Volume 70A, number 1

PHYSICS LETTERS

5 February 1979

STABILITY OF HELICAL TEXTURES IN 3He-A IN THE PRESENCE OF SUPERFLOW

H. KLEINERT !, Y.R. LIN-LIU and Kazumi MAKI

Department of Physics, University of Southern California, Los Angeles, CA 90007, USA

Received 24 October 1978

We analyze the stability of a variety of uniform textuzes in superfluid 3He-A in the presence of superflow p. We find
below Tjpg a class of stable helical / textures, where [ is no longer aligned with p but winds around it with a constant pitch.

In a recent letter Bhattacharyya et al. [1] analyzed
the stability of uniform texture in the presence of uni-
form superflow and showed that the uniform texture
with the gap anisotropy axis IAparallel to the superflow,
though stable near T = TC, becomes unstable in the
dipole-locked limit at low temperatures, where

K[EKbpo(% py teg) 21 <1, (1)

and Ky, py, pg and ¢y are coefficients in the texture
free energy (see eq. (2)). The purpose of this letter is
to determine the stable (uniform) texture in the region
k<l

We will limit ourselves in the following to only the
z-dependent textures, where z is the direction of the
superflow velocity. The free energy of 3He-A in the
dipole-locked limit is given [2,3] as

f=13 [dz{(o— pg cos?)(a, + cos f,)?
— 2cq (o, + cos By,) cos B sin?By,
+ (K, cos2B + K, sin26) B2
+ (K, cos2B + K, sin2B) sin26 72}, @

where the coefficients P Pgs €1C., are introduced by
Mermin—Ho [2]. Here / and A are parameterized as

! Permanent address: Institut fiir Theoretische Physik, Freie
Universitit Berlin, Arnimallee 3, 1 Berlin.

I= (sin B cos 7, sin B sin v, cos ),
A = e—i%(_sin v — icos B cos 7,
cos y — icos 8 sin 7, isin §), 3)

and a, B, v are the eulerian angles, which describe the
spatial orientation of A

Since a is a cyclic coordinate, the z component of
superflow p is completely uniform and can be used to
eliminate a, from f, by

3ffda, =p = (pg— pg cos2B)(a, + cos B7,)

— ¢ sin2B cos B, - “4)
Then we have
g=F-fpa,dz=1 [dz{B(s)B

+G) vy — AG)'p? + 20H() 7, ) (5)
where
A@)=pi +pgs, B()=K,(1 -5 +Ks,
G(s) = {Kp(1 —8) + K5 — cgA~1s(1 — 8))s,
H(s)=(1 —cqAd1s)(1 — )12, (6)

and s = sin28. )
The dynamics of / is determined by the Cross—
Anderson equation [4]

27



Volume 70A, number 1

—psin2By, =8g/8y, —up, =5g/58, (7a,b)
where u is the orbital viscosity.

First let us find stationary solutions, which satisfy
7¢ = B; = 0 (i.e., the static ftexture). bg/6y=0is
automatically satisfied for any uniform texture with
constant § and vy, , while 8¢/58 = 0 allows in addition
to the trivial solution with § = 0 (we call this texture
I), other solutions for nonvanishing . For these solu-

tions 7, is the function of § as given by
(v,):/p=(G")"1(-H' £/A), (3
A=@HP+G' @AY,

where the prime means the derivative in s. For A> 0,

we have stationary solutions with real (v, ), . In partic-
ular A can be calculated fors=0ands=1 as

A@0) =G +colon) (1 — k),

lim (1 =) A =5 (1 = copy 1) ©)

From these we can conclude that for k > 1, there is

only one stationary region Il nears = 1 (8, < <7/2),

while for k < 1, there appears another stationary re-

gion Il near s = 0 (0 < < ;). These stationary regions

are shown schematically in fig. 1, where k = 1 corre-
sponds to the point € = 0.1. Two threshold values of §
(81 and B, ) are determined by

A=0. (10)

E ] ] 7 7T
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Fig. 1. The three regions (1, II, and II) where stationary solu-
tions (6g/6vy = 0, 6g/88 = 0) exist are shown. e = 0,0.1, and 1
corresponds to T = T¢, Tips, and 0, respectively.
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In particular in the vicinity of k = 1, $; is given by
sin28; = (1 — k)/(2U) + O(1 - k)2, (11)
where

U= polp; + K /Ky, — c§l(os Ky)

—{(pp + 3 P;')' (15 p;’ + Co)_l . (12)
Secondly, we have tested the stability of these solu-
tions against small perturbations; assuming that y, =
c+8v, and = f + 88, eqs. (7a) and (7b) are solved
for §vy,, 88 « e~M*ikz where ¢ is (v,), given in eq.
(8) as functions of By. A > 0 implies the stability of
the solution. A is easily found to be

A =BG HE2 L

+([(B+Gs~1) k2 + L] — 4BGs—1k* —aDk2)112} |

(13)
where
L=2s(1 —9)[G"(s)c2+2pH"c — (A~1)"p?],
D=GL —4s(l1 —)pX(H2+G' (47 1)). (14)
Since we have B, G, A > 0, the stability criteria are
L>0, D>0. (15)

The second condition can be rewritten as
2 2 2 2
Y- o
g2/ \ay2/ \0Bov,

where K is the gaussian curvature of g in the f—v,
space. In the light of the stability criteria, we find

(a) The region I (8 = 0) is stable only for x > 1 and
becomes unstable fork < 1.

(b) There are two distinct stable branches in the re-
gion IL 1T, (8, <B<By)and II_ (B_ <B<By) with
v, = (v, (B)); and (v,(B))_, respectively, for k <1.

(c) The region III is never stable.

The result (a) confirms earlier analysis [1,5] *!.
On the other hand for k < 1 (which will be realized at
low temperatures {5]), there appear new stable tex-
tures, where the I vector winds around the z-axis in a
form of helix.

We have studied these helical solutions in greater

# gee footnote on next page.
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detail within a simplified model where only p devi-
ates significantly from the G—L values

(1 —G)_lpongzc():%](t,b,s’ a7

where € = 0 corresponds to the G—L limit. Within this
model $; and B, are given exactly by

Sinzﬁl’z(e)

={3+6e7(1-€e)V/17—10e}(8 +€2)~1, (18)

which is shown in fig. 1. In fig. 1, the shaded areas are
three regions of stationary solutions. € may be consid-
ered as a parameter scaled with the temperature; e =0
atT=T.,€e=01atT=T, . ande=1atT=0, where
T}, is the instability temperature (k = 1), where the
parallel I texture to the superflow becomes unstable.
Making use of the stability criteria (15), the stable re-
gions II, and I1_ are determined numerically within
the same model and shown in fig. 2. The correspond-

inge = (')'2)i are also shown in the same figure. We

*1 In refs. [1] and [5] the stability is analyzed around a con-
stant a;. In this case general texture fluctuation is de-
cribed in terms of 8oy, 68, and 5v;. However, it is shown
that 6f = %A (5)(6p)? + 6g, where 51, 6p, and &g are the
fluctuation in f, p and g, respectively. Furthermore, ép is
a linear combination of 8a,, 88, and 6+, (see eq. (4)).
Therefore the stability region is independent of whether
p is fixed or not fixed. In the case of the parallel alignment
the situation with fixed p is equivalent to that with fixed
vg, the superfluid velocity. However, in a more general con-
text these two conditions are not necessarily equivalent.

OQ/

Fig. 2. The stable region of the helical textures is shown. The

helical texture appears for all temperature below Tipg (e = 0.1).

The broken curve with an arrow indicates the helical texture
with (y,)/(a, +v,) = 3/5.
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note that two regions II, and II_ form a continuous
sheet in this presentation. In the limit k approaches

1, the stability regions shrink linearly, both 8, (¢) and
B_ (€) converging towards 8, (€). In this limit the

unique value of § (€) has been given already in eq. (11),
without our simplifying assumption (18). For the
model (17),

U=2+0{(k —1) implying sin28=3(1—«). (19)

When T < Ty, as shown in fig. 2, we have a class
of helical textures with a constant tilt angle 8 and the
corresponding pitch 7, (), which are locally stable.

If liquid 3He-A in a long container is cooled slowly
through T = T, ., the resulting helical I texture should
be the one corresponding with the pitch vy, given at
the pointk = 157, =(y,); = z p(pg + 2c0)/(Ky, pg)-
This is because just above T}, the thermal fluctua-
tion gives rise to distribution of v,,

P(y,) « exp{—(Kp/2KT){) Vv, — (7,11},

where T, ¥V, and {s) are the temperature, the volume
of the container and the thermal average of s, respec-
tively. This implies that v, fluctuates around (7y,);
above T,,. In other words, the slow cooling proceeds
along the horizontal line drawn in fig. 2, with in-
creasing f§ as the temperature decreases.

In the case of superflow in a torus, the constancy
of v, follows from the following argument. The unique-
ness of the condensate order parameter in 3He-A re-

quires

sin § e—i@ = gjn g e—1o’ |
(1 + cos B)e—i@*1) = (1 + cos ') e—i(@+7) |

(1 — cos f)e~i@=7 = (1 — cos f)e-i@-7) | (20)

where primed «, § and v are those obtained after
circling around the torus along a closed path in the
torus. When § never passes § = (or § = 0) in the torus,
eq. (20) reduces to the conditions

B=6, a—a'=2m, y—4 =2mm, (21)

where n and m are integers. In the case of helical solu-
tions in a torus, these integers are the topological con-
served quantities, implying constant y, when k <1;
when the system is cooled smoothly, v, and a, are
constant. On the other hand, in the case of a long cyl-
inder with open ends, v, (= ¢) may relax to the value
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with the minimum g, when P is fixed. The local sta-
bility of the helical solutions appear to contradict the
conjectured instability of the superflow by
Bhattacharyya et al. [1]. Analyzing their dipole-un-
locked case, within the present framework, we have
discovered peculiar features, which are quite different
from those in the dipole-locked case below T, . First
of all, A(s) > 0 for all § in the dipole-unlocked cases,
implying the existence of a stationary solution with
arbitrary B. Furthermore, we find D < 0 for all §;
none of these solutions are stable, Therefore, we be-
lieve that their dipole-unlocked case does show intrin-
sic instability of any texture with uniform superflow,
unlike the dipole-locked case below T}, .

As already pointed out by Cross and Liu [5], the
correct analysis of the orbital dynamics does not show
the instability of Hall and Hook [6] nor the existence
of the orbitary solitary wave.

After completing this work we have received a pre-
print [7] from A.L. Fetter, who has shown the stabil-
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ity of the helical texture below T, although his
analysis is limited to the vicinity k = 1.

The present work is supported by the National
Science Foundation under Grant Number DMR76-
21032.
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