minimized if I points in the direction parallel or
antiparallel to the gradient, i.e. orthogonal to the walls. In the B phase, the derivative
terms give

1 "
fkin - ? ABz(gKl + K23) ([/A)z (0.76)

and there is again no directional effect. As in the case of the magnetic energy, however,
higher order effects do cause orientation energies [25]. Since these are quite small (a
factor 10 to 10® times smaller than the small dipole energy) the walls give rise to
quite a complex set of phenomena in the B phase.

3) Currents. If the system is passed by a superfluid current, the vector in the 4 phase
points parallel or antiparallel to the flow. This can simply be seen by putting a plane
wave

Ay = 1/7 Ayd (DY + iD{P) ei1® (5.77)

into the system corresponding to a super-flow of velocity © == Aq/2m.s. The derivative
energy terms become

3 N
frin = T N2Q7(2K, + Ka3) — Kogs(l - q9)%]. (5.78)

The current at which this energy becomes comparable to the dipole energy (5.67) is
about 0.25 cm/s.*)
In the B phase this effect is again absent to lowest order since F\;, is isotropic:

1
fkin — E‘ Aquz(gKl + K23)- ( 579)

There is, however, a higher order effect that does turn 7 parallel to the flow [14].

4) Electric fields. There are theoretical caleulations [26] that an electric field causes
an orientation energy

42 E? 1 C A A
=t [—%— AjAy ~ A;z-AMEiE]-] (580

and hence forces d orthogonal to E (g, is the constant (5.63) appearing in the magnetic
energy). At fields of the order of 105 V/em the factor in parenthesis is of order unity
such that this energy becomes as strong as the magnetic dipolar energy. Experimentally,
this effect has not been found at the predicted magnitude [27].

The full study of the phenomena in 3He is still in the beginning, both theoretically
and experimentally. On the experimental side, there is the challenging problem of in-
vestigating a macroscopic quantum system of many degrees of freedom in the collective
field A4 ,;. On the theoretical side, the system offers the exciting possibility of testing
many ideas about classical solutions of non-linear field equations and their quantum
corrections. Thereis the rich set of phenomena associated with different singular strue-
tures. Domain walls represent two-dimensional surfaces which have been studied in field
theory as “solitons” (see Sect. V.8. for a discussion). Pinching the field lines of the d
veetor in astrong magnetic field gives control over vortex lines or linear singularities.
These objects are similar to those considered in string theories of elementary particles.

*) For a discussion of super-flow in *He-A see H. Kieinert, Y. R. Lin-Liu, and K. Maki, Paper pre-
sendet at the 1978 Conference on Low Temperature Physics in Grenoble, J. Phys. (Paris) 6, C6-—59
(1978), and USC preprint, March 1978. Also: H. Kleinert, Collective Field Theory of Superliquid *He
and The Two Supercurrents in *He A, Berlin preprints. Sept. 1978.
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Embedding the system, finally, in a sphere creates a point singularity somewhere inside
or on the boundary, since the I-vectors are all orthogonal to the wall. This structure
is related to the monopoles and instantons in Yang-Mills theories (see Sect. V.9).

The interwining of theoretical ideas in this field of research and current studies of
non-ahelian field theories may provide interesting new insights for either side.

V.6. Far below 7',

If the temperature drops far below 7, the vacuum expectation values around which
A,; oscillates will become too large to permit an expansion (5.23) of the action in A4,;.
Instead, one has to allow for a non-zero value A9, directly in the free propagator:

30, — E(—V)) 00sg A% )*-1
| A9 (it + E(@)) 88,5
The off-diagonal terms cause a linear potential in .2/[A*, A| which is removed as usual
by satisfying the gap equation:

G — ')y = (( (5.81)

(5.82)

A% = 3g tr (ﬁfGAe(w, et %)

z=y
The solutions of this equation are straight-forward if one restricts oneself to unitary
gaps :

A 1 A A

pAYy pAg, = ?tr(ﬁA‘H PA°) 6., = PA,; PALD., .

This condition is fulfilled for 4 fields of the form (5.65) and (5.66) for T' ~ T', correspond-
ing to the two important phases 4 and B. One may, therefore, expect the gaps to
satisfy this condition also for T'<€ T',. Then the propagator (5.81) can be written in
momentum space as

y , 1 X 3 da —AYp/pr
GA“(TMg — _FZ =t pi _ ((1({:4‘;1;;7}:)) o (?' aﬁl’é‘/(lg)) 5 )
o,P 2 £2 o P T ap F @ — af)
wf ) Pr| (5.83)
and the gap equation reads
7y PP 1
4% = ?gzj‘ 5 o e e
PP o g )+ A
) g

‘ pipl | E(p) A g
= 3 th Ho, Ep)= |/ &(p) +
12 LS Sy B =]/

,)l .
Ay 7_’. (5.84)
Pr
Summing over directions and magnitudes of p separately gives

.. N i (e L E@) o
Ayi~5g’4? ‘]Z‘fd pppt | dé 7p) th T A%, (5.85)
0

According to the general discussion in Sect. IV.1., equ. (5.84) can be interpreted as
the bound-state equation for two quasiparticles of energy

P2

/ 5
Bp) = |/ 2 + |4 % (5.56)
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Thus, due to the derivative terms in the potential (5.15) the energy gap in the (uasi-
particle spectrum becomes dependent on the momentum. In the final version of (5.85)
the gap is relevant only at small & << wp 1.e. for p close to the Fermi surface and there-
fore notices only the direction on the Fermi sphere.

In analogy with the minima (5.65), (5.66) there are now two solutions to the gap equa-
tion which are valid here for 7' <€ T',. Inserting in the B phase the unitary ansatz:

AY; = Nge* R (1, 0) (5.87)

renders an isotropic gap |49;p;|*? = 4 with Ap satisfying the same equation as the
superconductor, i.e. close to T,

/ g 7 \1/2 <
(1) ~ l 7360 =T, (1 — Tc) (5.88)

Ap(T) ~ Ag(0) — V22T Ap(0) e~ 45T, (5.89)

and close to 7' = 0

Notice that the value close to 7', can be written in terms of the constants g, f as
]/,upair/ﬁ which is the same as (5.66) since due to (5.38), (5.39) one has

1

- Upair ———'—“‘—
HMpair 3 -
Ap = — = P e S 5.90)
? ‘/ B 56/15 l/5ﬁz l 6B, + 2ﬁ345 (

For the 4 phase the ansatz

3
— 1/_2_ Ayl (DY + iP2)

leads to

E(p) — ‘/52(])) + _;_ A2 ‘((])(1) + lff[)(2)) 1’)’2 — ]/52(1)) + %AAZ(lX 1‘))2

— V§2(p) + % A2 sin% O (5.91)

where 0 is the direction between 1 and P. Inserting this into (5.85) and orienting @
in # and @? in y-direction gives the gap equation

/ 3
sz + > A 4% sin% &
2T

sin? @ cos ge'¢

d cos @

——A 428in?2 @

3
2 A ,2(1 — 22)
.
- _Z- 1 ¢ th 2 — . (5.92)
1/52 —JA 1 — z2)
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The behaviour of .1, as a function of temperature is a little different from the isotropic

situation: For T ~ T, there is again a square root type of singularity obtained by
expanding the first expression (5.84) in powers of |AS,p!/pp|? = 3/24 2 sin® O

T
(@ i) & 39 3 PIB i)

w,p
1 3 1
_ in2 () — I 5.9:
X (w2 TEp 2 A2 sin% @ (w2+§2(p))2 + ) (5.93)

Performing frequency sums and integrals over & at fixed direction gives

;1 DY x 3g Z_Vi@ ZA' ﬁi@i(@j(l) + i@j(z))
P

T

¥ T 7 1 3 . -
[4 Y [ ‘< [

The first term is isotropic and is calculated via
. 4 = ax
;1 @zp? = TS' 6ij' (0.90)
P

For the evaluation of the second term put again @W in z- and @& in y-direction.
Then the x-component of (5.94) yields

1~ gN(O) {log (%D— 2-5;) + (1. — g)}

2n 1

A N0 .
£(3) i A% 3g © qu) [d cos @ sin? @ cos pet? sin?2 @.  (5.96)
-

7
8 2y A 4n

0

Performing the integral and taking advantage of the T' = 7T, gap equation A,(T,) = 0
gives

25 8 T
12T ~ — — T2 (1 ——]). 97
Thus 1, can be written as
y _ 5 /.“pair 5 .
ATy = VE ] g = ]/F Ag(T); T~ T, (5.98)
which coincides with (5.66) since
5 upair 1 ppair -/_4;1— M4
J ey — pai == —_— ba s — . P.ge
=VEs I/ SOR5 | 60 | 6fus 599

For T — 0 the gap tends to a constant 4,(0) as determined from (5.92) by expanding

E(p)
th L) 1 — 2-E@IT,
oT ¢
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Using the gap equation at 7' = 7', this yields

9
A40) = ]/—;— T e vee (5.101)
with
1
3 5
0= —= dz(1 — 2% log (1 — 2 )::g——logQ. (5.102)

—-1

If 7" is non-zero but small this gap is approached as follows:

Ay 1
N (0 A d& | d cos O sin? @
A 1/‘—2 + _ J 2 gin2 @

3
X exp {~ l/&z + 5 1,2 sin? 9/2T}

1

L2t ]/)n A4( f‘ l
~ — |/ —= 2 — —
; R T (()) ) d cos O sin? @ exp (—sin & /T[
0
a7 I A NT. [ T \*
~ /8 V2l O T ( 7 . (3.103)
8 3 A 4(0) A 4(0) '

Thus, contrary to the exponential behaviour in the isotropic case there is now a power.
The reason is the absence of the gap in the direction of 1.
1t is useful to picture the physical consequence of the gap anisotropy in the A phase.
~ The electrons on the Fermi sphere prefer the regions of smallest gap and will, at fixed
temperature T, populate mostly @ ~ 0. Thus the vector [ has the physical interpreta-
tion of pointing in the direction of largest electron population. If I is bent stiftly away
from its direction the electrons will follow only after some finite time delay. Thus the
energy will instantaneously increase. This gives rise to a restoring force and conse-
quently to oscillations. The collisions in the electron gas trying to reinstall the new
thermal distribution will damp such oscillations (“Cross-Anderson viscosity”). This
effect has been seen experimentally [2§].
Finally, let us give a physical interpretation of the direction of the gap parameter

1, = IA"J? B (5.104)
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It can easily be realized that d, determines the direction of the quantization axis in
which the spin triplet of the Cooper pairs has a zero spin projection 3 = 0. This follows
directly by writing this vector in spinor form

dug = d,(06,)p. (5.105)
If, for example, d, points in z direction, the matrix d,; becomes

N 01
lag = — . 106
dmﬁ (1 O)aﬂ (5 10 ))

Remembering now that 4,; is proportional to the Cooper pair wave function at g = 0

(ways | Blg = 0))

one sees the wave function to have the spin form |} + |1}, which is § =1, S; = 0.
It is possibly easier to visualize the orthogonal direction: 1f d points in the z, y plane
with an angle @ against the z axis, the matrix d has the form

q Mdy + id, 0 (et
0 —d, + idy) — i

corresponding to a bound state wave function

(1) — et [}4)

i.e. there is a coherent superposition of spin-up and spin-down pairs in the ground state
(equal-spin pairing (ESP)).

In the B phase, the spin wave function depends on the direction of the Kermi momen-
tum, the vector d being equal to the vector p after a rotation by the matrix R(#, 6).
Thus d gives the direction of zero spin projection for every p. In the A phase, the direc-
tion (l“ coincides with d, such that d, denotes directly the quantization axis with no
spin projection.

V.7. Possible Stabilization of 4 Phase by Paramagnon Effects

At T < T, there are two solutions to the gap equation corresponding to the two phases
A and B of He®. The free-energy of these phases is obtained by inserting the field values
(5.63), (5.66) into (5.37). In this way one finds the (minimal) energy densities

2

Ha = 107
fain = — (3.107)
) 413245
. 2
I‘;lill == _i al 30 (5.108}
2 6815 + 2f35

Using the coefficients 8 of equ. (5.39) derived from the pure pairing force these energies
beconie
1 2 : 2
L o R .
4 /15 10 g/15

respectively. Thus with the forces included until now, the B phase is slightly more
stable than the A phase. Experimentally, this is not true: If *He is cooled below T,
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between melting pressure and 20 bar, the transition occurs to the 4 phase. 1t is present
belief [14, 29] that this stabilization is caused by the strong spin-fluctuations known
to exist in 3He. They are generated by magnetic effects due to the strong exchange
forces and their microscopic parametrization is conventionally given in the form of the
“paramagnon’ interaction (5.7) [29].

A full discussion of the “paramagnon” philosophy and its experimental manifestations
would go beyond these lecture notes.

Here we limit ourselves to a derivation of the corresponding corrections to the para-
magnetic susceptibility, in order to estimate the size of the coupling constant I, and
to the subsequent modification of the magnetic interaction .7, of (5.54).

The quartic paramagnon interaction is eliminated from the total action by adding
the term

I

1 G 1
~T (Py(x) — yh(x) ayzp(x))z = =7 PR+ 1Pyt —2ﬁ Yo7 (pro, )2 (5.109)

and integrating the generating functional over the auxiliary paramagnon field P.
Thus IP couples in the same way as y(He** + H') and can simply be added to these
fields in the matrix G-! of (5.47). As a consequence, the collective action (5.48) is the
same as before except with yH replaced by yH -+ IP everywhere and —I/4 P? added.
The most important effect of these modifications appears in the paramagnetic suscep-
tibility. Consider first the lowest order susceptibility as obtained from the H? term in
(5.48). This reads

ATAAH | rierm = — = y* b7 trgpin (GO ‘-’QE @, ‘12—) — —% V2 tr (GLHGH)  (5.110)

with the definition of the susceptibility

/| _ L[y e (5.111)
Hiterm = & @) x(k) [H(k)| .
one has the lowest order result

7RO, k) = —-:;— y2fd4xe“‘“’G0(x) Go(—x). (6.112)

This expression was given in equ. (3.17) for small k® and fixed k/|k| as

2Ok, k) = — T a(—ik?, k)

%

v 0 e+ 1 m
_—Z—N(O)(l 2]og\§_1‘ i 21061 (1 19|>)

,yZ

2

Il

N©) {(k9, k). (5.113)

For k® much smaller than pg|k|/m and |k| < pp the result of the integration (3.17) is
instead:
k2 . mk?

IO R ] —— 1 T .
/ 257 2 Pl

(5.114)




Collective Quantum Fields 625

The substitution yH — yH + IP and the addition of —7/4 P2 in (5.111) renders the
action

1 d*k dk
o = —N©O) | —— J/ P(k)? — — 5.115
£ VO [ 6 1) + 1P | e (5.115)

The term quadratic in P determines the paramagnon propagator as

I ) 2 10,
= AR —— " . (5.116
Bl =0 =T 0RO, ke ST 5 Y P A o
—g T oz ' K) —INQO) [1 — B T ok

This does not correspond to a stable quasi-particle due to the nonvanishing imaginary
part. There is, however, a definite peak in the imaginary part at the energy

ko —= 2 — (1 —~1) Pk, T=IN©O (5.117)

JI

with a width of the same order of magnitude such that the quasiparticle concept does
have an approximate meaning. If / ~ 1, which will turn out to be the case experimen-
tally, the velocity of this excitation approaches zero. The paramagnon couples directly
to the magnetic field, via

I dk
o = — O(k0, kY H+(kO, k) P(k°, E). 5.118
- [ e 000, ) 00, B P By 5.118)
As a consequence, all magnetic properties receive strong paramagnon corrections.

Consider first the susoeptlblhty itself. The quadratlc action (5.115) in the generating
functional can be integrated in DP,. The result is found, as usual, by completing the

square
dk L NO) A I
o= [ el =5 | = T2 (1 1)
U(ﬁ%i’—-fmk)]w ¥ (o) f(k)IH(k)lz}- (5.119)

The complete square in parenthesis leads to an irrelevant constant in the integral of
Z[75*, 7). The remaining H? term can be written as

_ ¥ dk If(k) 2 .
Ayl = ZN(O)U[@_n)—‘If(k) (1 + Tff(—k)—) H(E)|. (5.120)

Thus the susceptibility of the normal liquid corrected by paramaquon effects becomes

H(K°, k)
1 — 1/, k)

(& k) = —Z; N (0) (5.121)

For static homogeneous fields: f = 1 and I can be determined to be roughly 0.9 in
3He. The parameter I is related to Landaw’s phenomenological Fermi liquid parameter
Zy as I = —Zy/4. Remember that in Landau’s theory this parameter determines the
molecular field strength associated with the induced spin polarization density S:

1
H.. — ;. 122
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Consider now the paramagnon correction to the magnetic energy in the presence of
a collective field A,;. Again, yH has to be replaced by yH + IP. If one restrict to
slowly varying fields all terms quadratic in the paramagnon field may be collected as
follows:

‘4 "
= [ {(‘@ 1) 6, — 2 A,;-(O)Avi(m) (VL&) + TP, (&) (yHL(K) + IP,())*
7T ‘})
1

-7 gp(]f)lz}_ _ (5.123)

If 4;(0) 4,;(0) would be proportional to 4,,, say |A|*d,,, then completing again the
square would lead to exactly the same expression as (5.20) except with N(0) replaced

by N(0) (1 — a), (also in I = IN(0)) where

Thus the corrected action quadratic in / an 4 would read

/ 7 kR — ) S
Valae = 7 N(O)f(zn)4 1 — If(k) (1 — a) HBE.

Expanding this to lowest order in |42 (i.e. «) one would find
f(k)
(1 — Tf(k)

The first term is again the corrected susceptibility calculated before. The second term
gives the magnetic energy &7, with paramagnon corrections

dk 1
B (1 — T

, 2 rodk k
i =30 | et LS

e \T— 170 [H(E)? — a

L%

; ;H(k)]%}. (5.124)

LQ/z’(l‘orr = iA(O) II(A):2. (5125)

In reality, however, 4:,4,; is a matrix, but it can casily be seen that all steps can again
he done as before. Thus the paramagnon correction consists mereley in multiplying the
original result (5.54) by (1 — If(k))2 with f = 1 for a static homogeneous magnetic field.
The calculation of the paramagnon correction to the quartic terms of the free energy is
quite involved. One obviously has to calculate the term of order 1242 in the action,
replaceyH by yH + I[P and proceed as hefore. The result can be found only numerically
[29]. The corrections to the coefficients f; of (5.39) are:

By = —(1 4+ 0.15) B30; B, = (2 + 0.26) B/30
By = (2 — 0.050) B/30; Py = (2 — 0.558) B/30 (5.126)
Bs = — (2 1 0.79) B/30

where the parameter § is related to an exchange of two paramagnons between two
collective particles,

(5.127)
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The é corrections change the minimal free energies to
1 ,uAZ 2
4 p/15 2 — 1.056

Fglin -
(5.128)

1 ‘LlAz 6

1 p/15 3 1.000°

7B __
ﬁmin —_

One now sees that the energy of the 4 phase is lower than that of the B phase as scon
as 0 exceeds 0.47. In reality, the value of § calculated from the above formula is merely
of the correct order of magnitude if T is chosen to agree with the susceptibility data.
The paramagnon explanation is not completely satisfactory in that a corresponding
correction to the quadratic terms in the free energy are quite large®') as compared with
what comes from the initial pairing force. It is gratifying to note, however, that the ex-
cellent agreement of the relation K; = (K, + K;3)/2 with experiment which is natural
consequence of the pairing force remains valid approximatly since the corrections to
K, ,; are of the order of a few percent only.

Besides, there are inconsistencies. If the free energy (5.37) is used to calculate the
specific heats one finds the jumps at 7', of*

Aed 2

~ 1.19 =—
Cnormal ,‘9245
(5.12%)
AcB 5
~ 1.43
Cnormal 3[7 12 3345

in 4 and B phase where §; = ; - 30/8. The experimental numbers for the left hand side
are 2 -+ 0,08 and 1.9 4 0,08, respectively [14] such that

Boss ~ 1,2 + 0,05, 3B1a + Pas ~ 3,75 - 0,15. (5.130;
The parametrization (5.126) gives
Bass = (2 — 1,050); 3‘312 + Bass = (5 — 1,000) 3.131)

and therefore & ~ 0.76 4+ 0.05 and 1.25 4- 0.15, respectively. The sccond value is
above 0.47 where the B phase becomes unstable.
For a general approach to strong-coupling corrections the reader is referred to Ref. [30].

V.8. Spin Dynamics

After incorporation of the paramagnon corrections, the action takes d sufficiently con-
venient form to study the behaviour of the spin density operators y*(x) 0,/2 y(x) in the
liguid. Also here, the path integral method permits a quite stlalghtforward der 1va.tion
of the equations of motion which are known as Leggett’s equations [14]. For this pur-
pose, remember that the information on all Green’s functions involving spin densities
pH(x) 0,/2 p(x) is contained in the dependence of the generating functional Z on the
external magnetic field HGXt Due to the coupling (5.46) in the original Lagrangian,
arbitrarily many factors y+(x) 0,/2 y(x) can be generated by functional differentiaticn
with respect to yot{cst, for example
, o g, 1 0:Z N

0T (Q/)+<x) 7”1.0(:1:) (') 5 p(x ) 10) = 2 SH = (2] S ) (5.132)

1) The autor is grateful to Prof. K. Maki for several clarifying discussions of this point.
*} The numeric factors are 10/70(3) ~ 1.19 and 12/74(3) ~ 1.43.
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This certainly remains true after having gone from fundamental fields p(x) to collective
fields 4,;(x). In order to extract the physical consequences of this dependence on He<!
in the collective action &Z/[A,;, H**!] it is useful to convert it into an explicit dependence
on the spin density operators which will, from now on, be abbreviated by

su(x) = ptx) = p(x). (5.133)

Such a conversion is formally achieved by determining an action «/[A4,;, s.] %uch that
the functional integral

ZIH*] = [ DAj;DA,;Ds, exp {iet[A i, s.] + ¢ [ dawyH ot} (5.134)
reproduces the original form
ZIH\] = [ DA;;DA,; exp {ief [A,;, H>']} (5.135)

after integrating out Ds,. That this procedure renders a correct description of the spin
dynamics is seen as follows: Due to the functional integral, s, is indeed a fluctuating
quantum field. Moreover, since all Green’s functions of s, may be generated by functional
differentiation with respect to H ext, the correlation functions of s, must coincide with
those of the composme fields y*(x) o, / 2 p(x). As a consequence, the quantum fields §, are
identical with the spin density operators and commute at equal times, according to

[8.(x, 1), 8,(&', )] = 1e8a(®, t) O3(x — @) (5.136)

thereby forming the spin rotation group. Since the operators yt(x) 0,/2 w(zx) also generate,
by commutation, rotations on the spin indices of all other composite fields, it is straight-
forward to derive the commutation rules with the collective quantum fields 4,;:

[ [d3xs.(a, 1), Ay, 1)] = tepid (@, 1). (5.137)

In order to prove this statement formally, one has to introduce an external field J
generating Green’s functions of 3¢g/2pp v*+iV; 0,/2 » via an additional action:

His

YiR-4 :fdx [yﬁ(:c) ii‘ﬁf'i%‘iwﬂx) J i) + h.c.}. (5.138)

After having performed the transition to collective coordinates this current enters in
the tr log term via the effective replacement (compare (5.17), (5.22))

Aui%Aui +in' (5.139)

Moreover, by a corresponding shift in the funetional integral, this current can be moved
completely into the contact term such that it amounts, in the collective action, to
adding

ui

1 -
AM:—%fdx(J,;J,,hJ Ay — Jud). (5.140)

By functional differentiation with respect to ydHext and 1/3¢g 6J,; it is obvious that the
original commutator

[ [d%tp*‘(.??, t) 22'1 plx, t), p*r(x', 1) z'%io‘.,y)*(w', t)] = 1e,pt(a’, t) %77}(7;1/#(9/:, t) (5.141)

goes exactly over into (5.137).
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Consider now the collective-field action up to second order in H®** after the inclusion of
the paramagnon effects:

dk 1
Ay B = A A,0) - [ i) 5 1@

dk 1
—q A, H e 5.142
0| o [ — T | o149

Here &7, denotes the remaining collective action at Hext — 0. To this approximation,
the spin dependent action (5.134) is readily determined to be

1 dk
A, 8] = o[ Aui] — ?”zf(znyl 11k

. 4 9z 1 + . . +(]
X (lsw R T A (A)). (5.143)

This action allows a direct study of the spin motion. In order to simplify the discussion,
let us take the temperature very close to 7',. Then the last term can be neglected since
it is of the order (4/T)2 ~ (1 — T(T,) as compared to the one before. If one simplifies
further by considering only isotropic spin motion in the sample, then only the total
spin

Su(x) = f d3xs,(x, t) (5.144)

occurs in the action which commutes as usual angular momentum. In a unit volume, </
can be written as

1
AAui, ]~ So[Aw] — 5 ¥ [ dt x18,2(0). (5.145)

Together with the external current piece in (5.134) this amounts to a spin dependent
energy

A

1
Hypin ~ 5 727782 — yH,8,. (5.146)

Notice that classically (i.e. in the temperature average) variation with respect to 6S
gives
S =y yH (5.147)

such that the magnetization M = yH in related to the spin field by M = yS.
The Hamiltonian may be quantized in accordance with (5.136) which, for the total
spin, amounts to the usual commutation rules

[S;u Sv] - ig,uv}.Sl- (5.14.8)

Remembering now that the first term of the action (5.145) has the form (5.64), with
&/, = 0, the full Hamiltonian reads:

H~Hgn +F + Fg+ - (5.149)

47 Zeitschrift , Fortschritte der Physik“, Heft 11/12
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where F is the Ginzburg-Landau free energy (5.37) and #; is the dipole energy corre-
sponding to (5.62):

2
Fq=gq f d*x (A,t,,Aw + 404 — 3 A;;,A,‘,). (5.150)

The dots indicate higher time and spatial derivative terms. For T close to T'.. the time
derivative terms are of order (4/7)2 ~ 1 — T/T, as compared with the time derivative
terms implied by (5.146) and may be neglected. Now the equations of motion for §; can
be calculated by straightforward commutation:

S = {[AS] = ¥S X He<t + [F,S]. (3.151)

The last terms contains only the dipole energy since this is the only term not being
invariant under separate spin and orbital rotations. Using the commutator (5.137), this
term can be written as

TF48;] = gaess 2 Re (A5 A5 -+ Afd ). (3.152)

In a vanishing magnetic field, the second time derivative of §; can be computed by one
more commutation

8; = —[[8:Fa) 8;] 728 = — 248, (5.153)

where the frequency tensor £7; is defined as
lej — gd)’zx-l 2 Re [A{;'Akk "I" A&Ak]
— 0ij(Apdy + A5 Ay)
+ eiritimn( A A mn + A Am)] (5.154)

For small vibrations around an equilibrium position, this tensor may be evaluated at
the equilibrium values of S;. In the presence of an external magnetic field H®xt, the
equations of motion (5.153) have to be supplemented with the standard precession term
oy, X8 on the left hand side (w, = yHex).

1f Hext points in z direction and £3; is diagonal in the z, y, z coordinate frame, this leads
to a longitudinal precession frequency around the z axis

w, = 2, (5.155)

while there are two different transverse oscillations with frequencies
1 Py 2 a gy
W1,2 = B} {{w® + QF, + 2, + [(wg® + 927, + ‘Q;y)z - 4Qix~(2&y]”2}2‘ (5.156)

If one of the diagonal values vanishes, say 2,, = 0, i.e. if there isno harmonic driving
force for small rotations around this direction, one of these frequencies vanishes, say
0y = 0, and the other becomes simply:

wp = y?H™ + Q7. (5.157)

The matrix elements Q7; can easily be given for the 4 and B phases by considering di-
rectly the dipole energies in the forms (5.67) and (5.68). In the A phase, if Hex* points
in z direction and 1 is pinned, say, in y direction by external walls, the dipole energy is

fa = —3gs A4% cos® ¢ (5.158)
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where g is the angle between d and I. Thus, one has 2, = 0 and for rotations around x
and =z

Q2 =, = 0% = by A4%,. (5.159)

As a result, the longitudinal and transverse spin resonances in the presence of an ex-
ternal Hext field oscillate with frequencies 2, and }y2He="" + Q,2, respectively (experi-
mentally, 2, is of the order of 50 kHz).

In the B phase, on the other hand, the external field pulls the #i-vector of (5.66) in the z
direction (see equ. (5.71)). The dipole energy

1\* 1
fd = 8gd ABZ cos 0 + =] — = (5160)
4 4
gives rise to a non-vanishing frequency if 6 vibrates around arc cos (— 1/4). For small
deviations

1
82f, == 8gg Az 'i'g" (66)2. (5.161)

Since 8 is the angle of rotation around # = % there is only one non-vanishing resonance
for longitudinal excitation:

o= Qf = 2%, = 1572 Ay (5.162)

o

)
for the spin precessing around the z axis. Notice: Q2022 = > 18482y 4442 Experi-

mentally, this ratio is close to 5/2. Since x5 ~ y4 this implies Jp ~ Ay.
For transverse excitations, on the other hand, the normal resonance frequency o, = pH***
is unchanged as the liquid makes its transition from the normal to the B phase.

V.9. Solitons and Satellites

For completeness, wenow present a brief discussion of singular field configurations and of
possible ways of detecting them experimentally. With the order parameter being a
complex 3 X 3 matrix A4,; there exist many such configurations which are stable and

Fig. XII. The singular line a cylinder (disgyration) tries to escape into the distc ted configuration on the right (Mermin-
Ttg vortex) in order to avoid spending condensation energy

topologically quite distinet. In principle, the sample may contain planar, linear, or
point-like singularities. For small enough temperatures 7' << T, the liquid tends to
avoid true singularities in its interior. The reason is that at a point at which the direction
of the 18 component vector A4,; is undefined it must vanish altogether and this implies
that there the liquid must be normal. If 7' is far enough below 7';, the normal liquid has
a high energy density. As a consequence, it tries to escape into energetically less cost-
ly configurations in which the size of the order parameter, 4 ;4 ,; = 34%stays constant
throughout the volume (namely exactly at the values given by (5.65), (5.66) at which
the free energy F is minimal). This is achieved by bending the field lines until the
singularities have all moved to the boundaries of the container. There they can be acco-

47*
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Fig. XII1. The pqint singularity @n a radiall texture is drawn to the wall by two singular lines whose energy is proportional
to their length. The lines are singularities in what is defined as superliquid velocity ve; = dOP ), Tts curl on

the surface equa s the curvature such that theintegral over a sphere gives two flux units ( fdsv; = — f (V xv,)da
= —fda/ ¥— —2 ><2775)

moda‘ted with the least additional cost of energy. From equ. (5.43) we know that also
bending of the field lines raises the energy density but this amount is much smaller
than what would be required for bringing the liquid from superliquid to the normal

phase (for T L T).
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Fig. XIV. Planar singularities are smoothed out to splay (a), bend (b), or twist-like domain walls (c)
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Examples for smoothed out singular field configurations are given in Figs. XII, XIII,
X1V which display I field lines of 3He in the A phase. Since the I vectors are always
orthogonal to the walls, there must be a singularity in the spherical vessel which is
avoided by the field lines distorting until the singularity reaches the boundary [22] (see
Fig. XII). In a cylindrical vessel, the singular line along the z-axis is regularized by the
field lines turning parallel to the axis when approaching the center [34] (see Fig. XIII).
The distortion of planarl or d field configurations may, in principle, proceed in three
ways (see Figs. XIVa—ec). In the situation a) the field lines turn from forward to back-
ward in one of the planes parallel to the x-axis (“splay”);in b)or ¢) the distortion may
proceed in the x — z plane (“bend”)or in the x — y plane (“twist’’), respectively [35].
Apart from these simple situations there may exist topologically more involved field
configurations. In a torus [36], for example, the vectors @1, @ may turn once around
the 1 = @1 x P direction when going around the circumference [36] at the surface
the 1 vector always pointing outward. A parallel I field may contain a cylindrial region
with 1 field lines running in the opposite direction, the wall forming a bend or
twist like domain [36, 37]. There may be vortex ring-like objects which move through
the liquid with finite energy and momentum [38]. The possibilities are certainly many
and the liquid will, in general, be crowded with all of them at the same time unless
experimentalists learn how to prepare samples with only one specific type of would-
be-singularities [39, 40]. The many ways of enforcing desired configurations were
already discussed in Sect. V.5. (walls, external fields, currents, ete.). With more experi-
ence, these should be sufficient to bring the liquid under control.

Apart from would-be-singularities enforced by external conditions, there are others
whose properties are governed completely by intrinsic parameters of the liquid. As a
matter of fact, they can be used to measure experimentally certain phenomenological
coefficients in the Ginzburg-Landau expansion. The prime examples consist in planar
domain walls arising from the presence of the dipole energy (5.67) or (5.68). Their size is

controlled by the ratio ]/K23/8gd A~ 103 cm (see (5.63) and (5.43)). In addition, they
form traps for spin waves and thereby give rise to satellite frequencies accompanying
nuclear magnetic resonances. The measured frequency ratio determines directly the
ratio among the coefficients in the bending energy (5.42)

% = 2K, (K, + Ks).

As an illustration, let us study a structure of this type for 3He in the A-phase. The
situation becomes most simple by turning on a magnetic field H in z-direction. This
assures the d vectors to stay in the x — y plane (see equ. (5.69)). There they may be
parametrized by

d=siny- &+ cosy- 9. (5.163)

The dipole force (5.67) tends to align the I vectors parallel or anti-parallel to the fields.
Thus also the I vectors want to stay in the x — y-plane and may be parameterized simi-
larly via

l = sin y& + cos xy.

With this I, the complex vector @ = @V + @ can have the general form
@D — o'o(—cos y& 1+ sin y§ + 12). (5.164)

We expect that y will be equal to  or p + = for most portions of the liquid. The change
from one configuration to the other should occur only inside narrow domain walls. Notice,
that this parametrization of d and I limits the domain configurations to the pure “twist”

type (Fig. XIVe).
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With the order parameter (5.65), the free bending energy density becomes

Koy . % ‘
=~ —22‘ {3144;1 (/']‘AM]' —]L E‘ 31A;, 81#‘4#]}

3 1
%ZK%SA/F {I(Ijadulz "}—' J9‘I’]2 —}—%(381@7

: |
4~;aﬂan)l. (5.163)

Here. we have combined K, and K, terms since they differ only by a pure divergence
which can be neglected in a bulk sample. The ratio x = 2K,/K,, equals one for the weak
coupling BCS values (5.43). We shall keep this parameter in the calculation since the
phenomena to be presented now are sensitive to it and may be used for its experimental
measurement.

Inserting the above planar parametrizations for I andd into the bending energy, one has
n;%Kmmﬂw+1MWV—wa+w+¢va—wm2
+ 2 (@00 + (G — 22 a,x} (5.166)
where ¢; denotes the derivative in the direction of 1:
0, = 19 = sin y &, + cos y0,. (5.167)

Of the vemaining part of the free energy, only the dipole expression (5.67) contributes
which amounts to adding

, ‘
fa = e sin? (y — ) (5.168)

inside the curly brackets with the coherence length parameter being defined as
&2 = Ky3/8q, (3.169)

which is of the order of 102 cm. It is this dipole energy term which gives rise to domain
walls. Their thickness is governed by the length parameter &.
In ovder to proceed, let us now limit the consideration to plane waves where all fields

depend only on s = k - &, where k is some unit vector. Then the free energy is propor-
tional to??)

foc{(n+1ﬂa2)y}82+(%—{—1—0&2)%2—{—(%—%—cﬂ)xﬁ

| - e
— 2kapsys + 5o sin® (g — w)} (0.170)
-l
where we have set ¢ = lk. A quadratic completion brings this to the form
foe ket —a) p2 4 (e -1 — a9 (g, ——— )
p® o+ I 2
1 , k.2a? 1 - 1
+§‘(%+2a2—2m) Zsz—{—gﬁsu'lz(%-*'lp)}. (0.1‘1)

Minimization of this requires the dependence

k.o

[y g
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In order to minimize the remainder of the energy density one may introduce v = y —
and u =y + 2(¢ + 1 — a®?/[(% + 1 — a?) (x + 2a®) — 2k,%a?] p and finds the dlagonal
form

F=tut 1o (5.173)
with22)
1 (% +1—a? (x + 2a2) — 2k,2a?
2 (x+1—a? 3%+ 2) — 2k,22

fo = w2, (5.174a)

e 2y _ 9L 2,2
(v +1 — a?) (x + 207 2kPa 7)2+_sh2 . (5.174b)

— " _— 2
fo= et L= O T ) B 1 D) 2k 2

Variations in u give « = const.

A non-trivial minium of the second part cannot be given for general k. The expression
simplifies, however, if &k runs in z direction (i.e. if the domain walls is orthogonal to
the H field). This might be enforced experimentally by choosing a narrow cylindrical
vessel with the axis along the H field. Since a domain wall tends to minimize its surface
energy, it is expected to run across the cylinder. Notice, however, that the diameter
has to be large enough as to avoid distorting effects from the boundary conditions at
the eylinder wall. With % in z direction, the second part of the energy becomes

#e + 1), 2+ —sin?» (5.175)

fo = 3+ 2 252

and can be minimized by the well-known classical soliton solution

tan ver/2 = €01 gin vy = chl z/&
(5.176)
COS Vg = T th /&

where &, = V2x(x + 1)/(3% + 2) & The energy per unit surface of the domain wall

js22)
Flo :fdzf = lfdz ch™1 2/ = 250E2 = 2 ‘/29;(/—%1—21—) &1, (5.177)

Due to the joint distortion of d and I vectors this soliton may be called composite [21].
For general direction %, a similar solution is expected but it can no longer be calculated
exactly. One may, however, convince oneself that a small £; would raise the energy.
Thus, if solitons are produced in arbltraly directions they are expected to align towards
the z direction under emission of spin-wave radiation.

The physical situation described by the solution (5.176) is quite simple. For z — —oc0
the vectors I and d start out in the same direction, say y. As z runs through the origin
the relative angle changes from zero to #. Since v = y + 2(% -+ 1)/x 9 remains constant,
% and ¢ turn opposite to each other,the first 2(x + 1)/x times as fast as the second, until
they are pointing antiparallel to one another. In the final position, at z > oo, I points at an
angle 2(x -+ 1)/(3x 4 2) m, while d has moved into the opposite direction —ux/(3x + 2) z.
Since the theoretical weak coupling value is » = 1, the motion of 1 is expected to be
roughly four times as far to the right as the motion of d to the left (see Fig. XV).
How can one detect the presence of such a domuin wall? In order to answer this question,
one ohserves that for small vibrations a soliton configuration represents a potential

*) Up to the proportionality factor 3/4Ky, A% = n/8m(l — T/T,) from (5.166).
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well. Consider the free energy density
f=ua2+ Qsin’®«x (56.178)

with a soliton
tan ager/2 = 2.

Inserting small oscillations around this solution

X == 0go1 -+ O (5.179)
one finds
1

2f __ 902
7 ch?zQ

482 -+ 2 (1 — 2 ) 8. (5.180)

ch?z0

VAV

Fig. XV. In the composite soliton (5.176) the ! vector twists about four times as far as the d vector. The soliton is energeti-
cally quite close to the pure [ type

The minimization of this amounts to a standard Schrédinger problem [471]:

Vo
ch2za

[— 2,2 + (!22 — )} 8(z) = 0(z). (5.181)
The spectrum of this equation consists of a continuum with asymptotic momenta k and
eigenvalues

ot = Q% 4 k2 (5.182)
and of bound states forn = 0,1, ..., s

1
0,(2) oc (ch za)"* F,,; (——n, 2s —n;s—n—+1; — (1 —th za))~ (5.183)

with eigenvalues
W% = 2% — a*(s — n)3. (5.184)
The parameter s is

§ = _;_ [—1 4 Y1 4V ja?]. (5.185)

Comparing the bound-state values with that of the £ = 0 continuum state, one finds the
ratio
a2

s — n)2. (5.186)

It is a pleasant property of ®He that such a ratio can apparently be detected experi-
mentally. For this, one adds a small oscillating magnetic field H, longitudinal to the
external field H. This is capable of exciting oscillations of the d vector in the x — y
plane. If the small changes of the angle y are denoted by f, say v = psa + f, the angles
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u and ¢ vibrate around the soliton configuration according to

x + 1

“<

U == Ugp + 2

[ v =vsq — f. (5.187)

Inserting this into (5.174) and (5.175), one finds the change in free energy

1 2
02 — 120 4+ 1) f,2 21 — ———] f*%. 5.188
foc2{<w+ ) 12+ & ( chzz/gsol)f} (5.188)
As a consequence, the parameter s is found to be
1
s=5 [=1+ V1 + 48/ + 1) 2]
1 8 ~ \
:E[_l -+ 1/1 +3H+2}. (5.189
For x ~ 1, thigis about 0.3 and we find exactly one bound state with a wave function
fo ! (5.190)
’ (Ch Z/Esol)s ’ )
Its eigenvalue corresponds to a ratio
3¢ + 2
=1-—-2 1) 8252252 =1 — 2(x A RS
R, (e -+ 1) £33 20+ 1) gy
1
=2—[V(11%+2) (3% + 2) — (bx + 2)]. (5.191)
t

1t is gratifying that this ratio is independent of the knowledge of the size of the time
derivative term in the action. All that has to be known about this term is that it is
dominated by the lowest possible form f2 (see Sect. V.8.). Thus the above value of R
determines the ratio of the squares of the resonance frequencies observed in longitudinal

magnetic excitations. For » = 1 4 ¢ &~ 1 the ratio comes out to be
1, — 5 \2 5\
N — / 3y — _—— A . 2 2 _— . -’.11 2
Ry~ (63 7)(1 . s) (0.728) (1 . e) (5.192)

There exists an experiment which detects a satellite frequency shifted by a factor 0.74
below the normal nuclear magnetic resonance line [27]. Thus, there is a good chance
that this line is due to spin waves trapped in domain walls of the type discussed here.
Taking this identification serious, the coefficients in the bending energy are found to
have a ratio ¥ = 2K,/K,; only 29, smaller than the weak coupling prediction (3.43).
An alternative experiment may be performed by applying a transverse oscillating
magnetic field H; (i.e. orthogonal to the external field H) say in x direction. Then the d
vector will start tipping toward the z direction. If one parametrizes such a tipping d
vector field by

d =sinycosg® - cosycos gy + sing# (5.193)

and inserts this into the original free energy (5.165) one finds the quadratic deviation
from the extremal soliton configuration:

1 . ~
0°f =5 {200 + 1) (99 — (619)*] + [£3(1 — sin2(y — p)) — 202 + 1) (Ip)?Y . (5.194)
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For the composite soliton (5.176) this amounts to

1 4y 4 2 1
9 o 2 -2 (1 _ 2 ]
&l 2 {2(% +het e ( 3% + 2 ch? z/fsol) g } (5.195)
This energy density has an s value
%
i

and therefore exactly one bound state (for > 0) with a ratio

%+ 1

By = 3% - 2

~ (0.896)> for » ~ 1. (5.196)

One may easily check that the g vibrations do not interfere with the previously calculated
f modes by using

d —=sin (yp -+ f)ycosg® |- cos (p + f)cosgy +sing? (5.197)

and observing that %f is really the sum of the expressions (5.188) and (5.194) with no
nmixed fg term.

There is an experiment [27] in which a satellite is observed for a transverse nuclear
magnetic resonance. Its frequency, however, is by a factor 0.835 lower than the main
line. While the discrepancy between 0.896 and 0.835 is quite small, it is significant as
far as the value of x» is concerned. As we see from (5.196), a value of x ~ 6 would be
necessary to bring the ratio to the observed value in contrast to the longitudinal value
x ~ 1 which agrees so well with the weak coupling prediction. The resolution of this
difficulty may consist in the following argument [39]: While the longitudinal experiment
was performed in a vertical cylinder (i.e. parallel to the z-axis) such that the formation
of a twist line domain wall is most probable, the transverse experiment had the axis
turned horizontally with the vibrating field H, along the axis. Since the domain wall is
expected to span across the cylinder, the k vector should be in the xy plane with a splay
or bend like distortion of the field lines. The corresponding minimum of (5.174) can only
be found numerically. The same thing holds for the small oscillations trapped in the
domain wall. The result for » ~ 1 is B, ~ (0.82)% and compares much more favourably
with the experimental number (0.835)2.

A short discussion is in order concerning the systematic creation and dynamics of
solitons in the liquid. Consider a sample between two plates parallel to the x — z plane
such that I and d vectors run uniformly from wall to wall in y-direction. This corre-
sponds to the p = 0, ¥ = 0, ¢ = const. solution of (5.170). Suppose now, an external
magnetic field in z direction with a shape H(z) = wy(z)/y is suddenly turned off. Then
the d vector will start rotating around the z axis with the velocity

Pz, 0) = woz). : (5.198)

This can be seen by commuting the Hamiltonian (5.146) with (5.170): Since a spin
rotation around the z-axis changes v, one has

[S5, p] = —1 (5.199)
and therefore )
P(z, 0) = [Hepiny] = 92183 — vHy = —y(H3 — 31 M3) (5.200)

which says that the speed of y is determined by the instantaneous discrepancy between
the magnetic field and the corresponding magnetization. Turning off part of H; by going
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to Hy — Hg(z) will cause exactly the discrepancy w,(z)/y setting  into motion. In order
to study the time evolvement of (2, t) one has to add a kinetic term to (5.170). From the
discussion of (5.158) it is obvious that this term must have the form

1

smaz (5.201)

flin o<
allowing for vibrations of frequency 2, around the equilibrium position. A correspond-
ing term must be added forthe I field. The discussion simplifies due to the fact that the
time scale of vibrations in I is usually about 10? times slower than in d. Therefore, one
may assume I to remain in its equilibrium position for the whole process of generation
and the solitons will be of the pure d type. The free energy is therefore (adding (5.170)
and (5.201))

ftoc [92 + 2,2 + Q2 sin? y] (5.202)

‘ 2520 2
with ¢ = 28%2,2( + 1) and with the initial conditions
»(z, 0) =0, ¥(z, 0) = wy(2). (5.203)

The solution of this problem can be given exactly by means of the inverse scattering
method [42]. A first estimate is possible for wy > 2. Then the last term can be neglected
and p has the general form:

P t) = fz + ot) — flz — et) (5.204)
where f(2) = w,(2)/2¢ such that
z+ct
1
p(z, 1) = 2_cf wy(z') dz’. : (5.205)
z—ct

Suppose H,(z) has the box form H0(a® — 22), i.e. w,y(2') = wob(a® — z'2). Then y(z, {)
at fixed ¢ has the shape of a trapezoid whose sides rise linearly from the corners at
2 = F(a + ct) to z = F(a — ct) with a height value wqafc. As t exceeds a/c, the height
does not grow any more and remains at its maximal value wyu/c. The right and left
sides keep spreading apart with velocity c. If one divides the resulting trapezoids by
lines v = na; n =1, 2, 3, ... then every intersection gives the approximate position
of a soliton on the right-hand side and of an antisoliton on the left-hand side, both sets
moving apart from each other (see Fig. XVI). Thus, one has the approximate number of
soliton-antisoliton pairs:

wy @

Q4 &
With £ &~ 10-3 em one can create many hundred solitons in a vessel of a few centimeter
diameter (say a ~ 1 cm).
The exact solution is somewhat different: A fraction of the soliton-antisoliton pairs
does not separate but forms bound states (breather modes), which annihilate after a
short time (&~ 10-4s) due to spin diffusion. The emerging free pairs differ from the
estimate (5.206) by a factor [39]:

2
—ll/l—(QA) 4+ 1 arccos—!—)i.
2 Wy

alN pairs Wy

(5.206)

Npairs & @ga/c

The cloud of pure d solitons created in this fashion spreads with velocity ¢ = 2£02,
2 100 cm/s. The cloud will be slowed down by spin diffusion [43]and come toa halt within
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about 10-4 s, i.e. after 10-2 em. During this whole process thel vectors with their charac-
teristic time of 10-2 s do not have time to move. Now that the d solitons have stopped
the coupling with the I vectors can become active (see the orbital viscosity discussion
in Ref. [28]). From the derivative terms in (5.140) one sees that distorting the I vectors
is (#/2 + a?)/(x + 1 — a?) times easier?®) than distorting the d vectors. For a wave in

w(zt) position of
antisolitons

position of
solitons

23

Z

Fig. XVI1. The figure illustrates the generation of soliton-antisoliton pairs. As time proceeds, the trapezoidal profile of
w(zt) becomes wider linearly and higher until the top hits aw,. After this only the right and left sides keep
spreading with velocity ¢. The approximate position of each pair is obtained by the intersections with the
vertical lines at vy = n=, n =1,2,8, ...

z direction this becomes %/2(x + 1). Moreover, from (5.175) one concludes that the joint
bending of & and I vectors lies even lower, namely by a factor »/(3x + 2) (&~ 1/5). As
a consequence, the pure d solitons will relax into the composite soliton. The time in
which this happens may be estimated to be ~ 10-2(1 — 7T'/T )12 s24).

Finally let us take a look at the possibility of the liquid containing pure I solitons.
They may arise by conversion from d solitons if the direction of I is driven parallel to,
say, the y-axis by an additional external force, for example a current along the y-axis
with a velocity of the order cm/s (see (5.78)) or by an electric field (if that coupling is
found to be present, see (5.80)). Then the energy will come mainly from

floc (ﬁ 4 0,2) g2+ ——sin?y (5.207)
2 2ftzo'c
23) Due to the sin® term in f increasing the size of the domain wall at the same rate, this factor enters
the final energy density of a soliton only with a square root (see equ. (5.177)).
24) Notice that even if d solitons would be stable, they would not give rise to any interesting ob-
servable satellite frequency: Going through the chain of arguments after (5.179) one finds for the
free energy (5.188): R = 0: This zero-frequency made corresponds to an infinitesimal translation
of the soliton.
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with 1/2£%, including the external directional force (i.e. = 1/2&2 - g2 where ¢ is the flow
velocity). If k is in z direction, this gives a pure twist soliton

tan /21 — otV b (5.208)

of energy density F/o oc 2 ]/-9; &iot- If k has an arbitrary direction, then a2 = (k; sin y
+ k3 cos x)? and F/o can be minimized approximately by an ansatz

sin y = ch1ys, cos y = th s (5.209)

such that a2 = (k2 + 2k, %, sh s + k,2 sh? 5s)/ch? ys.
Using the formula:

1
. P(—2—+ M) I'v — p)

f ds sh® ys ch~? 38 = — (5.210)
K I'\v + i
2
one finds the energy per unit surface:
Flooc | ds -7—{—-4— (ky2 4 2ky, ko sh ys + kq? sh2ys) ch—29s | 52 1 —l——l- 1
2 ! Lo 2 ch?yns = 2£% \ch2ys
o [x+4k2+2kz}+ X[k] + (5.211)
— =k =1 .
I I g T N
which is minimal at
n = &Gt X (k)] (5.212)
with a value Ffo oc 2£.[7(R)]V2. This value is for pure bend (k = (1,0, O))
_ 4 <
Flo oc 28} Vx -+ T (5.213)
and for pure splay (k = (0, 1, O))
2
Flo o< 287} I/x +3 - (5.214)

Thus the splay energy is lower than the bend energy, both being larger than the twist
value. The quality of the approximation (5.209) with (5.213) and (5.214) is quite re-
markable. The exact kink solutions differ only by a few per cent [44].

Since 1 solitons can be stabilized, one may investigate what satellite frequencies they
give rise to. In a longitudinal magnetic field one finds from (5.170) for small vibrations
Y =0:

0% o {[x + 1 — (k2 + 2k, ky shps 4 k2 sh? ys) ch-25s] 6,2 + 2—155 (1 2 ) 02.

~ ch? 7S
(5.215)
This may be minimized approximately with a normalized wave function
1 ~1/2
1 r (—2—) ()
6 = (ch ns)~* T ) (5.216)
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Inserting this into (5.215) and integrating according to (5.210) gives

02F g = {T;%z [x ST — (2 + Bhp2) —— J 4t 2r)}. (5.217)

2 4+ 1 2 + 3| T 2

With the value 5 taken from (5.212) this amounts to a satellite frequency w,2 = R, 02,2
with

1
2v + 3

f &2 .
R, = S XY x4 1 — 2k + 3hy?)

— 3.9

2 + 1|&, J + (1 2v)}. (5.218)
Of this expression, the minimum has to be taken as a function of ». This can be done
only numerically. If one neglects the current, i.e. &,y &~ &, one finds for a pure bend
soliton (L = (1,0, O)) the minimum at » &~ 0.855 of R, ~ 0.117 and for the pure splay
case (k = (0, 1, 0)): v &~ 0.675, R, ~ 0.156. For the pure twist soliton (k = (0, 0, 1)), the
minimum lies at » = (]/3 — 1)/2 with R, = 2(]/‘3 — .1) ~ 0.464 which can also be
verified via an exaect solution.

For transverse excitation one has to take the kinetic term from (5.194) (with = 0):

1 ‘ -
Ff = e+ 1—a%) g 455 (1 — sin? ) g%, (5.219)
Now the R, ratio is
= o X [ 1= @ 3k 1k G220y
NI VT ! 272 4 3

Neglecting the external current, i.e. &0 & &, this vields satellite frequencies at minimal
values

Ry ~ 0.687 (for » &~ 0.48)
Ry ~ 0.684 (for v &~ 0.44)
Ry =2()2 — 1) ~ 0828 (forv = (J2 — 1)/2 ~ 0.21)

caught in pure bend, splay, and twist solitons, respectively, the latter case being again
exactly soluble.

Notice that these values should not be very different from those of composite solitons
under the same geometric circumstance. In the composite soliton the I vector is doing
4/5 of the bending and is, therefore, not really far from an almost pure  soliton. Neglect-
ing the difference, for simplicity, one is tempted to compare the previously discussed
satellite frequency observed in transverse excitations with the bend or splay results of a
pure I soliton which is in both cases

R ~ (0.83)z. (5.221)

As was said before, the horizontal position of the cylinder would indeed favour either
one of the domain walls such that the agreement with experiment may be significant.
The identification of the observed satellite resonances with the calculated trapping
frequencies in a soliton-like domain wall is certainly not unproblematic. The liguid is
expected to be crowded with “would-be” singularities of many sorts, all of which act as
potential wells for stray spin waves. Much more work will be necessary in order to find
safe ways of preparing specific kinds of singularities in the laboratory. Only then can
one attach significance to the comparison of theory with experiment.
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VI. Exactly Soluble Models

In order to gain more insight into the mechanism which allows the original fundamental
theory to become replaced by the collective field theory, without any approximation, it
is useful to study soluble models.

VI.1. The Pet Model

Consider the extremely simple case of a fundamental theory
H = (a*a)?/2 (6.1)

where a* denotes the creation operator of either a boson or a fermion. In the first case
the spectrum is
n? 1 ,
E, =— for |n) =— (at)"|0) (6.2)
2 ]/n!
in the second
E,=0 for |0)

(6.3)
1
E, = 5 for |1) = a*|0).
The Lagrangian corresponding to H is
L) = at(tyi ealt) — (a* (@) a(t))?/2 (6.4)

and the generating functional of all Green’s functions becomes

Zlyt, n] = (0] T exp [i f dt(nta + a+17)] |0y =N f Dat+Da exp [’L f dt(F + rra + aﬂy)].
(6.5)

A collective field may be introduced via the formula

exp [ [ di{ara(t))/2] = f Do(t) exp [% [ dt{o®(t) — 20(1) am(t))] (6.6)

or by adding to (6.5) inthe exponent ?/2 f dt(g(t) — aﬂ}c(t))2 and integrating functionally
over the o field.
Hence, the generating functional Z can be rewritten as

Ziyt,n] = Nf Da*DaDp exp [ifdt {a’f?} oaft) — o(t) ata(t) + —%—2 + nta + a*n}] .
(6.7)

The collective field describes the particle density: Functional derivation of the action
in (6.7) displays the dependence
e(t) = a*(t) alf). (6.8)

Integrating out the at, a fields gives

Zlnt 0] = N [ Do exp{is/o] — [ dt dt's+(t) Golt, ) n(t)} (6.9)

b

Nlrow

s/lg] = £ tr log (iG,™) +
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where G, denotes the propagator of the fundamental particles in a classical o(¢) field
(28 — ot) Golt, ') =16t — ¥). (6.10)

The Green’s function can be solved by introducing an auxiliary field

14
p(t) = [ o(t") dt'.

Q,(t, ') = e-ioeinlt) G (1 — ') (6.11)

Then

with G, being the free-field propagator of the fundamental particles. At this point one
has to specify the boundary condition on G,. For this let us recall that the generating
functional deseribes the amplitude for vacuum to vacuum transitions in the presence
of the source fields 7+, 5. The propagation of the free particles must take place in the
same vacuum. If a4+, a, describes a free particle it follows that

Go(t — t') = (0] T(ao(t) ag+(t)) 10) = O — 1) (6.12)
and therefore, due to (6.11):
Go(t, 1) = e oWeiet) @t — t'). (6.13)

Knowing this we can readily calculate the tr log term in (6.9). The functional derivative
is certainly

S _ . |
Soll) {rtrlog (G, N} = F G, )=t = 0, (6.14)

where the ¢’ — ¢ limit is specified such that the field g(¢) couples, in (6.7), to
a’+(t) a(t) = iT(OL(t) a/+(t’))|t’=t+e rAS iGQ(t’ t’)’t'=t+s°

Hence, the @ function in (6.13) makes the functional derivative vanish and the tr log
becomes an irrelevant constant. The generating functional is then simply

2y, n) = N f Dy(t) exp [—;— J (o2 — [ty n(e) e et — t')] (6.15)

where ,
Do = Dg det (3 t — t')) = const Dg.

has been used.

Observe that it is ¢(f) which becomes a convenient dynamical plasmon variable, not
ol(t) itself.

The original theory has been transformed into a new one involving plasmons of zero
mass. At this point we take advantage of equivalence between functional and quantized
operator formulation by considering the plasmon action in the exponent of (6.15)
directly as a quantum field theory. The first term may be associated with a Lagrangian

1
Zolt) = 5 ¢)* (6.16)

describing free plasmons.

48 Zeitschrift ,,Fortschritte der Physik®”, Heft 11/12
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The Hilbert space of the corresponding Hamiltonian H = p?/2 consists of plane waves

which are eigenstates of the functional momentum operator p = —7 6/ég:
1 .
{plpl = ——=er® (6.17)
]/275
normalized according to
[dolp | o} {g | 9"} =dp — p). (6.18)
—oe

In the operator version (2.6) then, the generating functional reads

Zlyt, n] = Q1|0 {0] T exp [— [ dt dt'n(t) n(t') ¢ Wee @ — ¢)] [0} (6.19)

where @(t) are free field operators.

Notice that it is the zero-functional momentum state between which Z is taken. Due
to the norm (6.18) there is an infinite normalization factor which has formally been
taken out.

We can now trace the generation of all Green’s functions of fundamental particles by
forming functional derivatives with respect to #*, . First

O] Ta(t) a*+(t') |0) = ————62—2—— =

1
—_— —ipteiplt’) |() .
ST 0N |ypea (07 0) 1 ETTION O =)

(6.20)
Inserting the time translation operator
.p?
it — 2 (6.21)
the matrix element (6.20) becomes
p? i p? P
{0110} 0 ¢ T MUTTE 0,5 gy {070} 0 o0 20} (g )

But the state ¢#®]0} is an eigenstate of p with momentum p = 1 such that (6.22)
equals
1

7oy (L1 1 et = et (6.23)

and the Green’s function (6.20) becomes
OIT a(t) at(t’) |0y = e =22 Q@ — t'). (6.24)

This coincides exactly with the result of a calculation within the fundamental fields
at(l), a(t):

/Ol Ta( ,0> t _ t') <Ol ei(a+a)zt/2a(0) e——2—-(a+a)2(t~t')(1/+(0) evi(a+a)2t’/'2J0>
— @(t . t') e_i(t_t’)/z. ((5.25)

Observe that nowhere in the calculation has Fermi or Bose statistics been used. This
becomes relevant for higher Green’s functions. Expanding the exponent (6.19) to n’th
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order gives

1 (=) .
[n]r. I S ' 7 ’ - ’
ZW[y+, n] = oT0) fdtl dty ... dt, dt, (t) 5t oo 7 (E) 5lt,)

X {0] Te-toltdeielt) || e—tolteieta)|0} O(t; — 1) ... O, — t,'). (6.26)

The Green’s function
O] Ta(ty)-...- alt,) a*(t,’) - cat(t) 10) (6.27)

isobtained by forming the derivative (—1)2® 62°Z [s /0y (1)) - . . .- It (&) Oty )+ .. .- Sy (t).
There are (n!)? contributions due to the product rule of differentiation, n! of them being
identical thereby cancelling the factor 1/n! in (6.26). The others correspond, from the
point of view of combinatories, to all Wick contractions of (6.27), each contraction
being associated with a factor e-t¢eie(®) @t — ¢'). In addition, the Grassmann nature
of source fields 5 causes a minus sign to appear if the contractions deviating by an
odd permutation from the natural order 11’, 22', 33', ... For example

(O] Talt,) alty) at(ty) a+(t’) |0)

= (0f Ta(ty) alty) a*(#,) at(t)’) |0) £ (O] Ta(ty) alt) a*(t') a* (') |0)
= {O+O} {0] Te-tethle-telteinltlgivt) | () (@(tl — ) O, — b') £ O — ') O, — tll)

(6.28)

where the upper sign holds for bosons, the lower for fermions. The lower sign enforces
the Pauli exclusion principle: If {;, > ¢, > ¢,” > t,’ the two contributions cancel reflecting
the fact that no two fermions a+(t,') at(t,’ ) can be created successively on the particle
vacuum. For bosons one may insert again the time translation operator (6.21) and
complete sets of states f dp|p}{p| = 1 with the result:

2 p2
lo—t5' to 1,
b i), ’z( = e, T igio) 0}

f —ip(0) 2
{OIO dp dp'{0] e-i#O¢

— - iltty) [2g—i2(t—ty) g—ilty 1) 2 (6.29)

where {0f e-'¢©)|p} = 6(1 — p), {p| e®O|p’} =8(p + 1 — p’) has been used. This
again agrees with an operator calculation like (6.25).

We now understand how the collective quantum field theory works in this model.
Its Hilbert space is very large consisting of states of all functional momenta |p). When
it comes to calculating the Green’s functions of the fundamental fields, however, only
a small portion of this Hilbert space is used. A fermion can make plasmon transitions
back and forth between ground state [0} and the momentum one state |1} only, due
to the anticommutativity of the fermion source fields #*, . Bosons, on the other hand,
can connect all states of integer momentum |n}. No other states are ever reached. The
collective basis is overcomplete as far as the description of the underlying system is
concerned. Strong selection rules, p — p 4 1, together with the source statistics
make sure that only a small subspace becomes involved in the dynamics of the funda-
mental system. That such a projection is compatible with unitarity is ensured by the
cnnseriation law a*a = const. In higher dimensions, there have to be infinitely many
conservation laws (one for every space point).

Actually, in the boson case, the overcompleteness can be removed by defining the collec-
tive Lagrangian in (6.15) on a cyclic variable, i.e. one takes (6.16) on ¢ ¢ [0, 27) and

48%
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extends it periodically. The path integral (6.15) is then integrated accordingly. In this
case the Hilbert space would be grated containing only integer momenta p = 0, 4-1,
42, ... coinciding with the multi-boson states.

The following observations may be helpful in understanding the structure of the collective
theory: It may sometimes be convenient to build all Green’s functions not on the
vacuum state |0) but on some other reference state |R) for which we may choose the
excited state |n). In the operator language this amounts to a generating functional

"Zlnt, y] = (vl T exp [i [ di(rta + atn)] |n). - (6.30)
This would reflect itself in the boundary condition of &, for bosons
"Gyt — t') = (n| T(ag(t) agt(t’)) |n)
=n+ 1)t —1)+ 200 —t). (6.31)
For fermions, only n = 1 would be an alternative with
1008 — ) = (1] T(aglt) agH(t) [1) = —OF" — ). (6.32)

As a consequence of (6.31) or (6.32), formula (6.14) would become

0 n
—_— 't ; -1 o -
"0, {£7trlog (G, 1)} {1 } (6.33)
Integrating this functionally gives
Litrlog (i@t = — 31 4 [ o) dt (6.34)
g 14 1

such that the functional form of (6.30) reads, according to (6.9):

- e
X exp [— f At dyH(E) f(t') e-ioein® H" . 1} ot — 1)

+ {_"1} o — t)“. | (6.35)

Now the collective Lagrangian is

=" -
1
B

-Gy~ 4

with the functional canonical momentum

. n
P=%—1,
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the Hamiltonian takes the form

o aat]
%= - . (6.37)

Thus the spectrum is the same as before but the momenta are shifted by n (or 1) units
accounting for the fundamental particles contained in the reference state |R) of (6.30).
In the collective quantum field theory, this reference state corresponds now to func-
tional momentum zero:

{1 }Z[17+, n] = {Oﬁ o1 exp [—f dt dt'n+(t) n(l') e-iolete(t)

Y H" g 1} Ot — 1) + {_"1} o ’—t)]] 10} (6.38)

In fact, the one-particle Green’s function becomes

62
on(t) on()

1 PR, 1
— 070 [0] Te-iseie(t)]0} [{n g } O — t') + {—nl} o — t)]. (6.39)

oo, = Wt

Inserting the time translation operator corresponding to (6.37) this yields for ¢ > ¢

) P — [_{" t 1/2} “— w] {" + 1} _ {(n el 1))

3/2 0 0
(6.40)
and for ¢ < t'
{I}G(t, £} — exp [_z{”’ I/zl/z} (t — t’)] {_7-&1} — {" exp [_i(z;_tl'{i) - t')} (6.41)

in agreement with a direct operator calculation.

The appearance of the additional derivative term ¢ in the Lagrangian (6.36) can be
understood in an alternative fashion. The reference state |n) of ®Z in (6.30) can be
generated in the original generating functional by applying successively derivatives
—82/n+(t) On(t'), letting ' — —oo, ¢ — oo and absorbing an infinite phase exp[—iAF¥
% (200)] into the normalization constant where AE is the energy difference between |n)
and |0):

& o
(8% (Ho0))* (on(—o0)

"2, 7]l =m0 € o A im0

Each such pair of derivatives brings down a Green’s function

B T
e-irgist®) @t — (') = exp |~i [ o) dt"] O —t).
;
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Ast' — —o0, t — oo this becomes for n factors
exp [—infq'?(t) dt]

in agreement with the derivative term in (6.35).

While the functional Schrédinger picture is useful in understanding what happens in
the Hilbert space of the collective field theory, it is quite awkward to apply to more
than one dimension, in particular to the relativistic situation where the time does not
play a special role. A more direct and easily generalizable method for the evaluation
of fermion propagators in the collective theory consists in the following procedure:
One brings the products of exponentials in (6.26) to normal order by using Wick’s,
contraction formula in the functional form (2.31). Let the “charges” of the incoming
and outgoing fermions be ¢; = 41 and ¢; = —1, respectively.

Then the matrix element to be calculated in (6.26) are

{O] T exp [w§ %‘P(fi)] 10} = {0] T"exp [ifdtﬁv(t) ; qi0(t — fi)] 10}

where we have numbered the times as &y, &, ts, &y, ... rather than ¢, ¢, &, &', ... ete.
Now from (2.31) one has

, iX gt 1 , rt.
{0] T'e |0} = exp | — 5 [dtdt 2 @it — &) o) o) X ;008 — 1))
i j

X {0 T : exp [z’fdtqa(t) %‘ q:0(t" — t,-)]: |0}

1
= exp [— 5 2 9gipt) ‘P(tj)] - (6.42)
i

= -

The propagator of ¢ is well defined only after introducing a small regulator mass z:

r 1 dE 2 .
A J— —3E{t—1")
@(t) gt f o T
'R S ,
:;};e""““l :E;‘—i]t—tl +0(?€).

Then the right-hand side of (6.42) becomes for small »

1

1
(Y g\ - it — 1.

As x — 0 this expression vanishes unless the sum of all charges is zero: }'¢; = 0.
Thus one finds the general result for (6.26): ‘

N ! i » 3
{0| T exp [?'Z Qifﬁ(ti)] 0} = 0540 €XP [? 2 g 1t — t;|]~ (6.43)
q; 1)

i>]

In particular, the two point function (6.20) agrees with the Schrédinger calculation
(6.24).

VI.2. The Generalized BCS Model in a Degenerate Shell

A less trivial but completely transparent example is provided by the BCS degenerate-
shell model used in nuclear physics to describe the energy levels of some nuclei in which
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pairing forces are dominant (for example Sn and Pb isotopes [31]). For the under-
standing of the structure of the collective theory it will be useful to consider at first
both bosons and fermions as well as a more general interaction and impose the restric-
tion to fermions and to the particular BCS pairing force at a later stage. This more
general Hamiltonian reads -

vo|

Q
H =H, + Hin = &Y (a;ita; + bith;) —

i=1

{ :}—;’ a;th;tb;a ,-}

)

:t% Pmmm+h%»i9r (6.44)

where ¢ = 0 reduces to the actual BCS model in the case of fermions. The model can
be completely solved by introducing quasi-spin operators

2 Q
Lt =Y a* byt L=} ba; = (L*)*
i iz1

t=1

1 1
Ly =+ {Z(aﬁai + bith;) + Q} =5 2wt & bibit =

1

1

SN L£Q (645)

where N counts the total number of particles. These operators generate the group
SU(1, 1) or SU(2) for bosons or fermions, respectively:

(L, L*] = £ L*

[L+, L] = F2L4 (6.46)
using
LtL- = L2 F Ly 4+ Lj®

we can write

H =2¢l; T e2 — V(L2 4 L® F gLs?)
= 2eLy — V(L? + (1 — g) Lg?) F Q. (6.47)

Notice that the interaction term is SU(1, 1) or SU(2) symmetric for ¢ = 1. The irre-
ducible representations of the algebra (6.45) consist of states

In[Q, v]) = N, (LH)" [0[£2, v]) (6.48)

where the seniority label » denotes the presence of » unpaired particles «;* or b*, i.e.
those which are orthogonal to the configurations (L*)" |0). For » = 0 the spectrum of
L in an irreducible representation is

Q

0 0
+5, t3 L 5. 2. (6.49)

P4

This continues ad infinitum for bosons due to the non-compact topology of SU(1, 1)
while it terminates for fermions at 2/2 corresponding to a finite spin £/2. The invariant
Casimir operator

L= 12+ L[, F L2 (6.50)

characterizing the representation has the eigenvalue £2/2(1 T £2/2) showing in the fer-
mion case again the quasi-spin /2. If » unpaired particles are added to the vacuum,
the eigenvalues start at 4 (2 -+ v)/2. Thus the quasi-spin is reduced to (£ —»)/2. If v = 2
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unpaired fermions are present, the state is quasi-spin symmetric, for example:
0[R2, 21) = bytby* - ... - bgt]0). (6.51)

Due to the many choices of unpaired particles with the same total number the levels
show considerable degeneracies and one actually needs another label for their distinc-
tion. This has been dropped for brevity.

On the states [n[£2v]) the energies are from (6.47) and using N = 2n + »:

E:s(NiQ)—V{Q;Ev(1$Q§:v

) L4 n DN+ .(2)2] T Q. (6.52)

A typical level scheme for fermions of 2 = 8 with ¢ = 0 is displayed on Fig. XVIL.
If the single particle energy & is non-vanishing, the scheme is distorted via a linear
dependece on L, lifting the right- and depressing the left-hand side.

E
1

-o0&

—b 4
N

Wi
b

-4 -3 -2 1 -20V

Fig. XVII. The figure shows the level scheme of the BCS model in a single degenerate shell of multiplicity £2 = 8. The
abscissa denotes the third component of quasi-spin. The index v at each level stands for the number of un-
paired particle (“‘seniority’’)

For an attractive potential and given total particle number N, the state with v = 0
is the ground state with the higher seniorities having higher energies:

Eyor — Exge =V (9 T 1+ ;’;—) v (6.53)

The Lagrangian of the model is from (6.44)

Lty =2 (@it ()10, — ) a;(t) + bi*(t) (18, — &) b;(1))
V
E{Z“bb“} {%’aazj:bb )} (6.54)
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and the generating functional:

Z[nt, y, A+, 4] = f []Da;Da;Db;+Db;
X exp [z f dt {,@0 + X nita; + ain; + b + bﬁl,-}]. (6.55)

The quartic terms in the exponential can be removed by introducing a complex field
S =8, + %S, and a real field §;’, adding

2
- V{ IS(t) — Yaithit|* g [S;,’(t) — ';—2 (a;ta; 4 bibi+)] } (6.56)

i

and integrating Z functionally over DS = DS;DS,DS..
The addition of (6.56) changes % to:

L(t) = 2 {a;* (28 — e T gViS5') a; F b; (76, + & 4= gV'Sy') b;*)
+ VS+2 a,—+b,-+ —|— Z bi(liVS — V(IS]Z :}: gSs/?") i e, (657)

By using the more convenient two-spinor notation for fundamental fields and sources

fi= (;:Jr), fit= (it b))

(6.58)
Ji = (Zi): it = (gt Za)
the generating functional can be rewritten as
Z[j4] :f]i]Dfi*DfiDS exp [%fdt {3 +‘§: (Jithi + ff’?'i)}] (6.59)
v 9 10y — e F gV8y VS8
L =20 (st* (38, + & + gVSa’)) Jitt
— V(82 F g85"2) & 2. (6.60)

Now the fundamental fields f;*, f; can be integrated out yielding the collective action

[32]
S[S] = Litrlog (1Gs) — V(8,2 + 8,2 T g852) & &0 (6.61)

where (g is the matrix collecting the Green’s functions of the particles in the external

field §

I—t_l (¢, £ bty
Gsity ) — Tti( ) ait(t;’) (Ili( ) I;‘('i ) . (6.62)
bit(t) a;* (') bt () bi(t)

3
Its equation of motion, multiplied by {C; }

10, —e F gVSy VS+ . o8 ,
(:F VS ie 4 &+ gVSy Gs(t, t') =1 | ot — t) (6.63)
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may be solved by an Ansatz
Gslt, ') = U(t) Golt, ) U(r') (6.64)

where (7, is a solution of (6.63) for § = 0, 83" = 0, ¢ = 0. Before we proceed it is useful
to absorb ¢ and g into ;" by defining the more symmetric variable

T8, = FgSy — % (6.65)
Then equ. (6.63) reads

(ia, +V {_fﬁ’} ol + V{ gS‘} o® T ngaa) Ut) QU ) = ¢ {‘f}a(t — ). (6.66)
41 )

3 3
It is solved if U satisfies U+ { Oi} U {Ul } and the differential equation

() THpt = — 7 ({"Sz} ot {S} o F TSu). (6.6)
Sl S2

3 3 .
The condition U+ ’ U = “ can be met by parametrizing U in terms of Euler angles
1 1 yp g ) g

N e N
Ut) = ¢ 2e{iﬁ}2ey3. (6.68)

As should be expected from the above discussion of the operators L;, the matrices U
form a subgroup of the Lorentz group SL(2, C). In the Bose case this subgroup is
SU(1, 1) in the Fermi case SU(2). The equ. (6.66) implies the differential equations for
the Euler angles

(I)lzﬁsiny—{—dcshBCOS‘y = 2V5§,
0y = 3 cos y — & sh ffsin y = 2V.S, (6.69)
3= d&chf +p = 2V8,

l

and )
w = —fsiny -+ &sin g cosy = —2V8;

wy = f cos y + & sin fsiny = —2V8, (6.70)
ws=&cosf +p=—2V8;.

The left-hand sides of (6.70) are recognized as the standard Euler equations for the
angular velocities w; in a body-fixed reference frame.

The upper equations follow from the lower by replacing g — —if, S; — —1S,, S, — 1S,
83 — —8;. Since this transition can be done at any later stage it is convenient to
avoid the clumsy distinction of different cases and focus attention to the Fermi case
only.

In the Fermi case, the matrix U(t) is unitary and coincides with the well-known repre-
sentation matrices D}, (xfy) of the rotation group.?5) The equs. (6.70) now correspond
to the kinematic problem of finding the positions of a rigid body given the angular
velocities w; = —2VS,.

%) For the conventions see: A. R. Edmonds, Angular Momentum in Quantum Mechanics, Princeton
University Press.
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They can be solved formally as

U(t) = T exp {——i ftQVSG dt'J . (6.71)

Given this U(t) we can now proceed to evaluate the tr log term in (6.61). By differen-
tiation with respect to § we find:

6—_Sk(t) —a trlog (iGs™)] = V; tr (O.kGSii(t, t'))lt':t:ﬂ- (6.72)

The right-hand side can be calculated in terms of Euler angles by inserting (6.68).
In addition one has to choose the reference state for Z[x*, #] by specifying the boundary
condition on (4,. Since G, represents the same matrix of Green’s functions as (6.62),
except with free oscillators ayt, by of zero energy, this is easily done. Let us choose
as reference state |R) one of the quasi-spin symmetric states of seniority » = Q, say
(6.51). Then G, has to have the form

) o — ¢ 0 )
G'o”(t,t’):( ( 0 ) @(tﬁt,)) 8i (6.73)

As a consequence Gy!i(t, t')]y—s.. = O such that also (6.72) vanishes and —7 tr log (1Gs™!)
becomes an irrelevant constant.

Hence the generating functional in the quasi-spin symmetric reference state (6.51)
is

RZ(j fDS exp[ fdtVS fdtdt O — ) 3 3+ U U ji(t’)]. (6.74)

As in the case of the trivial model it isnow convenient to change variables and integrate
directly over the Euler angles «fy rather than §,8,S;. Using the derivatives

88;(t)
2V6q,t’:A 8t — 1) + B(t);; 60t — 1)
&cosfcosy —fcosy — &sinfsiny
( &cosBsiny —psiny 4 &sin B cos y
—& sin f§ 0 ij
sinffcosy —siny O
X 0t — t') + [ sin B sin y cosy 0] 6(t—t) (6.75)
cos f3 0 1/

one calculates the functional determinant as the determinant of the second matrix
B. This can be seen most easily by multlphcatlon with the constant (functional) matrix
f dt'O(t’— t'") which diagonalizes the §(t — ¢') and brings the 4 term completely to
the right of the (functional) diagonal: 6@ = @. The determinant of such a matrix
equals the determinant of the diagonal part only. Thus, up to an irrelevant factor,
one has

DS = const DaDgDy sin (6.76)
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corresponding to the standard measure of the rotation group. Inserting now (6.70)
into (6.74) we find

Zjt, 7] = f DaD cos gDy exp [z’fdt {—% (w12 + wo? 4 5 (g — 28)2) — e.Q}
X exp [z’fdt dt'eot — ') Zjﬁ(t) U+t) U ji(t')]. (6.77)

The collective Lagrangian becomes:

1
| £ = —i7 (wlz + my? + (0)3 - 28)2) — 0
= 1 ﬁ2+oc251n2/3)+1('+dccosﬁ)2 1L ('+(5ccos/)’)—e32 — &0
T4y g Y ' Vg 4 Vg o
(6.78)
This has the standard form
L =5 49i9) ¢ + ailg) ¢* — v(g) (6.79)
with the metric
: 1 1
sin? 8 + 7 cos2ff 0 7 cos
9ii(q9) = —:2-1? 0 10 (6.80)
l eos\ﬁ 0 l
g 9
1
— 0 ——cos
g I ’
ii(g) = (g-Ua)\HF — — 0 1 0 6.81
9Yq) = (9-'(q)) 2V —3 il Y (6.81)
——é—cosﬂ 0 sin?f + —cos?p
of determinant
1 1
= ) — — —_gin?
g— det(g”) 8V3 g s /3
in the space labelled again by ¢ = («, 8, y).
The Hamiltonian in such a curved space is given by [33]
1 .
H = H, + Hy + Hy + vlg) + 5 alai(g) (6.82)

with
1 0 o
- ~1/2 _~_ | 412, 6.8:
=gy (g ’ cq?) o
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7 i, .
H, = _2__ g_1/2 I:@q“i 91/2911%.@)] (683)
Hy — ta;(q) ' — (6.84)
3 = Wi\q) g c’)q?' . )

Here we find H, as the standard asymmetric-top Hamiltonian,

2 7 0% 1 2 cos f *
= _ — + — 2 . (6.85
i =V (352 tootfogt Ut eothost Gasar 2ot g n 8;/) (6:85)
Since |
a; = T% (cos 8, 0, 1) (6.86)
the second part, H,, vanishes and the third part becomes
Hy = —2¢10,. (6.87)

The resulting Hamiltonian is exactly the Schrodinger version of the quasi-spin form
(6.47) with

. 1
Lt = et ¢ tProy, —1—— ¢
e [j: g + cot Bv e 7 y]

(6.88)
L3 _— —?:87.
The eigenfunctions of H coincide with the rotation matrices
D}y, B, y) = ellem+rmgl (6). (6.89)

The energy eigenvalues of H; are well-known
B = =VIIG + 1) — m?(1 — g)] (6.90)
such that the full energies are
Eim = 2em — V[j(j + 1) — (1 — g) m?] + ££2. (6.91)
This coincides with the fermion part of the spectrum (6.52) if m, j are set equal to

L —

m = (N — Q)/2, j= 3

(6.92)

as is necessary due to (6.45), (6.50).

For g =1, ¢ = 0 the spectrum is degenerate as the Lagrangian (6.78) is rotationally
invariant. It may be worth mentioning that in this case the Lagrangian can also be
written as a standard ¢-model in the time dimension. In order to see this use {U+U
= —iUtU = w;0;/2 to bring (6.71) to the form

1 1 . .
L = — 1 (o + 0 + o) = =5t (UHU UD).

If one now defines ¢ and # fields as

U=¢-+1m-.0,
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where 62 + @2 = 1 due to unitarity of U, the Lagrangian takes the familiar expression:
L= —— (6% + a?). (6.93)

It is instructive to exhibit the original quasi-spin operators and their algebra within
the collective Lagrangian. For this we add a coupling to external currents

AH = =2V [ L;(t) I;(¢) dt,

to the Hamiltonian (6.44) where L; are the operators (6.45). In the Lagrangian (6.57)
this amounts to
AL () = 2V L;(¢t) I;(¢), (6.94)

which modifies (6.60) by adding the matrix

I, I+ .
Vi) (z la)f(t). (6.95)

This has the effect of replacing
Si —> S; i = S i l,

in the tr log term of (6.61).
Performing a shift in the integration DS — D(S 4 1) we can also write

S, 1] = +itrlog (1G5 — V ((S1 — L)% (S, — 1) 4 %(83 1 % — 13)2).
(6.96)

The Green’s functions involving angular momentum operators can now be generated
by differentiating
Z[0,0,1;] = [ DS exp {i.[8, 1]}

with respect to dl;:
v 0

LA — .
Li & 2V ol;

(6.97)

In the reference state |R) where the trlog term vanishes, —/2V o0[ol, —i[2V 6/dls
generate from (6.94) the fields 81 — &, (S5 + ¢/V — l)/g

in the functional integral.

In the fermion case, this implies for I = 0, using equs. (6.68)

L= = —% (07 £ tw,) = ———2—1—17 (:l:iﬁ + 4 sin B) et
(6.98)
i .
Lz-ﬁé?g( “28)-—_(OCCOS‘5+)/—26)

) A (6.99)
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Inserting the canonical momenta of (6.78)

P, = —%(écsinzﬂ -+ % (¥ + & cos f — 2£)cosﬁ)
| n
= —gy &sin g + cos Bp, = —1i0,
(6.100)
P, = — 57 B = —isin"128 ¢, sin'2 B = —id; — 5 cot
p 1 (7 + & cos f — 2) »
y = — = ‘ cos ff — = —1é,
y 2y Voo & v,
we recover the differential operators (6.88).
The quasi-spinalgebra can now be verified by applying the derivatives:
1 0 0 d o 1 0
— — = e g e T 6.101
42 («Slj(t + &) ol;(t)  Oli(t + ¢) 6l,~(t)) 1—o 2V Ciik oy  |i=o ( )

What would have happened in this model if we had not chosen the symmetric reference
state |R) to specify the boundary condition on ;! Consider for example the vacuum
state |0). Then the Green’s function becomes for § = 0:

) ot — ¢ 0 ) |
Goii(t, t') = ( ( o ) _ew — t)) 8 (6.102)

rather than (6.73). In this case there vs a contribution of —1 tr log (¢G's™*) since from (6.72)
and (6.64):
0 . —1 3 ,
— [—itrlog (iGs™)] = —VQ tr {a*UH(¢) i Ut . (6.103)
o8, 2 vt
Now (6.68) implies

U(t) 63U (t) = cos fog + sin f(cos yo, -+ sin yo,)

yielding for the right hand side of (6.103) the expressions

Ny sin 8 cos y
— VR In,e = —VQ2 qsin B siny . (6.104)
Ny cos

Observe that due to the differential equations (6.70) the unit vector n; can be found
to satisfy the equation of motion ]
n=2rnxS§. (6.105)

We can now proceed and find —7 tr log iGs™' by functionally integrating (6.103). We
shall do so in terms of the Euler variables afy. Using (6.103), (6.104), (6.75), and the chain
rule of differentiation '

[—7 trlog 1Gs71]

0 . ) 08;(t) o
——— [—ztrlo zG—le’[dt -
sqy Lt lee ST = o [ 5w

=-rRy f din;(t) ij((;,)) (6.106)
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we find

—g%— —1 tr log iGg1] = QZfdt(ni(t) A;(t) 08 — &) + ni(t) By(t) 6t — )

0;(t) 2
2
:5[( — psin B(t"); + [ di(1, 0, cos B(1)); st — 1))
(6.107)
Partial integration renders for the second part in brackets
(1, 0, cos (&) o(¢ — ¢ )I =% (0,0, fsin g(t). (6.108)

With the boundary condition cos 8(4-oc) = 1 one has therefore

mgmﬁ”“mmﬁhg“ﬂﬂww—wwhw—m (6.109)

This pure boundary contribution can immediately be functionally integrated with
the result:

—1itrlog iGg! = ——] £y + p(t)) dt (6.110)

Hence the exponent of the generating functional Z[j+j] on the reference state |0) becomes

ifdt{ 41V (6012 + w,? + (603 — 28)2) -+ g (& +7) — SQ}

+&<ww—w—wm““3

dt dt’ Z +(’f){m( ) U)o — t)} Ji#)

(6.111)

u

ather than (6.77). As in the case of the Pet model in the last section, the Hamiltonian
s changed quite trivially. The canonical momenta P,, P, become

1 ) cos Q
— — — 1 A 2 .
P, = 2V[ocsm g+ (y + &cosp 26]—}—2
o r . 0 T
= —gp &sin B —{—cosﬁpy—?(cosﬁ_ ) = —10,
(6.112)
1 0
P, 2I/g(y—{—occosﬁ 2e) + 5 10, .

The additional term can be removed by multiplying all eigenfunctions belonging to
(6.112) by a phase exp [—1£2/2(x + y)] thereby reducing them to the previous case.
In the present context it is really superfluous to discuss such trivial surface terms.
We are doing this only because these terms do become important at that moment at
which the transition to the true BCS model is made by letting ¢ — 0.

This will be discussed in the next section.
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VI.3. The Hilbert Space of Generalized BCS Model

Let us now study in which fashion the Hilbert of all rotational wave functions imbeds
the fermion theory. For this consider the generation of Green’s functions by functional
derivation of BZ[j+, j], with the reference state |R) being the quasi-spin symmetric one
(6.49), for simplicity.

The resulting one-particle Green’s function will have to coincide with

G oo Tai(t) ap () Ta®be)\ .,
Gm,é,(t,t)_(O] bo-... by (Tb 0 ety T i;(t’))mm'b‘ coes bt |0). (6.113)

If we differentiate (6.77) accordingly, we find
Gl (ts ) = [ DD cos FDysH(U+(t) Ut O — ) expl[i [ dtL@)].  (6.114)
This can be calculated most easily by going to the Schrédinger picture
| Gla,6) = X (R Di(ay0) Dip{ety () R 096 — ). (8.115)

Since the reference state is symmetric, it must be associated with the wave function
(By(®) | R} = Diofcfy(t)) = 1/Y82
Erp=E,, = Q. ‘ (6.116)
Inserting the time translation operator?®)
D(aﬁy(t)) = etftD(xpy(0)) e-i* (6.117)
with H in the differential form (6.82) one finds a phasé
P4B(t) (6.118)

where AF is the energy difference between the state |jm) = |1/21/2) and the reference
state |R) = |0, 0)

1
AE = E1/21/2 — By, = &€ — v (—2‘ + %‘) (6.119)
and an integral
X [ dxd cos fdy(R | «py} DYZ (+By) DY2(By) {eBy [ B} = Oppe. (6.120)
k

This coincides exactly with the result one would obtain from (6.113) by using the original
operator (6.44) and observing the energy spectrum (6.52).

Notice that the orthogonality relation together with the Grassmann algebra ensure the
validity of the anticommutation rules among the operators. For higher Green’s func-
tions the functional derivatives amount again to the contractions as in (6.28), except
that now the contractions are associated with

] )
fmi®) furi (") = DR2UHE) UE)) O — ¢') 64
2 Dy (U @) DEz(U®) 0@ — ') 8 (6.121)

where (fy/2, f-1/2:) stands for (a;, b;*).

26) The Schrédinger angles 8y coincide with the time dependent angles x(t), 8(f), y(¢) at ¢ = 0.
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We can now proceed and construct the full Hilbert space by piling up operators a;*
or b; on the reference state |R) = b+ --- bgt|0). First we shall go to true vacuum state
of a*, b*: |0), i.e. we shall caleulate °Z[j+, j] in this state. For this we obviously have to
bring down successively b;*(00) -...- bgt(co) bg(—00) -...- by(—o0) by forming the func-
tional derivatives:
20, 0] s RZ[j+, 1] (6.122)
’ 87-1/2,1(00) =+ o+ 0"y 91 (—00) 7 j=0

in the functional (6.77). Of the resulting »! contractions, only one combination survives,
since all indices 7, j are different and the Kronecker 6% permits only one set of contrac-
tions. The result is

°Z[0, 0] = N [ DaD cos fDy exp i [ dtL(t)] (D2, 1 (U*(00) U(—o0))]2.  (6.123)
But from the coupling rules of angular momenta and the group property one has:
[Dl—/%/z ~1/2(U+(°°) U(—"OO))]Q = D!—?%m—.o/z(UJr(oo) U(_OO))
— %; D§15, (U (00)) Dy—gpe( U(—00)). (6.124)

Going to the Schrodinger picture and inserting the time translation operator (6.117)
one finds an infinite phase exp [¢(Ezx — E,) 2c0] which can be absorbed in the normali-
zation factor N. Here E, = Egj;,-qj; is the energy of the ground state 10) which has
lim) = |R2/2 — 2/2). The eigenfunction D(x, 8, y) now appear both at ¢ = 0 and the func-
tional (6.123) becomes in the Schrédinger picture

0Z[0, 0] :——k 3’2/ fdoc dg dy sin y{0k | afy} {xBy | Ok} (6.125)
=—0/2

with the vacuum wave functions
{xfy | O, k} = D2 o, (xfy) = ek=@rD dgi2 o, (B). (6.126)

It iseasy to verify, how an additional unpaired particle a+, added to the vacuum, decreases
Q/2-> (2 — 1)/2 and raises the third component of quasi-spin by 1/2 unit. Differentiating
(6.75) by —02/61j21(00) 67, L(—o0) in addition to (6.122) onefinds a different set of con-
tractions. Picturing them within the original fermion language, there are

(R) T(by*(4-00) - ... bgt(-+00) a,(+00) art(—00) bg(—00) -...- b(—o0)) | )

— ]

|
— (B T(by+(00) - ... bH(00) 4,(00) a+(—00) bo(—00) -... by(—00)) |R)
. S
4 (B] T(b+(00) - ... - bg™(00) a1(00) aH(—00) bg(—00) -...- by(—o0)) |B).  (6.127)

These render under the functional integral (6.123)
[Dl—lfla —1/2(U+(°°) U(——oo))]g D}g 1/2(U+(°°) U(—oo))
—[Dlﬁm _112(U+(°°) U(_oo))]g_l D%, 112(U+(°°) U(——oo)) Dii; —1J2(U+(°O) U(—oo))
— D, _on{UH(00) U(—00)) D1t o(U*(00) U(—ox)) |
- D(—Q(Bl-)ﬁ/z —(9»1)12(U+(°°) U(—OO)) Dl—’%/z 1/2Dﬂ§ ~1/2 (6.128)
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Employing the explicit formulas

2
D5 _alofy) = eteen (cos £)

D131 p(xfy) = el=t12 cos g (6.129)

.. B
D%z va(oBy) Diff spp(aBy) = —sin® =
the r.h.s. of (6.128) becomes

A% p
— e—Q(o‘+V)/2 COS _3_ e(d+}')/2 COS—Q—

dd

/ 2-1
4 e (2-Dlat)/2 (cos ’_;_) Sinz%

2-1
= ctomtonnit (cos ) < DG i) (6.130

s

and therefore, in analogy to (6.123), (6.125)

wlOZjt ] lj=o = N f DaD cos BDyDEG 5 — o-1y2(xfy) exp (7/ f fdt)
(2—-1)/2
= f dtoc d cos B dylay k | «By} {afy | a/tk} (6.131)
k= —(Q—1)/2
with the Schrédinger wave functions
{aBy | artk} = DT 0%, (xBy). (6.132)

In a similar fashion we may work our way through the whole Hilbert space!

VI.4. The BCS Model

Consider now the Hamiltonian (6.44) with only the pairing force, i.e. ¢ = 0. In the gene-
rating functional on the symmetric state (6.74), this forces a é-functional to appear
in the integral

RZI§+, 4] = fDocD cos Dy 6(wy — 2¢) exp [ifdt {—ﬁ (2 + wy?) — s!)}]
X exp [— f dtdr ot — ) X i+ (t) U+) UW) ji(t’)]. (6.133)

The ¢ functional ensures the differential equation
¥ + cos fé = 2¢ (6.134)

according to which « becomes a function dependent on y and 8. Performing the functional
integral D« gives

RZ[j+, 7"] — f DaDg tan f exp lz f dt {—% (32 + (7 — 2¢)? tan? g) — g!)}
— fdtdt’ 2 ity asti, t’)y'i(t)]. (6.135)

49%



664 H. KLEINERT

Introducing the variable of (6.104):

{;1} = ny -+ ing = sin fexi (6.136)

this can also be written as

W DnDnt 1 |0 — Zienf®
RZ[+,4) __f p—r exp[ fdt{ FY 7 p—c 8.Q}
— [t 2o G5 t)ji(t)]. | (6.137)

In the limit ¢ — 0, the calculation of the angular momentum operators (6.98) becomes
quite different: Adding the external sources [;, the limit g — 0 produces in the action
(6.96) a é-functional

Owz — 2¢ + 2V1,) (6.138)
with a Lagrangian
— 2 139
£ 4V lo + 2V (6.139)
where
{“’*} = w* = (4 18 + & sin B) e¥. (6.140)
)
Respecting the d-functional (6.138) amounts to eliminating the variable « via
y + cos f& = —2VI; + 2. (6.141)
Hence: )
wF = (£ — (7 — 2¢ + 2V1y) tan f) €. (6.142)

Differentiation of (6.96) with respect to 6/dl; according to (6.97) renders the angular
momenta

1 . ) ;
L = —37 w* - = —W(ilﬂ — (y — 2£)tanﬂ)e 4
{6.143)
1
- _ 2
Ly ~o7 (¥ — 2¢) tan? g.
From the Lagrangian in (6.137) we read off the canonical momenta
1 . : i
P, = _Wﬁ = —id5 — -é—cotﬂ
(6.144)
1, \
P, = ~ 57 (y — 2¢)tan? g = —70,
such that
L#E = ex%(4-85 4 cot pid,)
(6.145)

L3 = —13

7

which are the standard differential operators on spherical harmonies Y, (8, y). Observe
now that in the BCS model the generating functional in the vacuum state |0) receives
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an essential modification. The reason is that due to (6.134) the surface term (6.110)
becomes a dynamical object

L 2e
—itrlogiGs™! = —f &+ p)dt = —f[ ( p— /3) +cos ﬂ] dt. (6.146)

Expressing v in terms of the field (6.136) gives

izt —

e L 0. (6.147)

1
—itr]ogiGs—l—z— [[n—2zan)n+—hc V

Adding this to the exponent in (6.137) renders the generatmg functional in the vacuum
[32]

. Dn+Dn 1 |% — 2¢en)? Q
OZ[?+?]:fmehp[ fdt{ T TiT [( — 2ien) v+ — h.c]

X vl—,"z_ —! exp dt di’ 29, Gl 1) () (6.148)
=/ J

The Green’s function G, coincides with that of (6.111) except that the relation (6.134)
has to be used to express « in terms of y everywhere, i.e. U(f) = D(«fy) becomes

t

: y — 2
Upm(®) = DEE(x(), B, y) = exp | —im’ f ”COS 58dt' + my(t) | diZ(B®)). (6.149)

0

Appendix A: The Propagator of the Bilocal Pair Field

Consider the Bethe-Salpeter equation (4.17) with a potential 2V instead of V/
]—1 - —’MVGOGOF. (A.l)

Take this as an eigenvalue problem in 2 at fixed energy-momentum q = (¢°, q) = (E, q)
of the bound states. Let I',(P | q) be all solutions, with eigenvalues 4,(g). Then the con-
venient normalization of I, is:

diP |
_zf(2 7 (P q) Go( +P) (%—P)Fn'(l’iq) =5, (A.2)

If all solutions are known, there .is a corresponding completeness relation (the sum
may comprise an integral over a continuous part of the spectrum)

—ixa, (-g-+p) Go(%—P) (P q) Ty (P | g) = @) o8P — P). (A3)

This completeness relation makes the object given in (4.26) the correet propagator
of A. In order to see this write the free A action &7,[4+A4] as

1 1
sy = 5 A (W LGy X GO) A (A.4)

where we have used AV instead of V.
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The propagator of 4 would have to satisfy
1 . e
(Z_V + Gy X Go) AA+ = 1. (A.5)
Performing this calculation on (4.22) one has, indeed, by virtue of (A.1) for I';, 4,:

i r,r,+
[ + e x [z L)

n A — A(Q)
% T+ Gy X Gyl Ty (-L;ql + 1)
frmr —-’L}_Z — ’L'Z, - —’l.G >< G FnFn+
: P RY) S T A e Gl
== ?: (kiZ GO >< GOF,,F,,Jr) = 7:— (A'G)

Notice that the expansion of the propagator in powers of 4

- =ig (2 () rre) (A7)
 \¢ L@

corresponds to the graphical sum over one, two, three, etc. exchanges of the potential
AV. For n = 1 this is immediately obvious due to (A.1):

A y)
iYL rre=5 -
27 2@

m Il @ VG X G LWt = AV . (A.8)

For n = 2 one can rewrite, using the orthogonality relation,

A \2 A A
) I+ — - I+ r.rs = iVG G.AV A9
’%«%@)”" 2 7mg) el Gox Golul s 0 X Go (8.9)

which displays the exchange of two AV terms with two particles propagating in between.
The same procedure applies at any order in A. Thus the propagator has the expansion

]
ANt = AV — AV Gy X GudV + ---. (A.10)
If the potential is instantaneous, the intermediate f dP,y/27 can be performed replacing

1

Go X Gy —1 -
PUTY T E — Ey(P g

(A.11)

where

IMPM%=4%+Py+4%~P)

is the free particle energy which may be considered as the eigenvalue of an operator H,.
In this case the expansion (A.10) reads

E — H,
E_H,— V'

M
AA+ :i(lVJr—AV AV + ) — AV (A.12)

E — H,
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We see it related to the resolvent of the ecomplete Hamiltonian as

M
AA* = DQV(RAV + 1) (A.13)

where

I

1 Yaln*
— _rnin A.14
& E—H,— vV ZF—E (A.12)

with o, being the Schrédinger amplitudes in standard normalization. We can now
easily determine the normalization factor NV in the connection between I', and the
Schrédinger amplitude y,. Equ. (A.2) gives in the instantaneous case

d3P 1
f (2ﬂ)3 F”+(P I q) E _HO Iy (P | @) = Opnr- (A.15)

Inserting p from (4.22) renders

1 [ d3P
75 |t P10 B — Hy) (P | @) = b (A.16)
But since
this is also
1 d3P
FZIWW"+(P | §) AV (P | q) = Opy- (A.18)

For y, wave functions in standard normalization the integral expresses the differential

ar
Gy

as can be seen by using perturbation theory on the infinitesimal potential dAV.
Hence

iE,
i

N2 =} (A.19)

For a typical calculation of a resolvent, the reader is referred to Schwinger’s treatment
[45] of the Coulomb problem. His result may directly be used for a propagator of electron
hole pairs bound to excitons.

Appendix B: Fluctuations around the Composite Field

Here we show that the quantum mechanical fluctuations around the classical equations
of motion (3.4)

p(x) = [ dyV(z, y) p*(y) p(y) (B.1)
or (4.4)
Ay, ) = V(x — y) p(x) p(y) (B.2)

are quite simple to calculate. For this let us compare the Green’s functions of ¢(x)
or A(z, y) with those of the composite operators on the right-hand side of equs. (B.1)
or (B.2). The Green’s functions or ¢ or 4 are generated by adding external eurrents
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fd:mp x) I(x) or 1/2fda:dy (y, x) I*(x, y) + h.c.) to the final actions (3.8) or (4.7),
respectively, and by forming functlonal derivatives 6/6I. The Green’s functions of the
composite operators, on the other hand, are obtained by adding

[ de{ [ dyV(z, y) v+(y) p(»)) K@)
or

1
5 dx dyV(z — y) p() p(y) K*(x, y) + h.c.

to the original actions (3.3) or (4.3), respectively, and by forming functional derivatives
0/0K. It is obvious that the sources K can be included in the final actions (3.8) and (4.7)
by simply replacing
¢(x) — ¢’ () = p(z) — [ do'K(2") V(«', @)
or
A(x’ y) = A'(x, y) = A(x, y) — Kz, Y).

If one now shifts the functional integrations to these new translated variables and drops
the irrelevant superscript ‘““prime’, the actions can be rewritten as

H[p] = Latrlog (1G,1) + —;— fdxdx’qo(x) V-, ') p(x') + ¢ f dx dx'nt(x) Go(x, ') n(x)

+ f dxq;(x x) + K(m)) ; fdx dx’K(x) Viz, ') K(x) (B.3)

or
1

; 1
A[A] = i% tr log (G 41) -+ —z—-fdxdx']d(x, Al
+ %y[dxdx’j’r(x) G4z, 2') §(2')
1
+ g [ deds Ay, 2 (10, ) + Ko@) + e
+ —;—fdxdx’lK(x, )2V (x, 2. (B.4)

In this form the actions display clearly the fact that derivatives with respect to the
sources K or I coincide exactly, except for all possible insertions of the direct inter-
action V. For example, the propagators of the plasmon field ¢(x) and of the composite
operator [ dyV(z, y) v*(y) p(y) are related by

— 527 o 527
q:(:c)gv(:v):—W:Vl(x,x)—- 3K (z) 0K (@)
= V-, o) + ([ dyV(z, y) w*(y)w ) ([ dy' Vi, y>w+ »(1") (B.5)

in agreement with (3.5). Similarly, one finds for the pair fields:
| ' .
Az, &) (Aly, ) = o — g) b’ — y') iV (@ — ')

! |
+ (V&' x) p(@) @) (V> ») v @) v ). (B.6)
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Notice that the latter relation is manifestly desplayed in the representation (A.10)
of the propagator 4. Since

[ .
A+ =3V 4+ VGOV
one has from (B.6)

[ |
(Vo) (prytV) =V - GOV (B.7)

which is correct, remembering that G® is the full four-point Green’s function. In the
equal-time situation at instantaneous potential, G*® is replaced by the resolvent R.
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