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Depairing Critical Current of *He-B at all
Temperatures
Including Gap Distortion
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Gap functions and superfluid densities are calculated at all temperatures in
the presence of superflow. The critical current undergoes a significant reduction
due to gap distortion.

Recently, several laboratories have begun investigating flow properties
of superfluid *He. The Berkeley group,' for example, observed at zero
pressure a maximal B-phase current proportional to (1 -7/ T.)>’ in a tube
of 0.02 mm diameter, which is narrow enough to lock the normal component
of the superfluid.

Theoretical analyses are available® only for T=T.. An existing
calculation of the critical currents at all temperatures® cannot be compared
with the data since it neglects the important effect of the current distorting
the spherical gap of the B phase.

For T = T, this effect can readily be seen to be important: If the order

parameter has the form

a
Agi=Ag a e (1)
a
with
Ap =51~ T/ T.)ve/ & (2)
then the free energy becomes
f12f. =—a*+3Ba’ + £a*(3,y)" (3)
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where f, is the weak coupling condensation energy of the B phase,

f=(1/8m*ENp(1 - T/ T.) (4)
and
B T _1/2“ 7£(3) 1/2 b oop T -1/2
f—fo(l‘f) -[487,2] k_BE(l_E) )

is the coherence length (at p =0, £,~ 127 A). The constant 8 is the ratio of
the Ginzburg-Landau parameter 81, + 38145 to its weak coupling value. The
current can be written as

J=ilo(1-T/T.)*" (6)
with the unit current
Jo=(h/ém)p =vop[=(12.55 cm/sec)p at p = 0] @)
and a dimensionless quantity
j=a’¢@.7) (8)

The superfluid density is given in terms of a by
ps=2a*(1=T/To)p 9

The equilibrium value of a at any current is obtained by minimizing the
Legendre transformed energy

g=f_21%/=2—%—2j627=—a2+—§—a4—§ (10)
which happens at |
j*=a*(1-Ba’ (11)
The largest current permitted by this relation is
Jo=2/(3BY3) (12)
or,atp=0,
J=(4.83 cm/sec)p(1—T/ TC)S/Z/B (13)

Since at p = 0 strong coupling corrections are believed to be small,” we shall
neglect the correction factor 8 in what follows.

The critical current (11) is reduced appreciably if the gap is not
artificially forced to stay spherical. With the current running in the z
direction one may expect the distortion of the order parameter to be given
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Ay=Ap| a e (14)

and finds a free energy

1 1 3 S .
g=--?}-(26:2+cz)+—1~§(4a“+2azc2+5c4)—5{;'2—;'_"3:'6'*—2]2 (15)

with
j=3%2a%+3c*)£(,y) (16)
instead of Eq. (8). Now the superfiuid density parallel to the flow is given by
ot =32a*+3c’)(1-T/T.)p (17)

Due to the anisotropy of the gap, a slight additional current orthogonal
to the direction of flow is associated with a transverse superfluid density of

py =3(4a’+c*)(1-T/T.)p (18)
The equilibrium with respect to variations of @ and ¢ now lies at
a=1 (19)
with a current
i2=(1/3-25)1-c*)(2+3c%? (20)

Thus the gap in the direction orthogonal to the flow ignores the current.
Only the longitudinal value ¢ shrinks. The maximal value of j is reached at

c=% (21)
with
jo=(20/3)"2/9 (22)

which is smaller than (12) by a factor 3(80/81)* =3,

It is the purpose of this paper to extend this discussion to all tempera-
tures.

The free energy of the B phase is*

=—T ¥ log[iw, — E(p)]+(E~-E)+(1/3g)|Aul* (23)

wn, P

In the presence of a current in the z direction, the equilibrium is
governed not by f but by f—vP, which is obtained by replacing>®
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iw, ~ iw, —vp in (23). The nonspherical gap results in quasiparticle energies

E=[&(p)+|Ap T =[£(p)+A1(1 - 23]
where*

rP=1-c’/a’, Al=Aga®, Af=AT(1-7) (24)
The parameter r measures the reduction of the gap along the direction of
flow. The last term in (23) is explicitly

(1/3)|Aul’ ==A1(1-3r%)
g

By minimizing (22) with respect to A* and A% r? we now have two gap
equations:

log Iz Re fl — Z { ! L} (25)

T, & 2 220 [(xn —ivz)* + 1122217 x,
T 23 ! 1 1}
10gT _EERBJ‘ _(1_2) Z {[(x,,—wz) 24117 2]”2 Xn (26)

The right-hand side depend only on the dimensionless quantities
§=A,/mT, wv=uvpe/A, xx=w,/8,=(1/8)2n+1) (27)
The superfluid density parallel to the flow is obtained by differentiation,

Ji = psv—a(f—vP)/av + pv (28)
with the result
Il :
ps dz 1 Xn— vz
=, 29
0 6J’ 2 251/ Rei z [(xn—wz) +1-— r222]1/2 (29)

In order to find the superfluid density orthogonal to the main stream of
current one substitutes in the expression for f —vP

vz >pz+v-(1-29)"%cos ¢

then differentiates with respect to »* and averages over the azimuthal angles
@ to get

E 3J‘1dz
-1

1

2.2

== —(1- 1- R

PR 2( rezo)( Z)nz e[( ,,-IVZ) 11— 22]1/2
It is useful to realize that this can be obtained from (26) by substituting
X, > Xp/a, v = v/a, multiplying by 1/«, forming the derivative —2 d/ de’,
and setting & =1,

(30)

8 T T
*Here A= n’T°—— (1——) 3.06T 2(1——).
ere A= T3 T ( <) T,
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Equivalently, one has

pi‘_[ 2 d " 2d)”] T
=120 (2x,,dxi og |
where the operation in quotation marks has to be performed within the
Matsubara sum of Eq. (26).

Notice that Eqs. (27)-(30) are exactly the gap equations and superfluid
densities for the B and A phases if one inserts the special values r =0 and
r =1, respectively. This is useful for a check of the calculation. Performing
the integrals over z gives

(31)

T 2= 1 1
logf_gnzo ((V2+r2)1/201n*;c:) (32)
T 23 [ 1 (yz—rz/z)xi] @,
—_— e — — +
log T. & 2,,20{ ! 20°+17) P+ P+
21 4 2+ 3ivx, . \2 21/2}
--—+R n— i) +1-—
3 xn € 2(V2+r2)2 [(x IV) 1 r ] (33)
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Fig. 1. The supercurrent J/J, as a function of the superfluid velocity squared (v/v,)” for
temperatures 7/T.=0.1, 0.2,...,1 in the B phase including (—) and neglecting (- - - ) the
effects of gap distortion, and in the A phase (- - -). The natural units are vy = 12.55 cm/sec and
Jo= pve. We have found it convenient to divide out the temperature factors (1 — T/ TC)B’ % and
(1-T/T.) for J and v°.
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Fig. 2. The superfluid density parallel to the flow pﬂ/ p, with the same conventions as in Fig. 1, A
factor (1—T/T,} is divided out.

Il o
&=§ { 1 ) 2, .2 n
P 6,,;0 (V2+r2)2(3r Xptv +r )(1}2+r2)1/2
2 ) v . VXn .
“Re ot i+ (130 - 117
(34)
where
1 Vx+i(V2+r2)

The solutions are found by computer and are shown in Figs. 1-5. In the limit
T >0 the sum over x, can be replaced by an integral, leading to the gap
equations (Apcs=me "T,=1.76T,)

1 AJ_ 1 (y2+r2)—1/2 1
AR
(%) ogABCS 2], dz -2 log(1-r°z%)

_-[(1 dz(l—lzz) log {[(v*+7)2° =11+ vz}

l’2“‘-,_2)—1/2

(36)
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Fig. 3. The superfluid density orthogonal to the flow, with the same conventions as in Fig. 2.
and a superfluid density

S S
»(¥2+1%)

Il
P 160G+ = 1) (V2 +r2—1)*2 (37)
0

The transverse superfluid density is found from the T = 0 rule correspond-
ing to (31) as

I +
Ps 2 d A
—=14+2v"—lo
P dV2 & Agcs! lower Eq.(36)
—1—8(p2+r%— v 2, ,2_1)32
G(v°+r 1)(u2+r2)2(y r’=1) (38)

As a final check of our equations we take T ~ T.. Now the x, > o0 ‘limit of
(25), (26), and (29) gives

1 1 s 2_ 2 2__ )
l—lzZReJ Q (3 2) 5 1+Q2v —r )32: 2ivzx,
TC o -1 2 5(1_2 ) n=0 2xn

=32[1 +®(2u2_r2)]15@ (39)

8
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Fig. 4. The gap function (A”)z/ Azcs parallel to the flow, in the form (AN /[a2es(1 - T/ T,
where Agcs=1.76T,, with all other conditions as in the previous figures.

Gl

| 21— )2 (40)
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Fig. 5. The gap function orthogonal to the flow in the form (A" /[Afcs(1 — T/ T.)] similar to

Fig. 4,
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resulting in
8°=(1-T/T.)8/7£(3) (41)
=227 (42)
such that the supercurrent

| 1 r TL(3) =T,
. = }|’=ﬁ32(-__ e e
Jo=ph 373 v 8 or (43)

is maximal at
¥ =5/18 {44)

which leads to exactly the same value (22) found in the Ginzburg-Landau
calculation . *

The inclusion of Fermi liquid corrections has no effect on the critical
current.” It is taken into acpount most simply by replacing ©"* in all formulas
by the reduced quantity "' /[1+3F} {1 -p%/p)]. This changes the position
of the critical current on the velocity axis but leaves the size untouched!?®

For a graphical representation of the results it 1s most convenient to
divide out the (1-T/T,) dependence attached to all quantities in the
Ginzburg-Landau domain. Thus we plot

j=JiIl1 =T/ T.)"]
Al=p\lp(1-T/T.)]
gr=p*/lp(1-T/T.)]

(@AY =AY/ - T/ T.)(1.76T,) 2
(A2 = (A (1 - T/ T,)(1.76 T.) 2

against v°/[p5(1— T/ T.)]. This is the best way of displaying the deviations
from the T =T, limiting forms. We have

2[1-(36/5)0%] Buise gap
j=plv={ 200-4vY) v for B undise. gap phase (45)
[1-(12/5)0"] A
*Mote that
el L vy o W dpes_
. —4‘5[‘-’{[311 dom s = =1.781 = 0.235J,

tMotice that p'-* is reduced by a factor [143F (1= p"" /01" while v** receives the inverse

correction, Therefore g is invariant.
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1—(12/5)e*

gr=2{ 1-4¢° (46)
1-(12/5)0*
1-12¢°

(A =3.0154 1-447 (47)
0
1

(A*)7 =3.015 1-4p? (48)

M1 -(12/5)7]

In all cases we have also given the corresponding functions for the B phase
neglecting gap distortion as well as for the A phase, in order to permit an
easy judgment of the differences.

The currents are maximal for

Lf3=0.215

1
=4 ——==0.288 (49)
(& s

V5/6=0,373

with peak values
Ii=0.287

2
Je =t ——==0.385 (50)
343
15 =0.249

Motice that as v passes beyond v, for the distorted gap, the current decreases
and joins the curve for the A phase at the point where the gap A' vanishes, as
it should.

In Fig. 6 we show the behavior of the critical current j. as a function of
1 — T/ T. on a double-logarithmic plot. Only for T < 0,15T, are there visible
deviations from the Ginzburg-Landau straight line,

For completeness’ let us mention that an external magnetic
field h measured in natural units H,={[N(0)/g.J1-T/T.)}'""*=
(16.38 kG)(1 - T/ T.)""? would add to (15)* a term ¢ h* and enter inside the

*The additional magnetic energy density is:z fmg = B I.’f.r".mf. which can be written,
together with (1), (2), (4}, and N0} =3p/pF, as fm.‘Ef_..H'.-‘I-_In ar zm,‘=¢'thi- Then
{51} and (52) follow by repeating the steps from (15) to (20) including the term c™h ™.
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curly brackets in (45)-(48) as

—6h? 0 —6h* in*
—2h%p, S-2h%), 4 —h%}, 1-h? (51)
0 0 0 0

Critical velocities and currents would be reduced to

Wi -3p%)2 Hi(1-3n%
te = (1WA =AY, L= -RH (52)
V56 V5/9

critical curreni
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Fig. &, The critical current JfJfy a5 & function of temperature,
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Notice that for A* > hap =31 -(3)""*1=0.0305 the system can support the
highest supercurrent in the A phase.

A discussion of the collective excitations in the presence of gap dis-
tortion can be found in Ref. 7.

NOTE ADDED IN PROOF

After distributing preprints of this work, I was informed by D.
Vollhardt that he and K. Maki were investigating the same problem.
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