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The energy levels of collective excitations of 3He B are given in the presence of superflow. There is level splitting due to
the distortion of the energy gap which should be observable experimentally.

The recently observed BCS-like behavior of the critical currents of superfluid 3He B at zero pressure [1] has led
to a renewed theoretical interest in the flow properties of this phase. A complete Ginzburg—Landau type of study
close to T, [2] and a BCS calculation for all 7 neglecting gap distortion have been available [3] for some time. The
results have now been improved by calculating all BCS properties including the effects of gap distortion for all
temperatures [4]. It turns out that the maximal distortion of transverse to longitudinal §ap P=1-c2=1
— A /Af, which is 4/9 for T'< T, at the critical velocity v /vy = %(5/3)1/2(1 - T/Tc)l/ (Vo =1/2m*gy~623
cm/s at zero pressure, m™ = effective mass, £y = coherence length), gradually decreases to zero for 7~ 0.

It is the purpose of this note to point out how the distortion of the gap manifests itself in the energy spectrum
of collective excitations. We find that the well-known J = 2 levels w2 = %Af and w2 = %Af split up into three
branches each, the +J5 levels remaining degenerate. The results should be observable in sound experiments [5],
in particular at zero pressure where the line widths are small.

Consider the collective action [6,7] in the weak coupling limit
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where £ stands short for —V2/2m — u and 0, are the Pauli matrices. The trace runs over 4 X 4 matrix indices as
well as space—time variables. A constant flow velocity is enforced on the average by means of an external source
coupling to the particle current which appears in the diagonal terms as pv [8]. Apart from the full quantum me-
chanics, the partition function obtained by summing over all fluctuating field configurations Z =X Agj exp(is[4,])
describes the thermodynamics at a fixed temperature T by Wick rotating all energy integrations and grating them
into Matsubara frequencies w, = (2n + 1)7T. For T <T, there is equilibrium at a non-zero constant value @>=1
Ay =4 [6,; + (c — 1)I,I;] which gives rise to an energy gap in the quasiparticle spectrum: E = 2+ |A(l,-[3,~|2)1/2
=[g2+ Af(l —r2z2)] 1/5. The two gap values &), A, =4, (1 - r2)1/2 are found from the simultaneous solution
of a longitudinal and a transversal gap equation {4]
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where vy denotes the function

v= [ dE S MIE+ ppua)/2T] + &> -2)] ~ [4, = 0]} . ©

For T < T, one finds [4] 2= 2(pFu/Al)2 = 302/0(2). For T =0, r stays at zero up to ppv/A; = 1,1.e. practically
up to the critical current [4].

Consider now small time dependent fluctuations in the complex order parameter A,; = A(?l- +Ad,;(1)= Agi
+ A (r,; +1i,;)(7). Expanding the action #{ up to quadratic order we find with d(7) = z, exp(—iv, 1) d@,):
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Here 01’2’3(1)") are angular projections of the dynamical generalization of Yoshida’s function ¢:
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The functions A, A are the integrals
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and can be expressed in terms of gy 5 5 as
N =20y + 2oy — 2w 4aN) 20y +o5), A =c2o + 20, — 2(w?/4AT) (0 + 205) .

In writing eq. (6) we have continued analytically to physical frequencies w by merely replacing the Matsubara
frequencies v,% by —(w + ie)z. Notice that all these functions depend on w only via w?= <*J2/4A2l which will
henceforth be used as natural variable.

The expression (4) can be diagonalized in the spaces (711, 792,733), (r12,721), (r13,731), (r33,73,) and the cor-
responding imaginary parts. In these spaces, the sum in eq. (4) is composed of the following matrices:

30y — 2w2(0; +20,) oy 2c0y
R= 0y 309 — 2w2(01 +205) 2¢04 ,
2coq 2coy 2c20, — 2w2(201 +03)
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R12= ("2—2W2(01+202) 03 ) R23 = (201—2“’2(201*03) 2c04 )
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2c¢20; + 0y — 2w2(0; *+ 20,) —0y —2c0y
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~2c04 ~2c¢oy 40, — 2w2(20, + 03)
12 (20201 +30) — 2w2(ol +20,) —0, )
—0y 2¢2g, + 30y — 2w2(0q + 20,) ’
I%g (2(01 +c203) — 2w2(201 + 03) ~2c0¢ )
—2c0y 40, — 2w2(0q + 203) '
The collective frequencies are determined by the values w at which the determinants vanish. They are found as
w? = 0,/(01 +20,), (1,-1,0)2[22)+|2 -2),
: 2
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a= {[(20) +03)20) — (01 + c203)(07 + 20,)]% + 4262 (20 + 03)(0 + 209)}1/2.
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Behind each eigenvalue we have written down the eigenvector if it is simple as well as the |J/3) content. The sym-
bol + ... indicates that for ¢ # 1 there is mixing among states with +./5. For small current or for all upp/A| <1

at T = 0, the distortion parameter r is zero, F is independent of z, and we see from eq. (10) that 01 : 0, : 05
=1:2: 3. Consequently, we recover the well-known frequencies

13 13
WA =WEVEL DR, OVDR?, (0.VDHR®, OVE.VZY, VR, VBT, ©

now valid also in the presence of currents at 7= 0.
Since gap distortion is strongest close to T', let us now consider this regime. Here ¢ has the simple form ¢
=(nA,/4T)(1 - r2z2 — w2)~12 such that 01,2,3 can be calculated, apart from the factor 7A, /4T as

01 =M= w2 +r2(0 =W+ B (1 —wD) —1r21r(1 — w2 — r2)112}
0y =3(3/4rH{[(1 — w2)2 — £r2(1 — w2 — D] 1+ [ (1 — w2) + 22] r(1 — w? — rD)112}, (10)
03=3(3/4r5){(1 — w2 - [(Q —w?) +2r2)r(1 — w2 - r2)112},

Here, [ denotes the function rfl_l(dz/Z)(l — 1222 — w2)=12 = gresin [r(1 — wz)’l/z] . By inserting the values (9)
into the right-hand side of egs. (10) and iterating eqs. (8) a few times, the values of w2 converge rapidly against
the correct eigenvalue at any r2 < rg =5/9. The results are displayed in fig. 1, together with the 7 = 0 lines.

It is quite simple to include Fermi liquid corrections [10]: in all equations one has to use, instead of v, the local
velocity v*, which is v modified by the molecular field 1 F} plie, [1+ %Ffpﬂl(v*)] v* =v, where p! is the den-
sity of the normal component and F7 is the standard Landau parameter of current-—current coupling [10].

It is hoped that the splitting between the \/l? A, modes will soon be detected in sound experiments. A similar
discussion of the collective modes in the A phase is not yet possible since no field configuration is known, in the
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Fig. 1. The collective frequencies are shown, at infinite wavelength, as a function of (v2/v2)(1 — T/ TC)‘I. The dashed lines are
the limits 7'~ 0. For T < T, there is appreciable splitting between levels of different |./51. The angular momenta are displayed on
the right-hand side of each curve. For T = T, the gap distortion7? = 1 — Af/A? is related to the superfluid velocity by r2 = 3

X (v? /v%)(l —T/TO™ (vg = 1/2m* &g ~ 6.3 cm/s at zero pressure). The curvesare drawn up to the critical velocity.
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presence of a current, which is stable under infinitesimal static fluctuations, except for very small velocities lim-
ited by the dipole interaction (v < 0.1 mm/s) [11,12]. Only in this very restricted region are there two types of
stable helical textures around which dynamic fluctuations may be studied.

More details will be presented elsewhere [13].

Note added. After completion of this work a paper appeared by Tewordt and Schopohl [14], which discusses
the line splitting due to a strong magnetic field.
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