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WHAT CAN A PARTICLE PHYSTICIST LEARN FROM SUPERLIQUID He?
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ABSTRACT

The superliquid 3He is shown to be a wide field of application

for many recently developed methods in particle physics and field

theory:

1) There 1s a transformation from fundamental to collective fields
via path integral techniques just as exists from Thirring to
Sine-Gordon fields and as one would like to find from quarks
to hadrons.

2) There are many classical field configurations, moncpoles,
strings, and solitons, which all can be produced and investigated
in the laboratory.

3) Topological guantum numbers are helpful in classifying the
stable field configurations.

Such applications to realistic situations iIn other branches of

physics, apart from being useful in themselves, may extend our intuit-

ion and help us finding new methods and approximation procedures.

Work supported in part by Deutsche Forschungsgemeinschaft/K1256/6..
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Many arguments used recently in the attempts to deduce
the confinement of quarks in Yang-1ills theories 1) rely
heavily upon our intuition about flux loops derived from
what we know about superconductors and superliquid He-1I
2). I would like to draw your attention to ancther super-
liquid, 3He, whose collective description has a non-
trivial topological structure and may therefore be a com-
plimentary or even more inspiring source of information.
Instead of a pure phase, ei¢, the order parameter des-
cribing the condensate of Cooper pairs at each point is

given by a complex 3x3 matrix of the specific form

(1), ..,(2)
A i,ada(q + id¢ ). (1)

N 1

. 1 .2 . .
Here (¢ ,¢ are orthogonal unit vectors which can be
Vad o~

thought of as the two axes of a dreibein (see Fig.I1)

with £ = Q(l)x¢(2) as the third axis while da is another

~—

¢ d(e.¢)
(2) /
(aB.y) > /
Euler angles direction angles
(D(‘ )
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unit vector. Physically, ﬁ points in the direction of the
angular momentum of the Cooper pairs while E denotes the
axis along which the total spin has a vanishing component.
The parameter space of this field is topologically equi-
valent to 82x803/22 where Z corresponds to the simul-
taneous reflection of E ,EQ, and E (with ﬁ staying fixed

to preserve the orientation of the dreibein).

Due to this feature there exist many non-trivial topo-
logically inequivalent field configurations very similar
to those in gauge theories. Topology is very useful in
classifying the different solutions. Contrary to gauge
theories, however, many of these fields can be prepared
in the laboratory by an appropriate choice of the con-
tainer walls, external fields, and currents. It is
possible to bring the liquid into states which are sepa-
rated from the ground state by a potential barrier and

3)

study the "fate of the false vacuun” .

Finally, the very derivation of the collective field
theory from that of the fundamental 3He action is com-
pletely analogous to what has recently become popular
in 1+1 dimensional theories: The transition from the
Thirring model to the Sine-Gordon equation 4). Since it
is quite plausible that eventually a similar transition
will be found from quantum chromodynamics of quarks and
gluons tc a dual theory of hadrons 5), it may be an in-
spiring experience to learn how well a liquid containing
many strongly interacting fermions can be described in
terms of a few Bose fields 6). Also, Landau's way of
arguing for an approximation of the original theory by

another one formulated in terms of weakly interacting

quasiparticles may give related insights into the con-



718 H. KLEINERT

. . 7
nection between current and constituent quarks ).

The fundamental action of 3He is
-f(: ratxyt Y x)(1s +-‘37—2- + WU (x)
’ t 2m H Wa %

(2)

1. .4 .4 i Xet +£
~zsatxd oyt Yooy F(x')V(x-x'wP(x')wa(x)
In addition, there is a weak hyperfine interaction be-
tween the nuclear dipole moments which we shall at first

neglect. The potential V(r) is displayed on Fig.II.

V(°K)

average spacing in liquid

»

1 1
| T o

1 213 r(A)

<10°K

Fig. II

If one calculates the average distance between two atoms
one finds <r> ~ 3.5A4. Thus the atoms attract each other
all the time and one is confronted with a strong-coupling
problem. It would be hopeless to attempt a perturbative

solution were it not for Landau's important observation:
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Instantaneous screening effects dress the particle,moving
through the liquid,with a small cloud and generate a
gquasiparticle. The interaction between the gquasiparticles
is quite weak. In order to test this idea one may calcu-
late specific heat, susceptibility, and compressibility
for a free system of quasiparticles. As the temperature
varies, these behave as T, constant, T_2, with coeffi-
cients depending on the mass. It turns out that all for-
mulas agree very well with experiment 1if one uses the
quasiparticle mass me ~ 3m3He. Thus Landau's ideasof
almost free quasiparticles seems to be correct in ~He
with the screening cloud consisting, on the average, of

two neighbouring atoms. If one now writes an effective

action for the quasiparticles again in the form (2), the
potential 1is expected to be strongly screened and of
short range. Only the hard core will definitely stick
out. Now there is hope of Feynman graphs leading to rea-

listic answers.

NHotice that since the fields are now not completely local
but describe a time and space average over a quasiparticle
size (® 3 A) one cannot use the effective action to

answer questions concerning distances of this order. We
shall therefore restrict the following discussion to much

o
larger distances, say starting with 100 A.

In quark physics, something similar and much more drastic
seems to happen: Fundamental quarks are strongly inter-
acting objects of small mass (MS =z 15 MeV) 9). When moving
through the guark matter Inside a hadron they seem to
become heavy (Mu >~ 310 MeV) and almost free. Thus the

current versus constituent quark picture is in complete

analogy with Landau's idea of Fermi liquid effects.
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The quasiparticle action of the form (2) can most effi-
ciently be treated by approximating the potential with
another one of the same characteristic shape but with a
squeezed radius

V(x) = V_8(x) - %%“2 928 (x) (3)

F

Here Vo > 0 accounts for the repulsive core and 7 > O

for the attractive well around the core. If one ne;lects
VO (which can be taken care of afterwards in form of what
is called paramagnon correction) the interaction can be

reordered and written as
. & [ b
Uk, - 138 ,dwa’“iviw*BwPiv.u (4)
F

We have left out a term proportional to g(w*“wo)z(w+5ud)
since for phenomena with wavelength much largef than 3.5
this is neglegible compared to (4): There the derivative
$ stands between the fields which gives at the Fermi sur-
face a momentum 2pF. Since Pp& 1/(1.1 A) this is indeed

large compared with V (¢+awﬁ) v (w+8

wm) which goes
with the total momentum of the phenomena we want to study

(< 1/(100 2)).

With the interaction (4) we can write the generating
. . 3
functienal of the quantum field theory of "He as the

path integral

Z y , + i7dx g (x)
= SRRy e (5)
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with
+ . Y +.9 05 +,.+ .9 O
= U -2 (- 426 yTiw LanTy Bt B
&L(x) Y (lat , ( l_Y))\ﬂ'upqu 17, —5C Y piv, C=3y
Notice that we have inserted Coamatrices (CEiOQ) between
the fields in the interaction term without changing the

expression (4) because of the anticommutativity of the

filelds,.

The letter  stands short for the energy measured from

>

the chemical potential:
2(-iV) = - = - . (6)

In order to allow for temperature ensembles the fields
are periodic in Euclidean time such that the energy inte-
grals of the Feynman rules are sums over Matsubara fre-

quencies

L - .

- dk s T3 for .{fermlons (7)
27 a4l bosons

kozi { n } 7T

2n

We now transform (5) into Bose form by using the standard

trick of nmultiplying 2 with a constant gaussian functional

integral 10,5,6)

2
1 . 3 I« N O I
-y - V.=
352 dX'Aa,l 2’; Yiv.— v

1 = J"@AEA"' e (8)

v

HJow the exponent of (5) times (8) can be written as
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&
19,5 1Vio.8,4
1 1
ﬁX): 5 f+(x) f(x)-f_;-; AaZ(X)Aai(X)
P
iVGaAa; 19+ £
(9)
y(x)

where f(x)E( +U+( )).The fields f can be integrated out
c V¥V (x
(for details see Ref. 6)) and the functional becomes a
pure integral over A fields
i A

v (A
7 = roaoate coll (10)

with the collective action

£
18t-: 1Vgo ai
ra7 oo i
UkcollLAJ = -3 tr log
-1 + .
lVGaAai 13t £ (11)

1 . +
3g deAai(x)Aai(X)

This depends only on the complex 3x3 Bose field Aai and

describes completely the 3He liquid for phenomena varying

over distances > 100 A, say. In regions of small A one
can expand (11) in a power series. The lowest terms are

for time independent fields

. 1,. T ., +
Uk = Jdx {3(1 = )Aai A

c al

2 +
L I UL T S O U N SR U S S S
o "ial "jaj "iaj jai "ivai "iaj

2,2 ¥, + + 2 (12)
5 £ o[B8, Apshag Bp;8,(A ; ALy)

+ + + +
tBahag Pajlpr MpitPu(hLy Apifp; Ag;
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Here we have

1) divided out an overall factor

Nco)

mpF 1
2T!'2 it TF

3
- 13
m (13)
which is the density of states at the surface of
the Termi sphere,
2) introduced the critical temperature TC as a solution
of the gap equation

y -1/g N(o)
e (14)

3
[
SR}

= W
ol cutoff

with the parameter w which limits the energy

cutoff
integration. This cutoff is determined by the fre-
quency at which the quasiparticle approximation

breaks down (say . MHz),

16 °
+)
3) used the length parameter
Vo Vv 4 -
2, F 783) YR . 13y YE & o150 A (15)
pgw? T, Te

called coherence length for reasons to be secen

shortly
4) set vF::3x103cm =1 ++)

-

. .o=1 .
into length units (B = K = om tT be -
G A Boltznann 1 fro the be

is used as energy unit, the frequency

thus converting freely energy

- by T osf

ginning). If nK
. YR - o

and length units become 131.6 !Miz and 205 A, respec-

tively.

leel
+) . - 1 - Pr
) The constants are [(3) £ 7 =3 = 1.202, v_ = =L
n r T
1
++),

This i1s at melting pressure. At zeroc pressure

V. = 5.5x103cm/sec.

i



724 H. KLEINERT

The coefficients of the quartic term are actually deter-~

mined by the calculation as
-20. =R, =B ,=0 :—?711 (16)

It turns out, though, that the effect of the repulsive
core and, to a smaller extent, also of the remaining
part of the neglected guasiparticle interaction do cause
some changes in £ (up to 30%). Therefore we keep £ as
parameters. The same corrections also modify the coeffi-
cients of the derivative terms but only by a few percent

such that they can be neglected.

Hotice that higher derivatives as well as higher powers
in Aai carry, for dimensional reasons, one more power

of Eo each. Thus for wavelength >r§O higher derivatives
can be neglected. How about higher powers in A? Looking
at the potential we see that there is a phase transition
as T < TC since then the mass term picks up the wrong
sign. The fields A will fluctuate around a new minimum
determined by the quartic interaction. Its size is of

the order of

3

(17)

0
=

o
o
(]

for dimensional reasons. Thus, as one is close enough
to Tc’ also higher powers in A can be neglected. The

action (12) 1s complete as far as the long wavelength
limiting behaviour of the system is concerned. In the
modern jargon of critical phenomena, it contains all

- 11)
infrared relevant terms .

What information can be extracted from the collective



SUPERLIQUID *He 725

field theory (12) of 3He? Obviously , one is confronted

with an SU,xSU_.xU(1l) 0 type of model whose critical

2 2
11)

phenomena have been studied in the literature For

brevity, we shall focus here only on the classical aspects:

As T < TC the vacuum settles at a new ninimum determined
by Bi. There is no complete analysis of the potential in
the 18 parameter space of Aai.lz) However, there are two
minima which describe very well all properties of the two

main phases of 3He, A and B (see Fig.III). These minima

r
Fig. I11
can be parametrized by
o_lJE‘l (1),, .,(2)
Aa,i =3\ da(¢ +i ¢ )i (18)

and
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(m,e)e (19)

\f"Ti [
3

The first mininmum has a degeneracy corresponding to a

2 . . . . N
space SOaxS /Z2 as discussed in the beginning. Similarly,
the second space is described by 50,xU(1).

Great simplicity is gained by restricting oneself to
phenomena with wavelength >> 50. Then the energy den-
sity stays much smaller than lﬁ;o and the field is pinned
down tightly at the minimum of the potential valley. The
size of A is fixed and the energy depends only on the

changes in the directions of the field vectors. It is

therefore often referred to as berding energy. In the
standard field theory of the 0 model this corresponds to
the transiticn from the linear to the non-linear ¢ model
by letting my > while keeping <0> fixed. How the only
degrees of freedom left are the directions of the diffe-

rent vacua with possible smooth spatial variations.

By concentrating on such low-energy phenomena it becomes
important to include a weak force which was left out in
the beginning but which now has relatively large effects:
The hyperfine interaction due to the magnetic dipole-
dipole forces in the nuclei. If we calculate its collec-
tive form (by taking it through the path integral trans-
6)

formation ) we find that it wants to align d and %

vector in the A phase via

A, -1

[Phat

on

1
&d

. 7 7 odx(de2)’ (20)

“Ti

where the length parameter gd characterizes the strength

of the interaction. The microscopic calculation of Ed 5)
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agrees with the experimental determination

54 % 1077 em & 300 % (21)
Thus the dipole interaction drives d parallel to &_and
becomes important at length scales 10u. This alignment
force is easily understood. In the Cooper pair the con-
figuration S| L is clearly of higher energy than 5 | L
since equal magnetic poles are always adjacent to each
other while in S 1 L they are in line for half the orbit

(see Fig.IV). But S| L means d || & since d is the axis

LIS L

along which 83 = 0.

The collective free energy can now be written (dropping
2

1
an overall factor — and surface terms) as

6 f 2

2 .2 2
Foz & (00 T4%,5.0, +,83d ; +(3.d))
2 2| i ] ~—- 1 a (2?)
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Similarly one can write f for the B phase in terms of

(S

the fields n, €, and ¢ and a dipole energy which drives
"~

q & cos (~%) with a length scale of the

same order of magnitude.

the angle 0 to €

This non-linear ¢ model (22) (and a corresponding version
for the B phase) can now be investigated with popular
nmethods of field theory: It contains the Sine-Gordon
equation for particular field configurations thereby
giving rise to solitons. The topology of the parameter
space allows for the existence of non-trivial field con-

f™rurat+ens -fer the ground state.

Before we present a few of the phenomena we have to rea-
lize that the superliquid is always in a finite container,
usually with a size of the order of cm. This imposes
boundary conditions upon the fileld lines. It can easily

be derived that & has to stand orthogonal to the walls.
Physically, this.is obvious from the fact that the size

of the Cooper pairs is given by the coherence length and

is therefore a few hundred times larger than the atonic

.t i

super

distance. Thus if the liquid is to stay T up to the
walls, the orbital planes of the pairs have to be parallel

to the walls in order to avoid break-up (see Fig.V).

Another important external effect is given by a magnetic
field. Since this introduces a quantization axis for the
spin the vector d along which 33 = 0 is forced orthogonal
to H (see Fig.VI).
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Jith this preparation we can now present a few interesting

classical field configurations.

1) Monopoles

Cooling a sphere smoothly through TC plants the £ vectors
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orthogonal to the walls with ¢l,SF covering them like
orthonormal coordinates on a globe. dith the liquid be-
coming "super' more and more inwards one may think that
the % lines grow radially until they hit a point singu-
larity at the center. However, this is not true: Because
of the mathematical theorem that a hedgehog cannot be
combed without vortices, there must be singularities

in the tangential dl,d2 fields either two of flux one
(for example at no;}hyénd south pole) or one of flux two

(see Fiz.VII). Thus ideally, one would have field lines

growing as shown in Fig. VIIIa,b where the curly lines
trace the singularities of the ¢l,q2 fields for the two
possible extremes. But along thgée~;ingular vortex lines
the liquid must be normal since only if the field Aai
vanishes can the direction of ¢l,if be illxdefined. Thus

the vortex lines form strings with a thickness equal to
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the coherence length inside of which there is an accumu-
lation of condensation energy (the difference between
f(A=0) and f(A = equ.(18),(19)). Thus the liquid likes
to keep these strings as short as possible and pulls the
point singularity to the wall with an Llogl potential
energy resulting in the flower-like field configuration
VIIIc (called boojum). This object has an intrinsic
angular momentum and and should be detectable by obser-
ving the rotation of little SHe droplets as they are

cooled through Tc into the superliquid phase.

2) Line Singularities

In a cylinder the £ lines will develop inwards until

they form a singular line at the axis (see the left of

Fig.IX). But this again contains the large condensation

energy and the field lines prefer avoiding it by flaring
4)

upwards like flames in a chimney 1 (see the right of

Fig.IX).
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Fig. IX

3) Planar Singularities (Solitons)

In a magnetic field along the z axis the d vectors will
be forced in the xy plane, say

~

d = sin Y X + cos Uy (23)

Due to the dipole force, also £ wants tc have this direc-
tion. If the superliquid could develop smoothly, one
would obtain a completely uniform d |} 2 field. However,
"small perturbations will create defects with dll 2 in

some direction and antiparallel in others. The size of
such domain walls will be determined by the dipole length
£4+ In order to study a particular (twist) domain wall

assume £ to have the form

L = sin ¥ % + cos X 9 (24)

P

which 1s compatable with a ¢ vector of the form
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(25)

- A .
x + sin ¥y y + 1iz)

~

e1¢ (-cos ¥

SUPERLIQUID 3He
d

The free energy reads

(26)

(x-v)

2

(3)()2}1' L—z sin
Ed

1
2

[(au)2+(2¢) %+

This can be diagonalized by

(27)

X + 4u

as

(28)

The classical extrema are ¢

with

= const.
%)

const., u

15)

Fig.

(see

a soliton in the v variable
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v tz /g
 sol _ sol . - -1 -
tg —- T e ,» sin v_ . = ch (Z/”sol) (29)
of size
1
r = - F
®sol ;5 7d

The detection of all these classical field configurations
proceeds most simply via nuclear magnetic resonance ex-
periments., A vibrating ﬁm field causes the i vector to
oscillate around the equilibrium position generating spin
waves in the system., For these any spatial inhomogeneity
acts as a potential wall (or mountain) which can trap

(or repell) them. For example, the soliton just found

will catch spin waves in a bound state. Consider small

deviations
(VRN + S (30)

Then the energy fluctuates as

§°F = § 2 4 1, 1 - 2 §2 (31)

2 -
d chZ(z/E __)

This is extremized by the solution of the Schrddinger

equation

[ 2
-0 2+ [1 - — } 6(z) = w® 8(2) (32)
>d ch (Z/isol)

which has a single bound state

§(z) « — = Te (33)
teh{z/8 1)
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with
-1 - 2 2 - _ 1 E_B_I-N
s = 2 [-1+/14d OCIRTILE R SESEEL (34)
The energy 1is
1 —_—= 1
w? = 5 (V65 - 7) = 7/ (35)
£ 4

while the continuum has a spectrum

w? = k2 + é~ (36)
>d

This bound state can be seen as a satellite frequency

in NMR experiments shifted down by a factor of

J}l(f§§-7) =~ ,728 with respect to the normal line in

2
complete agreement with the data 16).

Finally, let us give an example of the use of topology.

Since the dipole force aligns ¢ and 2, the parameter

space of Je-A is for extended objects (>>gd) 50, only.
Its homotopy groups are
m, = 2, . m, = 0. (37)

Notice that the first statement implies that Se-A is
not really a superliquid at all since it is not able to

pile up a large number of flux quanta in a torus (for
17)

this m, has to be equal to Z2).

In the B phase, G 1s pinched to €, = arc cos (“%)Q710uo

such that the remaining parameter space is SQXSJ (gl

from the phase and 82 frem the direction vector n). HNow
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the homotopy groups are
n, = Z ’ m, = 4 (38)

such that there are infinitely many line and point singu-

s 3 . . . .
larities. He-B is a superliquid just as He-II.

For a more complete discussion of the non-trivial field

configurations you are referred to Ref. 18).

Apart from these applications of recently popular

methods of particle physics and field theory,sﬁe may

also serve directly high-energy experiments whenever a
coherent accumulation of small effects must be detected.
An example could be the electric dipole moments of the
Cooper pairs caused by P violating (T conserving) neutral
currents. These would line up with LxS and could pile up
to a macroscopic effect in the condensate 19).

With 3He physics being a rapidly expanding field of
research, I have been able to present only a glimpse of
the many interesting phenomena to be explained by theory.
Hopefully, the similarity of the problems as well as the
methods of their solution may provide particle physicists
with the same degree of inspiration as has been derived

. . .. 4
in the past from superconductors and superliguid He.
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