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ABSTRACT

The quantized states of superflow in a circular tube form a great
number of metastable '"false vacua". At the level of the field equa-
tions of motion there is absolute topological stability. Fluctuations
cause decay with "critical bubbles'" of large energies acting as a
necessary trigger, just as in the evaporation process of a super-
heated liquid. The similarity and differences with respect to the

infinite set of gauge field vacua are discussed.

I Introduction

During the last few years, two aspects of gauge theories have found

special attention in elementary particle physics:

1) The existence of infinitely many vacua which differ by their
topological properties.

2) The communication among the vacua via solutions of the field
equations when continued to imaginary "time'.
The so obtained euclidean form of 3+1 dimensional field theory
is formally equal to statistical mechanics in 4 spatial dimens-
ions with the coupling constant gQ playing the role of a tempera-

Ture.
675
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In this lecture I would like to show that a very similar situation

is responsible for an important set of physical phenomena: The exist-
ence of superflow and its extremely slow decay in superconductors

and superliquid 3He. Certainly, since these systems are of a statisti-
cal nature as they are,no analytic continuation is necessary to
imaginary time, the inverse temperature T=1/T playing this rdle
from the beginning. In superconductors, the theory has been developed
a long time agol) but has recently found an essential improvementQ).
In 3He, on the other hand, whose superliquid transition was discovered
seven years agoa), the more complicated interplay of dynamicsu)and

topology has been understood only during the last year.

Common to both systems is the formation of a condensate of Cooper
pairs: In a superconductor, these consist of two electrons (on the
surface of the Termi sea) in an s-wave. The attraction is caused by
phonon exchange and is very weak. Physically, the exchange diagram
accounts for the accumulation of positive ions along the path of the

)

. . . + . .
electron which acts as an attractive potential wake . The binding
energy determines the critical temperature at which the pairs break

up, due to thermal collisions. It can be found as

_ 2
T o=pe B w1 Ok (1)

Here U 1is the ultraviolet cutoff for the phonon spectrum and gzis
the strength of the potential wake. It turns out that all low-energy
properties of the super-conductor can be described by using only this
single energy parameter TC (apart from the actual temperature, T employ-
ing natural units # =1, Vp = Fermi velocity = 1,2m = 1 ). Thus
systems with many different U and g are identical superconductors
(see Fig.1l). This is quite analogous to the existence of a dimensio-
nally transmuted coupling constant in gauge theory. There an artificial

mass parameter 1s needed to define a coupling strength of the mass-

+) I thank V.Weisskopf for an illuminating discussion of this

process.
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1. The curves of identical theories in gz,u space. The renormaliza-
tion group determines the reparametrization of any fixed theory

along the corresponding curve.

less theory but all physical quantities depend only on the combina-
tion
1702 (12
A2 = 12 e 1/g° (W)
(2)

The critical temperature gives directly the size of Cooper pairs

. +)
via

+) This relation holds only close to T . Trivial numerical factors

are left out, for simplicity.
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The presence of such large bound states causesthe superconductor to
be coherent over this distance &£(T).Tor this reason, &(T) is called

the coherence length.

In superliquid 3He, the interatomic potential has a hard repulsive
core for r< 2.7 ﬁ. In the degenerate Fermi liquid, this gives rise
to strong spin correlation with a preference of parallel spin confi-
gurations. Because of antisymmetry of the pair wave function, this
amounts to a repulsion in even partial waves. Indeed, Ccoper pairs
are formed in the p-wave spin triplet state. The critical temperature
is a thousand times lower than in superconductors:

Tc = .27%mk at p=35 bar . Since the masses of the 3He atoms are
larger than those of the electrons by about the same amount, the

coherence length has the same order of magnitude in both systems.

The theoretical description of the behaviour of the condensate is
greatly simplified by reexpressing the fundamental euclidean action

directly in terms of the Cooper pair fields which are
o(x) = we(x) we(x) (1)
Gai(x) - waHe(X) %a 8i nge(X) (5)

respectively. Such a change of field variables can easily be per-
. 3) . . ‘o
formed in a path integral formulation ) in which the partition func-

tion of the system reads

%5 =2 e_A Uje] or o e_—A [¢3He‘]
l’Je %He (6)

By going from integration variables ¢ to ¢ one can immediately

6)

find the alternative form
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7 = X e_A [O] (7)
C

where ¢ is the Cooper pair field (4) or (5).

The new action is very complicated. For temperatures close to Tc’

however, it can be expanded in powers of the field 0 and its deri-

vatives. For static fields
A Lol E/T e atx £
_ 1 3 M 1 2
=T fd x [(-logf + gz)!gl

1 1
t o2 lo|* t T |9c| % + ... ] (8)
C C

where the dots denote the higher powers of ¢ and of their deriva-
tives, each accompanied by an additional factor l/TC .

In 3He one has to take care of all different contractions among

the spatial and spin indices i and a, respectively+). This generates

3 derivative terms

+
£ =3, (3.0, 8.0 . +03.0. 8.0, +0,0, 9,0.)
der TC i aj i aj iaj ] ai i“ai aj (9)
and five quartic potential terms
1 2 + 2
£ == {ltr(c0)|” + B2[tr(o o))
pot TC
* + .2 + +X¥
+8, tr [(O+G)(O+O) J 84 tr(cTe)® + 85 tr[(oo) (oo )11
| (10)

+) They contract separately,i.e. spin with spin, orbital with orbital

indices, such that the theory is SO(S)Spin X SO(3)orbit invariant.
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It may be worth remarking that the transition from fields We or waHe
to that of the Cooper pair (4) or (5) is completely analogous to
going from the fields ¥ of the massive Thirring model to the scalar

field ¢ defined by

-
o 0=, WY (11)

of the Sine-Gordon theory - the only difference being that in more
than two dimensions the exact pair action is non-local and very
complicated. However, if the system is studied close to the critical
temperature and only with respect to its low-energy properties, the
expansion of the free energy up to forth order in the field and up

to second order in the derivatives contains all relevant information.

We shall now demonstrate how the field theory (8), and its extension
(9),(10) in the case of 3He, is capable of accounting for the proper-

ties of superflow.

IT Superconductor

First we observe that with the critical temperature (1) the mass term

in the action (8) can be written as
T 2
- log = |o| ® - (1- E~)|O\2 (12)
T TC

It has the wrong &ign for T<TC such that the field has no stable

minimum at O©=o but oscillates around a new place

2 _ m2 T T
lo|* = T (1= %) + o(l-5)

c ol (13)

Thus if T lies sufficiently close to Tc’ the higher power of

contribute less and less and may be neglected. It is useful to take

the factor Tc(l—‘% Vz out of the field o and write the re-
C

normalized free energy as

2 1 2
£=- ol +35 Jo]" + |30} (14)
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where we have made use of the coherence length (3) to introduce a
dimensionless space variable and dropped an overall energy density

factor proportional to (l—-%)2 Ti. The minimum of £ lies now at

c
|o|=1 where it has the value

f=-1/2

This negative energy accounts for the binding of the Cooper pairs
in the condensate and is therefore called condensation energy. In
terms of (14), the partition function in equilibrium can be written

as - i-fd3x f

T
Z=1I e
g
(15)
Let us now consider the flow properties of the system. Certainly,

there is a divergenceless current

iG) = 5 whoy, v e
6

associated with the transport of particle number. The important

question to be understood is: How can this current become super?

In order to see this let us set up a current in a long circular wire.
If the thickness is chosen much smaller than the coherence length,
transverse variations of O are strongly suppressed with respect

to longitudinal ones by the Boltzmann factor and the system depends
only on the coordinate along the wire. If the cross section of the
wire is absorbed in the definition of the temperature, we may

simply study the partition function (15) for a one-dimensional prob-
lem along the z -axis. The field may be decomposed in polar coordi-

nates

0(z) = p(z)e V(2 (17)

such that the free energy

f=-p 5P +p, 07 Y (18)

leads to field equations
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1 . . .
2. The potential V(p)= “p+p3/2-32/02 showing the barrier to the
left of P, to be penetrated if the supercurrent is to relax.

j = p2 Y_ = const.
(19)
.2
_ 3, 3
o = p+ p° 4 =1
22 o’ (20)

The latter corresponds to the mechanical motion of a mass point in

the potential,turned upsidedown (see Fig.2),

w_ 312
T o (21)

1
V(p) = -p*+ =
(p) = -p%+ 5 0 Y
if z is considered as a '"time". Obviously, there is a stationary

solution
kz
Y2
pd- 1-k
(22)

Y(z)
p(z)

]

Since the wire is closed, the phase y(z) has to be periodic over

the length L and must be quantized according to
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2m

N T (23)

The corresponding energy density is (see Fig.3)

1 2 2
f(k ) = - = (1-k% )
n 2 i (24)
with a current
. _ 2 a2} = L2
](kn) - pO (1 pO) kn (1 kn ) (25)
Notice that this current is bounded by
. 2 :
3] <. = =
c 315“ (26)

No solution of the field equations can support a larger current

than given by this critical value.

We shall now demenstrate that all states of current jn smaller than
jc are infact "super" in the sense of having an extremely long
lifetime (in practice ranging from hours to years). In the sense

of field theory each state kn can be considered as a ''false
vacuum' which eventually will decay to the true vacuum, the state

7)

of no current °.

In order to uncuerstand this enormous stability of the states we
notice that the temperature is very small such that the temperature
fluctuations leave o very close to Py - We can thus picture the
field configuration as a spiral of radius Py wound around

the wire with the azimuthal angle representing the phase

y(z) = k,Z (see Fig.h).

If the temperature is zero, p is frozen at 6 and the winding

number is absolutely stable on topological grounds. The current

runs on forever. The "false vacuum" has an infinite lifetime.

In order that the current may relax by one unit it is necessary
that at some place thermal fluctuations carry p(z)to zero. There

the phase becomes undefined and may slip by 2w
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A flKn)

3. The condensation energy as a function of the velocity parameter
2m

knzf—n.

order parameter

\ thin superconductive
wire

4, If p is frozen at Pyo the field configuration may be pilctures as

. 2
a spiral of radius pow1th pitch 3%22) = EI

is absolutely stable since the winding number n is locked topologi-

n. The supercurrent

cally.
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Now, since T <<1l, such phase slipsare extremely rare. In order that
an excursion of p(z) to p=o has an appreciable measure in the
functional sum ( 7) one must first look for solutions of the equations
of motion+)which carry p{z) as closly as possible to zero. From our
experience with mechanics we are used to imagining the motion of a
mass point in the potential -V(p). It is easily realized that there
is,in fact,a solution which carries p(z) from Py at z= - w
up the curve Wp)to p= 2K2 and back to Py at zz= ® (see Fig.5).
Explicitly :
2
p (2) = 1-k* = Z /ch® 2 (7-7) (27)

with energy

4 o _ 0k 2
Fb = de f(pb) - § w = ?3— 2(1-3}( )
(28)
where w is the curvature of V(p) close to Py
\ 2 2
Vip) &= w® (p-p ) + ...
0
(29)
The soluticn reaches the point of smallest p at Zo
_ 2
p(zo) = 2k
(30)

This is still non-zero and does not permit a phase slip. We shall
now see, however, that quadratic fluctuations arcund this solution

are sufficilent to reduce the current. Let us insert a small deviation

p(z) = pb(Z) + Sp(z) (31)

into the free energy. Respecting the equation of motion for Py

the lowest variation of T is of second order

§2F = fdz 8p (-322 + V' (p))Sp (32)

But this expression is not positive definite. This can be seen

+) This follows from the method of steepest descent generalized

from integrals to path integrals.
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-p

1
roj—

An extremal excursion ("critical bubble'") corresponds to a mass
point sitting at Pys rolling under the influence of negative gra-

vity up the hill unto the point p=2k?, and returning back to Py
the variable z playing the role of a time variable.
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AVu{p)
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|
poiz)

7

6. The infinitesimal translation of the "critical bubble, pb‘ is an
antisymmetric wave function of zero energy. Hence there must be

a negative-energy bound state.

either by explicitly solving the eigenvalue problem

-2
J
(-3,7+V" (py )0, (2)= (=B °-1+3p, *=3 = ) (2)= A, ¥(2)

Pb (33)

or by the following much simpler reasoning : Equ.(33) is a Schrddinger
equation In a potential which asymptotically is a constant (= wz).
For z approaching Zy s the potential becomes smaller due to the cur-

vature of V(p ) decreasing (see Fig.6). At 2=z it has a minimum
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at a negative value. The small vibrations are unstable if there is
a bound state with a negative eigenvalue X_l<o . Its existence
can be argued by noticing first that there is certainly a zero eigen-
value due to translational invariance: Since the Wire is very long,
the solution Db(Z) which has its closest approach toc the origin
at 2z, exists for any finite Z (<<L) . Thus a small translation

of zZ is certainly a fluctuation which does not change the energy

such that

v, = o, (z+82.)-p, (2)] /82, = p!(2)

(3u4)
must solve the fluctuation problem (33) with A_ =0 . This can indeed
be verified by an explicit calculation: Since

- ! =
Oy o ¥ v (pb 0 (35)
one has
- 2 1 " -
9% of + V' (p) py = o0 (36)

such that (33) is fulfilled. Now this zero frequency solutilon

has an important property: Since p,(z) is an even function in

z -z ,Db'(Z) is odd and has a node at Z, Therefore it cannot

be the ground state of the Schrodinger problem and there must be
another lower lying state, i.e. with A—1<Ao: 0 . The vibration

7)

problem is therefore unstable

The whole process is quite analogous to the nucleation of the

) There bubbles have to

vapour phase in a superheated liquid
form containing vapour inside. The extremal size (critical bubble)
is determined by the balance of surface tension and pressure (solu-
tion of equations of motion of surface). The bubbles are unstable
against radial fluctuations: expansion leads to the transformation
of the whole liquid into vapour (the volume energy wins), contrac-
tion leads to the return to the liquid phase (the surface energy

wins). Associated with this is a negative eigenvalue of the corres-

ponding differential equation 7). Because of the complete analogy
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one may call the distorted solution p,{(z) a "critical bubble' whose
Y b

decay mediates the phase slip.
For the precise calculation of the decay rate we refer to Ref.2).

Let us summarize the physical situation: Thermal fluctuations lead

to the presence of''critical bubbles" along the uniform spiral. Their

presence is very rare due to the small Boltzmann factor+)
1 4
= R W
T 3 <« 1 (37)

The bubbles cause distortions of the spiral bringing the size of the
field close to zero somewhere along the wire. The quadratic fluc-
tuations around the bubbles do reach the zero field point and allow
the phase to slip. The current relaxes by one unit of 2m and the
spiral returns to the uniform configuration with one winding number

less (and the bubble having disappeared)

What are the parallels with gauge theories? The quantum number
k = BZY characterizing the superliquid velocity of the "false

vacua" can be written as

: - -1
k= V) gy G Ly 5s uca)
Thus the circular superliquid velocity corresponds to a vector poten-
tial for a pure gauge transformation. In the superliquid, the energy

depends on k like

1
f=-5+ k? + 0(k?) (39)

In a gauge thecory it does not, due to gauge invariance. Notice that
if the gauge field had a mass term
£=p°
i 2
then also its energy would have a k° dependence and the infinitely

many vacua of different winding number would no longer be degenerate.

+) A cross section factor of the wire is absorbed into T, for simpli-
. . . 2 2 .

city, together with the previous factors (1- %~) Tc when going

c

from (8) to (14).
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.. 3
ITT Superliquid He

Consider now the topologically more interesting system of superliquid
3He. The discussion of the minima of the energy (10) is not as triv-
ial as in the case of the superconductor (12). Here at least 11
local extrema are known with the two lowest ones being present in
the laboratory, depending on pressure and temperature. They are
called B and A phase(for a phase diagram see Ref.3 or 6). If the size

of the field O_; is frozen, they may be parametrized as

- ip(z)
B : U‘ai - pO Rai(z) e (J-E—O)
a0 =0t (26 P 16
(41)
. . . . (1) ,(2) .
where Rai(z) is an arbitrary rotation matrix. QK J_gh are unit

vectors characterizing the plane in which the Cooper pairs move and
(1) (2)
L =
=g ¢ (42)
points in the direction of the arbital angular momentum of the
Cooper pairs.+)

We can now immediately see that the B phase has, in a long circular

tube, superflow properties very similar to those of the thin super-

conductor. For Py frozen, a uniform flow is given by
_2n
$(z) = kn z , kn =T (42)

and relaxation can occur only by fluctuations of Py to the origin.
For this the formation of energetic "critical p bubbles" is needed
causing a high stability of the superflow states kn (the false

vacua). The situation is quite different in the A phase. Let 0,

+) In writing this form in the A phase we have taken into account
the hyperfine interaction which forces the spin direction into the

orbital plane (see Refs. 3 and 6 ).
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be frozen and consider a uniform superflow along the z axis w1th12||z
A Galileian factor € ikz is equivalent to rotating ¢(l)1_¢(2)
around Q, as one proceeds along the tube. The conflguratlon many
again be Vlsuallzed by the end point of ¢( ) (say) forming a spiral

of unit radius around the tube.

So far everything looks the same as in the previous two cases. The
importént difference, however, is that we have chosen&1x)be parallel
to the z axis. If the direction of & 1is allowed to vary, it is quite
easy to see that the spiral can be deformed until it is a straight
line for N = even , or only one winding is left for n = odd. The
proof for this is identical to the standard way of showing the doubly
connectedness of the rotation group SO(3). The positions of the
dreibein 2‘1),$f2),£;HaybEParametrized by a rotation matrix which

is necessary to transform it to a certain fixed configuration (say

Cb(l)a ¢(2)

2 in x,y,z direction). This in turn may be written as
o Touk (43)

where o is the axis and O the angle of rotation. The vectors § n

are lying in a sphere of radius M with diametrially opposite sur-

face points identified.

The position of the dreibein along the circular tube may be drawn

as a closed path in this parameter space. It is easily seen that there

are two topologically inequivalent classes depending on whether

there is an even or odd number of jumps between diametrially opposite

points (see Fig.7). But the state of superflow which was set up in

the beginning (&"z and Q}l) describing a spiral) corresponds exactly

to a straight line path from the south to the north pole, jumping to

the south and continuing again to the north pole and so on n-times.

The continuous deformability of the path to either of the two funda-

mental ones (which is the point at the origin or a single straight

line from south to north pole) is equivalent to the continuous re-

duction of superflow to no or one unit of flux. In elther case the

flow would not be "super" at all. Thus, contrary to superconductors
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and 3He B, the freezing of Py dces not topeclogically stabilize the
flow. There is, however, another energy barrier, which still allows
superflow to occur: It lies in the space of directions of the drei-
bein. By loocking at the derivative terms of the free energy one can
see that a superflow goafx Yy, O_; causes an attraction to the &
vector of the form

fder x - (&‘28)2
Thus there is, in fact, a potential barrier against the deformation
described before: In the idealized case that the vector 4 is tightly
locked to the forward direction, the spiral Qfl)around the tube be-
comes topologically stable. Decay can occur by the formation of a
"bubble" in directional space (say the angle between & and zs).Again,
a very small Boltzmann factor causes a high stability of the differ-
ent . current states. Notice that now the superflow is related to

A, = RY_ R (45)

where R 1s the rotatlion matrix (43). The different '"false vacua"
correspond, just as before, to states of pure gauges,now in a non-
abelian version. Again, the bending energies are equivalent to in-
serting a mass term in a gauge theory destroying the degeneracy of the

infinitly many vacua of different winding number.

Finally, let us mention one more interesting aspect of the topology
of superflow in 3He-—A : If a magnetic field is turned on parallel
to the z axis it attracts the spins of the Cooper pairs. Since these
lie in the orbital plane there is a force pulling &.out of the
direction of flow. It turns out that for H larger than a certain
critical value there 1s a new equilibrium position in which £ forms
a fixed non-zeroc angle with the current. As a consequence, there is
an additional topologically stable quantum number: The number by

which £ winds around the z axis. Since the other number, by which
1 . . . . .

¢( ) winds arcund the direction of flow, is completely independent

of this, there is a doubly infinite set of false vacua characterized

. 3
by two macroscopic quantum numbers n He-A has beccme a double

5)

1°Mo"

superliquid . What is the physical nature of this second super-
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flow? Since the Cooper pairs are formed in a p-wave there are two
mechanisms of matter flow: The first consist of the Cooper pairs
themselves moving. The second is observed even if all Cooper pairs
are at rest. If their orbital planes are not all parallel but have

Ex&:o , the circular orbits of neighbouring pairs do no longer
cancel each other and a transport of neighbouring pairs is observed.
This is quite analogous to the source of the magnetic field in the
presence of matter

Yxg < L Tl

Even with no current flowing a magnetic field is generated if the
magnetization has a curl due to the non-cancellation of the micros-

copic current loops.

IV Conclusion

At very low temperatures, many-body systems such as superconductors
and superliquid 3He can be described by a simple field theory. Many
of the properties of the vacuum which have recently come under in-
vestigation in the field theory of elementary particles are present
in these systems and carry responsibility for the phenomenon of

superflow.
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