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The topological aspects of superflow are discussed. While the barrier of condensation energy stabilizes only flux zero
and flux one, the coupling of current and /texture leads, in a torus and for the limited range of temperature and magnetic
field in which a helical texture eXists, to the separate quasi-topological stabilization of both the macroscopic pair current
and the bound orbital current VX . The latter decays much faster than the first and has a much smaller critical value.

The decay rate is calculated.

The order parameter of 3He-A, d, (61 +ip)),,
is specified by the position of the dreibein 1) $(2),
1=¢M) X @ and the direction of the unit vector d,
except for a simultaneous reflection of ¢M) 2 4
(which preserves [). Physically, I describes the direction
of orbital angular momentum of the Cooper pairs and
d the axis along which their total spin has zero compo-
nent. The parameter space is topologically equivalent
to SO3 X S2/Z,, where SO; may be pictured in the
axis-angle form as a sphere of radius 7 with diametri-
cally opposite points identified (i.e. the projective
space P3). Every vector a, |a| < 7 fixes a rotation
e—18L by which the dreibein differs from a standard
position, say that coinciding with the x, y, and z axes.
The surface of a sphere S2 is the locus of the end
points of all possible d vectors. The center Z, consists
in the reflection defined above.

It was noted some time ago [1] that this parameter
space allows only for four types of inequivalent closed

contours (i.e. m; = Z) such that the superliquid 3He-A

in a torus could only support four different topologi-
cally stable fluxes O, %, and 1, which are all of mi-
croscopic size. Thus it did not even seem to deserve
the prefix “super” in its name. Only an infinite con-
nectedness (i.e. m; = Z) is capable of topologically sta-

bilizing arbitrarily high quantum numbers, N =1,2,3, ...

which can accumulate to a macroscopic superflow.
The situation becomes even worse by observing that
in a bulk liquid the dipole force aligns the d and / vec-
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tors thus reducing the parameter space to SO5 only.
Now there are only two classes of topologically in-
equivalent closed contours (i.e. 7y = Z,) as is well
known from the discussion of half-integer spin repre-
sentations.

Certainly, topological stability is not absolute. It is
derived on the assumption of an infinite condensation
energy. In fact, topological quantum numbers do de-
cay by penetration through some barrier in function-
al space. This barrier is gigantic due to the presence of
volume factors. It was soon realized that such volume
factors can appear in potential barriers much smaller
than the condensation energy thereby causing a very
long lifetime of metastable states. A uniform current
in 3He-A is indeed stabilized by such a mechanism.
For, the free energy [2]

=302 =500 (I"v)?
+ oo (VXD — Q@ DI (VX
+ oy (2d,)? ~ oy, (G0d, )2
+3K (V- D2+ 3K 11 (VX D)2

AR, IX (VX D)2 —ga(-d)? +g, (Hd?, (1)

contains a term — 5 pO (/* us)7- which represents a bar-
rier to the motion of / orthogonal to vg. This may be
pictured as a potential hill around the equator of the
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SO5 parameter sphere. But without this motion there
can be no relaxation of flow: the deformation of all
contours to the four (or two) inequivalent ones re-
quires precisely the passage of the equator. This bar-
rier is quite insurmountable due to volume factors.

If it is idealized to be infinitely high, just as previous-
ly the large but finite condensation energy, the stabil-
ity problem can again be answered by topological ar-
guments. In the case at hand, a complete elimination
of the equator renders the SO5 sphere infinitely con-
nected (7, = Z) permitting the build-up of a macros-
copic number of flux quanta.

Recently [3,4] it was pointed out that the / llvg
alignment force has to compete with the other terms
in eq. (1) which may destroy the previous argument.
In fact, the stability holds at zero magnetic field if a
combination of hydrodynamic parameters satisfies

K=poKyllcg +30)> > 1, )

which is true close to T, (where K = 2).ForT< Tgan
~ 0.86 T, however, the alignment is lost.

Fortunately, it can be shown that I does not move
away arbitrarily from the current direction but stabi-
lizes at a new helical texture [5] with / winding around
the average current j = (J) of

J=(gog +e(VX D)y, ®)

measured in units of J4 = p! vq With vy = 1/2mé 4 be-
ing the dipole velocity (= 0.1 cm/s).

In the presence of the magnetic field H = hH 4 (with
Hy ~ 30 Oe being the field at which the magnetic
energy equals the dipole alignment energy) the crite-
rion for the onset of a helical texture is (see fig. 1)

[6,7]

2
!13. .h_c El @ (1 —
I LA
If this condition is fulfilled the helix forms at an angle

of inclination *!

K1), ©

*1 1 thank Prof. K. Maki for pointing out that R. Kleinberg
at La Jolla has apparently measured gy, #+ 0 by sending a
sound signal transverse to the current. He observes the at-
tenuation constants [9]

@ =0+ (ac —a))sin2f, + (o) — 2a,+a))- 3sintgy,

with a slope in - hg compatible with eq. (5).
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Fig. 1. Regions of stable superflow j in the presence of a mag-
netic field k I j. The region #2/j2 < 1/20 is stable for com-
plete dipole locking withd # I k1 at T = T¢. In region I di-
pole locking is relaxed (T ~ T(). For Tj € (Tgtat, To) with

k = 95/90 this region shrinks to II. For T = Tgt,, the align-
ment collapses. The lower triangle to the right shows the sta-
bility of thed Il { Lk | j texture for T~ T. If dipole locking
is relaxed the boundary turns smoothly into the linej = jipax
~ (40/T)V% ~ 2.39.

2
28 h2—h 2
Bﬁ%—ﬁ—hA« Cz(1—TT)+3L. (5)
]'2 ]'2 stab ]2
where

D =pgllcg +3p3) (2K~ 50])

— 30Kyl Ky (co +3p5)

and 8, = h% — h2.

For stability it is necessary that the pitch 9v/dz of
the helix (v = azimuthal angle of /) varies in some lim-
ited range (see fig. 2) close to:

dv(z)/3z =77, (6)

withr=(cy + : p!)/Kb, if also z is measured in dipole
units £4 (& 10—3 cm).

The whole stability argument is valid only as long
as the current stays sufficiently below the dipole val-
ue [8] since for j > 1 the helix curls up so much that
the bending energies, which prefer a flat d texture,
tear d away from /, dipole locking is lost and the sta-
bility region disappears (see fig. 1).

It is the purpose of this note to discuss the implica-
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Fig. 2. Lines of stationary solutions y,/f and sin?gp for T~ T,
and different values of 42 /2 in the dipole locked regime.

The shaded areas correspond to stable helical textures. As #2
becomes larger than A2, the helix may form in the neighbour-
hood of v,/f = 3/5. If h is increased faster than T (see eq. (20)),
the angle between / and j opens up until about sin26h ~ (.32
where the helix collapses. If the temperature is lower than T,
the small-s region looks almost the same, except that the num-
bers on the curves correspond to (2% — hg)/ 72+ 1/20 instead

of h2/f2.

tions of the helix to the superflow properties of 3He.
Let us first observe that the current (3) has two

pieces analogous to the source of a magnetic field in
the presence of magnetizable matter: the first piece
describes the flow of Cooper pairs (pair current), the
second gives the apparent particle transport resulting
from the orbital circulation of the atoms within each
pair (orbital current). If we assume, for simplicity, a
purely z-dependent texture, the total current runs in
the z-direction while the curling-up of the helix gives
the apparent particle flux as ¢ times

VX I=ly, 7

The point is now that the helix makes also the sec-
ond part of the current topologically stable with an
energy barrier even smaller than the previous one
(which prevented the decay of j) but still large due to
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volume factors. This is easily seen: the helix forms
since the free energy for h2 > hg has a potential min-
imum at § = $; and a potential mountain for = 0.
This barrier presents an obstacle to the / vector point-
ing in forward direction. With respect to the SO3 pa-
rameter space, this amounts to a narrow cigar-shaped
region being forbidden within the SO parameter
space (in addition to the equatorial line). Idealizing
this cigar to be impenetrable, there is obviously a sec-
ond infinite connectedness: paths winding an arbitrary
number of times around the cigar are inequivalent

(7y = Z + Z). Thus, we conclude that in the helical
texture 3He-A is a double-superliquid.

Certainly, since the barrier has finite height this
“topological” conservation law is broken by tunneling
amplitudes. Let us briefly discuss the decay properties.
For simplicity, we shall assume j to be much smaller
than unity such that the dipole force causes complete
alignment of d and /. Then the parameter space con-
sists only of the dreibeing @) @2, I or the Euler
angles f, v and a. The particle current for small  can
be written as

J~a, ty,, t))

and the free energy density, measured in units of f

= pg vé‘, becomes for small

2(f—jay) > =2+ 2jv, + (K /p)) 62

+ (K /o) B2 (v, — )2 — 28, (82— B4/26D), (9)

where 7 = (cy + : pé')/Kb. Now, this energy contains a

second divergenceless current

Ty = Kylpg)B2 (v, = 1), (10)
which leads to a free energy density

2f —jay) = =% + 2y, + 48, (28) (11)
with

W=¢r— ¢ +30* + 7702 (12)

The factor gy, is the density of “condensation energy”
(per 23) for the second order phase transition to the
helical texture:
2 2
g =1 8 1 Ky By (13)
h"p 5 T4 L2

D 4 psll éﬁ
The coordinate x is measured in units of the corre-
sponding coherence length,
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i = [Ky /200831172, (14)
and T, = (4g,- &)/, i.e.

Jy = 0% (v, — rikp) . (15)
Let 72 =k (1 — k2). Then, for k2 <} there is an
extremal solution

S )= —kD2, y(x)=rjgpx +xx, (16)
with

28y = -(1 -x)2)2, (17)

which extremizes the free energy. This solution de-
scribes the metastable helical texture with a superflow
J5 (in addition to the total superflow J). This second
superflow can decay only by 8 tunneling into the
small B region. Such an excursion is extremal for the
solution of the equations of motion [10]:

62(x)=1— k2 — (1 — 3k2)/ch2((1 — 3k2)/2)! 2,

Y (X) =riEpx +kx

(18)
+arctg[((1 — 3x2)/2c )12 th((1 — 3k2)/2)12x] .

This solution describes the statistical formation of a
critical bubble of radius r_ ~ &, £4/(1 — 3k2)1/2 whose
outside is superliquid with respect to the current J,,
with the inside being almost normal. If the system is
contained in a torus of length ! (measured in units

%, £4) and periodic boundary conditions are applied

to vy (v(1/2) = ¥(=1/2) + 27n), the bubble-free solution
(16) must be quantized with wave number «,,

2an/l — rjky. The bubbles, on the other hand can de-
crease or increase the current to J2 = ke (1= (k5>)2)
depending on whether

o) 1—3K£ 1/2 fO 1
<,>= = _
“n n T (arctg( 2;(,21 ) Ln j)

)

where 0 corresponds to k< and 7 to k. Due to the
piece jy, in the free energy, the current increasing
transition is greatly suppressed and the decay rate is
found to be

i i(ﬂ_)m
Tar ¥ 2 \2nT

X exp[—(Fy,— 8F, k(1 —k2)8)/T],

]

(19)

(20)
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where 1/7 = u is the orbital viscosity, F}, is the bubble
energy, ‘

Fy=Fy §V2(1 - 32112, (21)
and Fj, is the total condensation energy in the volume
(kg Gee. Fy, = (054) f1 80 n)- Startlng at some cur-
rent within the domain of stability k2 <3 3, the decay
proceeds until k hits the lower boundary of this do-
main (x = —1/2/3) (see figs. 2,3).

Since the coherence length can be made much
larger than £ by going with 4 close to A, tubes of
diameter 0.1 mm may well act as coherent one-dimen-
sional objects similar to thin superconducting wires.

The presence of bubble solutions mediating the de-
cay of superflow may be observable in changes of the
attenuation of sound along the helix.

Notice that the superflow j would decay by a sim-
ilar mechanism even though with a much longer life-
time: penetration is needed through the much larger
barrier 8 &~ n/2 in order to relax one unit of flow.

Similar considerations hold for strong magnetic
fields. Here we only mention that the & 17 1 & Il j posi-
tion is stable for

P 2 (pg—co)?
P<2— 2” /(po SK E ) ~ 2 n2n2+ 1),
ps Po*1 t (22)
sin’p. #” collaps
O N ey~ 3 iy 2

Fig. 3. The dependence of the angle between / and j as a func-
tion of A2 /j2 for different values of temperature T ~ Te,

T~ Tgiap, T < Tgiap with K =10/9, 1, 8/9, respectively, if v,
starts out at v, =~ (3/5)7 and the changes of s proceed much
faster than the decay rate of the helix.
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where the initial linear piece corresponds to the dipole {21 N.D. Mermin and T.L. Ho, Phys. Rev. Lett. 36 (1976)
locked limit (see the lower region to the right of fig. 1). 594. .
Moreover, as we see in ﬁg. 2, there is a whole neigh- [3] P. Battacharyya, T.L. Ho and N.D. Mermin, Phys. Rev.

. 4. Lett. 39 (1977) 1290.
bourhood of 8, ~ m/2 which is stable as well, namely [4] M.C. Cross and M. Liu, J. Phys. C11 (1978) 1795.

all helices with pitch (for 2 < 1) [5] H. Kleinert, Y.R. Lin-Liu and K. Maki, paper submitted
, . 1 for presentation at LT 15 (Feb 1978); Suppl. J.
v, li = —4(H2[j2 — §) cos B , (23) ; (February 1978); Supp

de Phys. 6 (1978) C6-59; Phys. Lett. 70A (1979) 27;
lying underneath the boundary curve of stability with see also: A. Fetter, Suppl. J. de Phys. 6 (1978) C6-46;
n2[j2 >335 ~0.175.

Phys. Rev. Lett, 40 (1978) 1656 for a study close to

Teiot
For an extensive study of stability questions, the 161 1 %00k and HLE. Hall, J. Phys. C, to be published.
reader is referred to ref. [10]. {71 WM. Saslow and C.R. Hu, paper presented at LT 15,
Texas A8M preprint.
The author is grateful to Profs. Maki, Mermin, [8] Y.R. Lin-Liu, K. Maki and D. Vollhardt, post deadline

paper presented at LT 15, USC preprint.
[9] P. Wlfle, in: Prog. Low Temp. Phys. VII, to be published.
[10] J.S. Langer and V. Ambegaokar, Phys. Rev. 164 (1967)

Hall, and Fetter for many useful discussions.
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