EXISTENCE OF HELICAL TEXTURE AROUND SUPERFLOW IN 3He-A.

H. Kleinert*, Y.R. Lin-Liu, and K.Maki

Department of Physics University of Southern California, Los Angeles, California 90007

Résumé.- On analyse la stabilité d'une texture de superfluide ³He-A en présence d'un courant superfluide J. Se limitant aux configurations dépendantes seulement de z, on trouve trois régimes stables; deux d'entre eux montrent la briseur de la symétrie axiale où le vecteur \hat{k} forme une hélice autour du courant.

Abstract.— We analyze the stability of textures in superfluid $^3\text{He-A}$ in the presence of a superflow J. Specializing to purely z dependent configurations, we find three regions in parameter space, which are stable. Two of them exhibit the breakdown of azimuthal symetry where $\hat{\ell}$ is no longer aligned with J $_{\text{Z}}$ but winds around it in a form of hélix.

For textures which depend only on z, the direction of superfluid velocity, the free energy of He-A in the dipole-locked limit can be written as $f = \frac{1}{2} \int dz \; \{(\rho_s - \rho_0 \, \cos^2\beta) \; (\alpha_z + \cos\beta \, \gamma_z)^2 - 2 \, c_0 \, (\alpha_z + \cos\beta \, \gamma_z) \, \cos\beta \, \sin^2\beta \, \gamma_z + (K_b \, \cos^2\beta + \, K_t \sin^2\beta) \, (\alpha_z + \cos\beta \, \gamma_z) \, \cos\beta \, \sin^2\beta \, \gamma_z + (K_b \, \cos^2\beta + \, K_t \sin^2\beta) \, (\alpha_z + \cos\beta \, \gamma_z) \, \cos\beta \, \sin^2\beta \, \gamma_z + (\alpha_z + \cos\beta \, \gamma_z) \, \cos\beta \, \sin^2\beta \, \gamma_z + (\alpha_z + \cos\beta \, \gamma_z) \, \cos\beta \, \sin\beta \, \gamma_z + (\alpha_z + \cos\beta \, \gamma_z) \, \cos\beta \, \sin\beta \, \gamma_z + (\alpha_z + \cos\beta \, \gamma_z) \, \cos\beta \, \sin\beta \, \gamma_z + (\alpha_z + \cos\beta \, \gamma_z) \, \cos\beta \, \sin\beta \, \gamma_z + (\alpha_z + \cos\beta \, \gamma_z) \, \cos\beta \, \sin\beta \, \gamma_z + (\alpha_z + \cos\beta \, \gamma_z) \, \cos\beta \, \sin\beta \, \gamma_z + (\alpha_z + \cos\beta \, \gamma_z) \, \cos\beta \, \sin\beta \, \gamma_z + (\alpha_z + \cos\beta \, \gamma_z) \, \cos\beta \, \sin\beta \, \gamma_z + (\alpha_z + \cos\beta \, \gamma_z) \, \cos\beta \, \sin\beta \, \gamma_z + (\alpha_z + \cos\beta \, \gamma_z) \, \cos\beta \, \beta \, \gamma_z + (\alpha_z + \cos\beta \, \gamma_z) \, \cos\beta \, \beta \, \gamma_z + (\alpha_z + \cos\beta \, \gamma_z) \, \cos\beta \, \beta \, \gamma_z + (\alpha_z + \cos\beta \, \gamma_z) \, \cos\beta \, \beta \, \gamma_z + (\alpha_z + \cos\beta \, \gamma_z) \, \cos\beta \, \beta \, \gamma_z + (\alpha_z + \cos\beta \, \gamma_z) \, \cos\beta \, \beta \, \gamma_z + (\alpha_z + \cos\beta \, \gamma_z) \, \cos\beta \, \beta \, \gamma_z + (\alpha_z + \cos\beta \, \gamma_z) \, \cos\beta \, \beta \, \gamma_z + (\alpha_z + \cos\beta \, \gamma_z) \, \cos\beta \, \beta \, \gamma_z + (\alpha_z + \cos\beta \, \gamma_z) \, \cos\beta \, \beta \, \gamma_z + (\alpha_z + \cos\beta \, \gamma_z) \, \cos\beta \, \beta \, \gamma_z + (\alpha_z + \cos\beta \, \gamma_z) \, \cos\beta \, \beta \, \gamma_z + (\alpha_z + \cos\beta \, \gamma_z) \, \cos\beta \, \beta \, \gamma_z + (\alpha_z + \cos\beta \, \gamma_z) \, \cos\beta \, \beta \, \gamma_z + (\alpha_z + \cos\beta \, \gamma_z) \, \gamma_z + (\alpha_z + \cos\beta \, \gamma_z)$

$$\sin^2\beta \ \gamma_z^2 + (K_b \cos^2\beta + K_s \sin^2\beta) \ \beta_z^2 \}$$
 (1)

where ρ_s , ρ_0 etc., are coefficients used by Bhatta-charyya et al. /1.2/. Here $\hat{\ell}$ and $\hat{\Delta}$ are parameterized as $\hat{\ell}$ = (sin β cos γ , sin β sin γ , cos β) $\hat{\Delta}$ = e^{-i α}(- sin γ - i cos β cos γ , cos γ - i cos β sin γ , i sin β) (2)

Since α is a cyclic coordinate, the z component of superflow J is completely uniform and can be used to eliminate α_z from f, by

$$\frac{\partial f}{\partial \alpha_z} = J \tag{3}$$

with

$$g = f - J\alpha_z = \frac{1}{2} \int dz \{B(s) \beta_z^2 + G(s) \gamma_z^2 - A(s)^{-1} J^2 + 2JH(s) \gamma_z \}$$
 (4)

where

$$A(s) = \rho_s'' + \rho_0 s$$
, $B(s) = K_b (1 - s) + K_s s$,

$$G(s) = [K_b (1 - s) + K_t s - c_0^2 s (1 - s) A^{-1}]s$$

$$H(s) = (1 - c_0 s A^{-1}) \sqrt{1 - s}$$
, and $s = sin^2 \beta$ (5)

The dynamics of $\hat{\ell}$ is determined by the Cross-Anderson equation /3/

$$-\mu \sin^2 \beta \gamma_t = (\frac{\delta g}{\delta \gamma}), -\mu \beta_t = \frac{\delta g}{\delta \beta}$$
 (6)

where μ is the orbital viscosity.

We find that there are four types of stationary solutions (i.e.

$$\gamma_t = \beta_t = 0$$
), which satisfy equation (6);

I (
$$\beta = 0$$
), II₊ ($\beta_+ < \beta < \beta_1$),

II_(β _ < β < β _1) and III (β _2 < β < $\frac{\pi}{2}$). The analysis of stability against small oscillations yields (compare figure 1).

Fig. 1: The three stable regions of the z dependent textures in the presence of a superflow are shown.The region I ($\widehat{\mathbb{Z}}$ parallel to J) is stable only for $0 < \epsilon <$.1. For 0.1 < $\epsilon <$ 1, there are two stable regions II_and II_with nonvanishing β and γ_Z corresponding to helical $\widehat{\mathbb{X}}$ textures. Finally the region III is unstable for all ϵ .

- 1) I is stable for c > 1 and unstable for c < 1.
- 2) II_+ and II_ are stable only for c < 1 with γ_z covering limited ranges depending on β .
 - 3) III is always unstable.

^{*}Permanent Address : Institut für Theoretische Physik, Freie Universität Berlin, Arnimallee 3, 1 Berlin.

Here
$$c = K_b \rho_0 \left(\frac{1}{2} \rho_s'' + c_0 \right)^{-2}$$
 (7)

The figure displays the result of our calculation under the simplifying assumption that only ρ_0 deviates from the GL values;

tes from the GL values;
$$(1-\epsilon)^{-1} \; \rho_0 = \rho_s'' = c_0 = \frac{2}{5} \; K_{t,b,s} \qquad (8)$$
 The result (1) confirms earlier analyses /1,4/.The new regions II, and II_ correspond to the $\hat{\ell}$ vector winding around the zaxis in a form of helix. The boundary curves β_1 and β_2 are given by

$$\sin^2\beta_{1,2}^{(\varepsilon)} = \{7 + 2\varepsilon \mp (1 - \varepsilon) \sqrt{17 - 10\varepsilon}\}(8+\varepsilon^2)^{-1}$$

The lower boundaries β_+ (ε) and β_- (ε) have (9) been calculated numerically. In the limit $c + 1$, the stability region shrinks linearly, both β_+ (ε) and β_- (ε), converging towards $\beta_1(\varepsilon)$. In the limit $c + 1$, the corresponding unique value of stable $\beta(\varepsilon)$ can be calculated exactly without simplifying assump-

tion (8) with the result

$$\sin^2 \beta = (1 - c)/(2D) + 0 (1 - c)^2$$

where

$$D = \rho_0 / \rho_s'' - 1 + K_t / K_b - c_0^2 / (\rho_s'' K_b) - \frac{1}{4} (\rho_s'' - 4 (c_0 - \rho_0)) (\frac{1}{2} \rho_s'' + c_0)^{-1}$$
 (10)

For the values (8), $D = \frac{2}{5} + 0$ (c - 1) implying $\sin^2 \beta = \frac{5}{4}$ (1 - c).

The present work is supported by the National Science Foundation under grant No DMR76-21032.

Fig. 2: The equilibrium positions of $\frac{\rho_s" \gamma_z}{J}$ in the stability regions II and II are displayed as functions of $\sin^2\beta$ of different values of ϵ (ϵ = corresponds to T = Tc, ϵ = 1 to T = 0). Adiabatic cooling proceeds along horizontal lines of fixed $\frac{\rho_s" \gamma_z}{J}$.

References

- /1/ Bhattacharyya, P., Ho, T.L., and Mermin, N.D., Phys. Rev. Lett. 39, (1977) 1290.
- /2/ See also, Cross, M.C., J. Los Temp. Phys. <u>21</u>, (1975) 525.
- /3/ Cross, M.C. and Anderson, P.W., Proc. 14th Int. Conf. Low Temp. Phys. Otaniemi, Finland, 1975, edited by Kruisius, M., and Vuorio, M., (North Holland, Amsterdam, 1975).
- /4/ Cross. M.C., and Liu, M., prepint.