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Abstract: We propose a semiclassical functional treatment for large-amplitude collective oscillations and
illustrate the method by an application to the degenerate shell model with pairing forces.

1. Introduction

In recent years, an increasing effort has been devoted to investigating large-
amplitude collective excitations in nuclei, either via the generator coordinate
method !) or the adiabatic time-dependent Hartree-Fock (TDHF) equations ?).
Mode! studies reveal the necessity of including non-adiabatic effects *). But then the
problem of quantizing TDHF equations becomes quite cumbersome. This problem
can be circumvented by employing the recently proposed °) path integral techniques
for the study of collective nuclear phenomena. They have proven successful in the
description of other involved many-body systems such as plasma ®), superconductors
[refs. ® )], super-liquid *He [ref. ®)], and strongly interacting particles °). In nuclear
physics, they have led to a proper foundation of the rules of the so-called nuclear
field theory 19).

Certainly, to the practical nuclear physicist, the conceptual advantages would not
give sufficient reason to warrant the introduction of an unfamiliar theoretical frame
work unless there is a range of phenomena in which previous tools fail while the new
methods render a description of superiour simplicity.

It is the purpose of this paper to point out that path integrals are ideally sutted
for a theory of large-amplitude nuclear excitations. The main reason lies in the fact
that here, beyond the reach of conventional operator methods, the motion becomes
semiclassical and it is precisely in this limit, that path integrals are most powerful.

' Permanent address: Zentralinstitut fiir Kernforschung Rossendorf, 8051 Dresden, Bad Weisser
Hirsch, Pf. 19, DDR.
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The necessary quantization techniques for systems of many degrees of freedom are
available 12). They have been developed for the description of non-linear quantum
effects in field theories and have led to the quantum-mechanical understanding of
a new type of quasi-particles (topological solitons, soliton-antisoliton bound states)
which was inaccessible to previous field theoretic treatments.

Here we would like to take the first step towards the introduction of these techniques
in nuclear physics by demonstrating the semi-classical quantization of the collective
fields for the degenerate-shell BCS model 1),

Since this model is quite familiar, exactly soluble, and also contains important
non-linear effects (even though none are of the most interesting soliton nature)
we believe it to be ideally suited for a simple introduction of the new methods.

Although we are dealing with the BCS model, we shall formulate the semiclassical
approach in a way which can be easily extended to more complicated systems. The
explicit treatment of the general case is based on the recently proposed !4} path
integral formulation of time-dependent self-consistent field theories, and will be
given in a subsequent paper.

2. The collective field theory
Consider the degenerate shell model containing 2Q fermions coupled via a pairing

force with a Hamiltonian

0
H= ) eaa,~bb)—3V{Y alb], Y bjaj}. (1)
i i

i=1

The model is, of course, soluble by observing that

2
L"= Ya'b}, L =)ba,
i i=1

form an SU(2) quasi-spin algebra and that H can be written as
H=2eL,—iV{L* L},
= 2eL,— V(- 1%). (3)
The eigenfunctions may be constructed by repreated application of L™ to states

containing the seniority number v of unpaired particles

(LY. (4)
Their quasi-spin is
[ = HQ—vYHQ—Vj+ 1) (5)
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with the third component L, taking the values

Ly=3HN-Q)= —4{Q—v),..., {(2—v), (6)
where N is the total number of particles. As a consequence, the energy spectrum is
E = 2en—HQ—v) = V[HQ-MH2—v)+ 1) = (n—3(Q—v))*] (7)

where we have relabelled the eigenvalues of L as
L, =n—4Q—v), (8)

such that n is the number of pairs which for seniority v can take the values
n=20,1,2,..,Q—v.

Notice that the more conventional form

H = %6’(ai+ai+bi+bi)— VY a'bba,
i=1 irj
=2 (Ly+4Q)-VL' L™,
= (2¢ =V)L,—3VIL", L} 4+¢Q,
can be obtained by renormalizing the single-particle energy as well as the zero point:
¢ =e+1il, H = H+¢Q. 9)
Of course, the energy E’ is
E = 2N -3V [(Q—vXQ—v+2)—(N—Q)*]. (10)

Consider now the path integral formulation of such a quantum theory. Here one
does not work with operators and a Hamiltonian but employs instead, the classical
action

T2 0 T/2
Ala, b] = J dt > (dlid,alt)+b,id b{t) — J dtH(t), (11)
-T2 i=1 —~T/2

where a, b are classical (but anticommuting) objects.
The full quantum theory is obtained by noticing that the partition function

Z = tr{exp [—iHT/h]) (12)

can be written in the form !3)
Z = J DaDa*DbDb* gidle b/ (13)

The functional integrations run over all classical field configurations agt), b{t).
Since the attractive force causes pairing between a and b particles there exists a
completely equivalent description of the system involving only collective fields for
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the particle pairs. In order to derive this one introduces an auxiliary dependent
field S which '°) classically equals the composite pair V > ¢;"b;” by adding to the
action
1 2
ZIS=V 2 a’b|” (14)
4 i=1
The partition function Z does not change if one also integrates functionally over the
fields S, S*. In this way S, S* become quantum variables which fluctuate in a
Gaussian fashion around the composite pair field V ), a;"b;".
The point is now that the choice (14) eliminates the quartic interaction and
leads to a Yukawa type of theory which can simply be written in a matrix form as

3 2. io,—¢ ST \[ ar) 1 5
Ala, b] —Jdt {i; (a; (f)bi(l‘))( S i6,+8)(bf'(t)) Y, |S(e) } (15)

But now the original fermions appear only quadratically such that the Fermi
fields can be integrated out of Z leaving a theory described only in terms of the collec-
tive field S:

Z=‘[DSDS+ gl AlSVE (16)
with an action
i0,—e S*(1) 1 (%
AfS] = —itrl ‘ S | 2
[S] lrog(sm wdﬁ) l,ﬁﬁtﬁ@| (17)

The form of this collective action is universal to all pairing theories 3~ &) and does
not depend on the particular simplicity of the model. In fact, in superconductors
and *He one only has to take

1
" 2m
and the action (17) describes extremely well a great variety of phenomena.

The simplicity of the model is helpful, however, when it comes to calculating the
trace of the logarithm explicitly. This has previously been done in the limit T — 0.
We shall here extend the discussion to arbitrary time intervals T where also excited
states contribute to the trace '?).

First we observe that the equation of motion which follows from eq. (15) by func-
tional differentiation with respect to S reads (S = S, +iS,)

Sy = =3Vt (o, LGt =400 (18)
where the Green function G| is the solution of the equation

C@—a S*(t)
S@) 0, +e

£ = —u,  S=S8x1

) Gdt, t) = id(t, 1) (19)

and g, , are the Pauli matrices. This is solved by an ansatz

Gyt 1)y = UT()G,(t, £)U(L), (20)
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where U is a unitary 2 x 2 rotation matrix satisfying
iUtU = — V(S,6,+8,0,)+¢05. (21)

The left-hand side defines the angular velocities of the rotation U:

3
ivtu = ¥ lwo, (22)
a=1
When performing the trace one has to be careful with the boundary condition to
be imposed on Glt, t'). This depends on which of the states

105, 4”10, 57103, a; 5,710,

is considered as a ground state for each of the shell labels i. Since G, corresponds
to the free propagator

o Caa'y  Cab)
Gyt t) = (<b+a+> <b+b>), (23)
it has the form
B(t—1t") 0
Golt, 1) = 4
0( b ) ( O —B(I’ _ t)) (2 )
if the ground state is empty {0 ;
—0(t—1t) 0
Gyt t) =
ot 1) ( . H(I,_t)) 25)
if there is a particle a;"|0);
o(t—1) 0
Go(t, 1) =
olt,) ( . G(I_t,)) 6)
if there is a particle b," |0}, and
—(t' —1) 0
Gyt t) =
olt:) ( 0 H(t—t’)) @)

if both a;" and b;" are present. Therefore G(t, t')|, =+, becomes

0 0 -1 0 0 0 -1 0 (28)
6 —-1J°\ 06 —1/°\0 of 0 O
in these four cases, respectively, or
%(_1+63)= _1’ Os%(_l_03)' (29)

Inserting this into the equation of motion gives contributions

—3Vir (o, ,UN(MU(1)), (30)
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with M being any of the four matrices (29). This results in

-

tr(o, ;U6 U(1))
0
0

| —tr(a, ,U'GU()).

4V G1)

If we parametrize U in terms of Euler angles

U — eiaa3lleiﬁﬂz/zeiya3/2 (32)
this becomes
sin fe’?
-3V (33)
— sinfe’

The same consideration has to be done for each of the particle states in the shell
i=1,..,Q.

Consider now an arbitrary state of seniority v. This has Q—v empty places while
v places are occupied with one unpaired particle a* or b*. Consequently, the trace
term in eq. (18) gives

—1V(2 —v) sin e, (34)
such that on background of v unpaired particles the equation of motion for the
collective field S reads

S(t) = — VI —v)sin B(r)e™®. (35)

Notice that the collective field moves differently for different seniority v and the
index v is necessary to keep track of this fact. Certainly, eq. (35) is very implicit
since f# and y are still (very complicated) functionals of S™. Fortunately, it is quite

easy to derive explicit equations of motion for each S™. For this we form the time
derivative of (35):

8 = —VHQ—v)cos B(B+ij tg B). (36)
From (21) we find
2Vis® = (B—iasin B)e” = (B—i(2e—7) tg B)e”, (37)
such that
St) = i[2e— V(Q—v) cos B()]SON1). (38)
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Inserting once more (35) gives

SO = -28—V(Q—v) 1— A4S N (39)
B VHQ—v)? ]

This equation is easily solved. For this one observes that it implies [S*’|? to remain
constant such that S describes a pure phase rotation:

S(V)(I) — Soei(m!—-ﬁg) , (40)

0-2_0-v [ Tk a)
2V 2 CVHQ-v)?

The positive square root corresponds to orbits with 8 e (0, 4n) the negative to those
with ff e (3n, n). Inverting eq. (41) gives:

a2 9\ 2
S = 12 |:(Q 4v) B (a)ZVZE) :| @2)

Thus frequency and amplitude S, are strongly related; for small amplitudes S,
with B e (0, 4n) we recover the RPA collective frequences

w = 2e—V(2—v). 43)

The important improvement of the present work concerns the quantum aspects of
the non-linear correction in (41).

Let us now calculate the full classical action (17) for such periodic orbits. For
the general fluctuating field S the trace of the logarithm is a very complicated non-local
functional of S. In realistic situations like superconductors and superliquid 3He it
has been studied only for small long-wavelength oscillations of S either around
zero (then one obtains Ginzburg-Landau theories) or around some fixed non-zero
gap value S; # 0. Only in a few exactly soluble models the result has been obtained
in closed form (for example massless and massive Thirring and Schwinger models).
Certainly, the model at hand is of the soluble type and we could resort to this solution.
The procedure, however, would have little chance of being applicable also to more
realistic situations. We shall therefore at first ignore our extended knowledge of the
full fluctuating action and confine ourselves to a calculation of the action for a classical
periodic field S(¢) only. We shall see that this will be enough to find all energy levels
in the semiclassical limit. Only at the end we shall compare our results with the
complete information about the collective action which has been obtained in previous
works. The only assumption we shall make is that we know about the presence of
periodic classical orbits of the form

S(t) = Sy’ ), (44)
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In order to calculate the trace of the logarithm we observe that

io,—e ST()Y) _ i0,—e S*(1)
P (tr 1°g( S0 ia,+e)) - det( () ia,+s) )

is the product of all eigenvalues 4, of the system of equations
(i0,— e)p' (1) + ST (' 2(1) = A¢'"(e),
SO TNe)+ 10, +£)p He) = 29 2X).

Since the determinant arose from integrating out anticommuting fermion fields,
the boundary condition for ¢ is antiperiodicity

020 = =g 2+ ). 1)

(46)

The solutions can all be found by solving the homogeneous system
(i0,—&)g' V() + S* (g X(t) = 0.
S()g'V(e) + (id, + e)g' P(t) = 0.

Since S(t) is periodic, the solutions g'*?, ¢ have to satisfy Bloch’s theorem. According

to this they can be written as
g (1) = e*htt 2(), (49)

(48)

where k is some frequency and A’ has the same periodicity as S(t), i.e.
A2 = B D+ T). (50)
Obviously, k is defined only module the addition of a “reciprocal lattice vector”
K — Kk+2mm/T, m=+1,+2,...
One usually fixes the choice by taking x within the first Brioullin zone
—a/T < x < n/T. (51)

Certainly, exp (ix T) are the representation phases of the translation group introduced
by Floquet. '

Now, given the solutions A-? it is easy to construct all antiperiodic eigen-
functions of (46). For this we form

¢(1 y 2)(1) — eXp —ikx+ 2n:m/T+1|:/T)tg(1 . 2)(1). (52)

These functions are antiperiodic due to the additional phase exp (—int/T). Because
of (48) they solve (46) with energies

A, = k+Q@m+ D, (53)

Thus, if we restrict ourselves to the 2 x 2 matrix trace of the logarithm we find

-at _ S+ o
exp (tr log (l S(t)e o _2)) _ l:[ mﬂm[rc +(2m+1)m/T | = const 1:[ 2cos kT .
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where the product has to be taken over all solutions . The constant in front can be
determined by taking the special case S{t) = 0. Then x = +& and one has

const. (2cos 16T)* = conste*T'? 4 e~ iT12)2 (55)

which comcides with the partition function of two free fermions if we fix const = 1.
If the trace over all £2 degenerate shell states is included, (54) becomes

id,—& 8
exp| trlo = .
p( g( Sit) I'[:‘,+£>) U[Ecm«}ﬂ']” {56)
In general, x will be a functional of the periodic orbit 5(r).

Consider now our simple problem (46). Inserting the second equation into the first
gives the second-order differential equation

E' y
I:—*E'ri"RI ISl"‘ (id, = ISI’Jy‘“m = (), {57)
According to our periodic ansatz (44) this becomes simply
[— 62— 22 4 a(id, — £) = |So| 7] (1) = 0. (58)
This equation is trivially solved by
§'1) = e~ =Htll (39

with a constant h'"’ and
Ky 2 \,-”w +& —::cu+|51;II.
Since we may subtract w from x, the second solution can also be taken as k; —w, i.e,
K= 1k = + o+ lw-207+45,> (60)
Therefore, the expression (56) becomes

id,—¢ S*(1) Iy L L
E:I]:l(tr Iﬂg( o iﬂ,+£)) = (2cos ik T)*™ = FZE( . )e‘” T (6l)

Inserting this into (16) and (17), the partition function for a collective periodic
motion of frequency w in S(r) reads
P

Zlw) = E (E:I)E,piim— ¥k = 1Sl T (62)

v=10
At this place, the amplitude S, is still undetermined. For a classical orbit each of
the exponents has to be extremal. By differentiating with respect to |5,|* we find the
“gap” equation
1 _R—v 1
Vo2 e —22))* + |5,

(63)
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2 2 Q—v\? w—2e\?
s =v| (%) - (%) | o

This is exactly the result (42) which was obtained previously from a general not
necessarily semiclassical evaluation of the trace of the logarithm (whose feasibility
depend on the solubility of the model). Therefore we can verify that the index v of
the expansion (62) happens to coincide with the seniority of the fermion wave func-
tions. Notice, however, that in the purely classical calculation of the collective action,
this connection would escape our knowledge. Inserting (64) into (60) we obtain a
simple expression for k:

or

k= fo+@-vV] (65)

Inserting (65) into (61), (17) we find the classical partition function for orbits of fre-
quency o:

20 20 20
Zyw) = L Z0) = X (V )exp [iAS)]. (66)
v=0 v=0

where A" (w) are the actions of the classical orbits

AV w) = TIM(w), (67)

e (COMETII

Here we have found it convenient to introduce the curly bracket as I*)(w) which
is the value of the Lagrangian for the periodic orbit.

This classical partition function can now directly be used for semiclassical quantiza-
tion.

3. General method for semiclassical quantization

Consider a general theory of a scalar field ¢() with an action A(¢). Then the parition
function

Z = tre HT/A (69)

equals the path integral
Z.= JDga(z)eiA[‘ﬂf", (70)

where the integration runs over all periodic paths

(0) = o(T). (71)
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The semiclassical approximation consists in an expansion of the action around
classical closed orbits and keeping only the quadratic fluctuations. Let ¢(t) be
such an orbit which is periodic in a time T and solves the equation of motion

0A(¢p)

de(t)

= 0. (72)

o) = @clt)

We may then set

@(t) = @, (t)+ 00(r)

and expand up to quadratic order

1 52A
Ale] = Alo.]+1 Idtd" o0(t) (&p(t)éqo(?’))

where the linear term is absent due to (72). Now, the classical action does no longer
depend on the value of ¢(0) = ¢(T) but just on the orbit and therefore on T:

Alo,] = ACI[T]‘ (74)

Therefore we may write for the semiclassical partition function

(1), (73)

P=Pcl

Zs.cl.(T) = Z \exp (lAcl[T])JDé(P exp (IIZ[(SQD])’

periodic
orbits

where A[¢] is the quadratic correction in eq. (73). The partition function Z*' coin-
cides exactly with the WKB approximation in quantum mechanics.
The integral over d¢ can be done with the result:

i \* _[dE.|*
Z. o~ )T '
s.cl. (27'Eh) I:dT:| exp (lAcl[T]/h)a (75)
where
dA_(T)
E — cl
cl dT (76)

is the classical energy of the periodic orbit.
For the same period T there are also contributions of a fractional fundamental
period

1= T/n, m=1,2,3,4,... (77)

which are traversed n times. Adding all these gives
i\ dE_ (1) | .
7 T,=( A indciltlh
sar{T) (m) Zr[ vl B (78)

If the orbit has two turning points there is an additional phase factor e~ ", The
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Fourier transformation of (78) leads to
Z  (E)=tr i
ek B E—H semicl.

(vaih) f R

In the stationary phase approximation only such periods t with

mAcl[t]/ﬁ_ (79)

dr

0A,
+E=0 (80)
ot
contribute. Since at that point the exponent is
. 24, 5
Ac]+ET == i 61‘-2 (5‘5) +
10E
= =55 0 (81)

one can perform the 7 integral to quadratic order and finds

E oG
7 E R mW(E)/fi
( . u; :
‘L'(E) eiW(E)/h
- h 1 W B (82)

Here we have introduced the Legendere transform of 4 (t):
W(E) = A, (x(E))+ Ez(E). (83)
The bound state poles are obtained from
W(E,) = 2nnh. (84)

If the orbit has two turning points the additional phase leads to the alternative
quantization rule

W(E,) =2n(n+3)h. (85)
In both cases, due to
dW(E)
R g 86
E (E), (86)

the pole terms of G(E) are simply

G(E) = E%T::_ . 87)
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In order to illustrate these rules consider the action of a point particle in a one-
dimensional potential well such that

L = imo*—V(g). (88)
Here, function W is simply
W(E) = Zquop(QJ), (89)
where
plo) = /2m(E—V(yp)) (90)

is the classical momentum of the orbit. There are two turning points at which p = 0
such that we have to quantize according to (85) which indeed coincides with the well
known WKB result of quantum mechanics. Similarly, for a free particle confined to
a circle there are no turning points and

w =jpdx = 2nrp 91)

1s quantized according to (84) such that rp = nh, which are the correct quanta of
angular momenta.

It is obvious that all these considerations can be extended to a partition function
of the form

Z=YNZ, = ZJD(‘D exp (i4™/h). (92)

In this case one finds periodic orbits for each A™ separately, each giving an inde-
pendent quantization rule for W™(E™),

As a mnemonic rule we may remember: Given a classical partition function for
orbits of period © = 2n/w

Z,(1) =Y. N,Z, = ¥ N, exp [iA"()], (93)

the semiclassical Fourier transformed partition function is simply

E) exp [iWN(E)/h]

Z (Ey=) N , 94
s.ci.( ) ; v A 1—CXp [IW(V)(E)/h] ( )
which has bound state poles at
WUYXE) = 2nnh, (95)
whith a pole form
i
Zs.cl.(E) ~ Z Nv E'—Eslv) » (96)

such that N is the multiplicity of the states of energy E{".



344 H. KLEINERT AND H. REINHARDT
4. Semiclassical quantization of the collective action

Consider now our partition function which in the classical limit reads

20
Zyw)= Y (29 ) exp [iAV(@)] 97)
with
AVw) = TIM(w). (98)

The classical energies are calculated from

dA®(z)

EM = — 99
e (99)
Now, t and w are connected via T = 2n/w such that
d w d
— = 100
dz 7 dw (100)
Therefore
| 2n d
E¥ = —~ Aw)+ 2= o). (101)
T 1 dw
But then we see directly that
d Q—v w—2%
WE) = EV14AY = 21— [M(w) = 2 102
(E) T+ L, (w) n|:2 + 2V:| (102)
and the quantization condition becomes simply
dI(w) _Q—v N w,—2¢ o1 0 103
9o w=wn\— 3 Sy = n=01,...Q—v. (103)

The upper limit on the quantum number n results from eq. (42) according to which

the frequencies satisfy
-2 2 o 2
w—2¢ < Q—v - (104)
2V 2

EY = nw, — L(w,)

—2¢)2 )
(w, — 2¢) 2 w,—2¢
2V 2V

Y0 V[ Q—v)2 (1)"—28)2]
—HE= v, = ( 2 +( 2V
w,—2¢ Q—v\* [(w,—2\?
B L .

Consider now the energy

= HQ—vw,+
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We see that this spectrum coincides with (7) if we identify the eigenvalues of the third
component of quasispin L, with

w,—2¢
L,="
3 Y% (106)
and if we substitute the eigenvalue of
I = L(L+1) = Q- v)HQ—v)+1) (107)
by the semiclassical result
, (=Y’
L’ = 5 - (108)

Notice that the quantum number = coincides with the number of pairs in the state
of seniority v.

5. Comparison with full quantum collective action

Since the model at hand is exactly soluble we may compare the semiclassical results
with an exact quantization. First of all, it was observed in ref. ) that the collective
action of the full fluctuating § field can be expressed in a local form if not § itself
but rather the Euler angles of the rotation matrix U are used. From eq. (37) we have

2ViS = (B—is sin f)e”. (109)
For the 2 x 2 trace of the logarithm one can find )
—itrlog (’68‘(:)8 ;YD= J _T/:/z(a(r)qu Kot (110)
where due to (21), & is related to 7 by
g= 122 (111)
cos fi

Therefore the full collective Lagrangian, now valid for fluctuating fields, reads

)]+(Q—v)e— %([32+(i2—28)2 tg* B),
(112)

EXB, 7, B,7) = —HQ—vNi—2e) (

— =1
cos f

where the first two terms are due to the trace of the logarithm and the last term comes
from the expression —|S|%/V. The classical equations of motion for the fields g, y are

. . sin f§ , sin
B = (y—2¢)? 05’ B +(}’—28)(Q—V)Vm,

c
(113)

(y—2e) tg? pH(Q—V)V (ﬁ - 1) = const.
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The classical orbits for S can be reproduced by choosing

B = const,  — ' = }(Q—v)cos f (114)

with y = @. From the equation of motion (35) for S we see

cos f = \/1 — 4'501 (115)

such that (114} coincides with (41). Inserting this with (114) into the Lagrangian
we find

1Sol®

I/

I"w) = HR—(Q—V)V +w)—

(116)

in agreement with (65). Thus for the classical orbits our general collective Lagrangian
does coincide with the purely classical evaluation (67). We complete the picture by
giving also the exact quantization of the collective theory. For this we write

. 1 -
E%XB,y,B,9) = — W(wf+w§)+%{9—\f)(d+?) (117)
with
0¥ = 0, tiv, = +i( f+d sin fle?, (118)
a = (2e—y)/cos B. (119)

The canonical momenta are

1

Pp=— 5y B=—id,~Hetgp,

1 1
m=—ﬁwamymamﬂo_ )

cos f
— i+ ye-w[1-— (120)
=TT AT cos f8
We now observe [for a derivation see ref. ’)] that
Lr = —ia)i = — i(Jrlﬁ (y—2e) tg p)e”
2V 2V ’
(121)
1
= t —_
L, 2V(? 2e)tg” f—HQ V) os §

satisfy the commutation rules of angular momentum. The Hamiltonian of (117)
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becomes
HY = Bp+p,y— L

Q—v 1
2 cosf

1 I . .
= 26[— 7y 01— 2¢) tg* f— } - W(ﬁzﬂv—%)ztgz p). (122)

which has precisely the form
H = 2L, — V(I3 +12)
if we insert
Ly=p,—HQ2—v). (123)

The eigenvalues of p, coincide with our previous number n of pairs. The wave func-
tions are of course

W(B,y) = TR I @ wia- (124)

6. Conclusion

Path integrals can be used to transform the action of a fermion theory to an
equivalent action in terms of collective fields. The determination of classical orbits
is sufficient to find also the semiclassically quantized energies. There are no problems
arising from quantization rules of composite operators as in conventional Hamilto-
nian approaches.

The special strength of the method presented seems to lie in the quantization of
large amplitude oscillations where non-linear effects are important.

It will be interesting to find out whether some of the new, exclusively non-linear
effects, found recently in field theories have an analogon in nuclear collective
phenomena.
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