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It is shown that every dynamical group (sometimes also called spectrum generating group) gives rise to a proper Noether
symmetry group of the action. For each generator there is a constant of the motion. Those which do not commute with the
hamiltonian but connect states of different energy contain an explicit time dependence when expressed as a function of the
Heisenberg variables p(f), q(r) which ensures their conservation. If the hamiltonian is in the Lie algebra, this time dependence
is given by a simple “rotation” matrix in the adjoint representation, The statements are illustrated by exhibiting the con-
served symmetry operators for the bound state problem with electric and magnetic charges.

With resurging interest in the quantum mechanics
of particles in monopole fields [1], group theory will
be helpful in solving the dynamical problem [2]. After
having exhausted the groups commuting with the ha-
miltonian the question arises whether there are higher
symmetries which connect levels of different energies
but still leave the action invariant *!. Their generators
would be constants of the motion with an explicit time
dependence when expressed as functions of the canon-
ical variables p(¢), ¢ (t). Most desirable would be a sym-
metry group which contains the whole spectrum of
physical states in one of its irreducible representations
with the hamiltonian and ¢ (¢) being among the gener-
ators. In this case the trajectory would be given by a
time dependent group “rotation” matrix in the adjoint
representation.

It has been known for a long time that many quan-
tum mechanical systems do possess a group with the
property of generating the spectrum. Since part of the
generators do not commute with the hamiltonian they
have been called non-invariance, dynamical, or spec-
trum generating groups [3,4] ¥2. What seems to have

* Supported in part by the Deutsche Forschungsgemeinschaft.

*1 Throughout this work we will call an action invariant if it
has this property upto surface terms.

*2 The dynamical group O(4,2) for the hydrogen atom was
developed in ref. [4]. This work was generalized to the mo-
tion in Coulomb and monopole field (plus centrifugal bar-
rier) by Barut and Bornzin [5}].

gone unnoticed is that they are associated with a group
of proper symmetry transformations in the Noether
sense [6]. It is really this property which, if the hamil-
tonian is one of the generators, leads to a full solution
of the dynamical problem in terms of a *“rotation’” ma-
trix.

In order to see this we observe that for NV degrees of
freedom there are 2N constants of the motion which
are simply the Schrodinger operators pg, gg:

pg =p(0) = e~ it p(y) eiflt

g5 =q(0) = el g (1) €ifit . (1)
These equations are non-trivial since the right-hand
sides must be calculated explicitly by commuting

H(p(2),q@®) with p(1), q(¢), ie.
ps =P(t,p(2),4(t))
qs = 00, p(®), q(1)) . (2)
Of course, with pg, gg also any function
Fpg, q5) = F(p(0), q(0)) = e~ HI F(p(2), q(1)) el
=F(P(, p(1),q(1), Ot, p(1), 4(1)))
=J(t,p (1), 4(t) (3)

is a constant of the motion. By Noether’s theorem [6],
the infinitesimal transformations generated by J via

8q()) =i[J(t, p(8), 9(1)), (D] ,
373
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Sp(D) =i[J(t, p(1), (1), p (D] 4)

must leave the action invariant. Conversely, given a
transformation (4) in the form

8q(r) = f(z, q(2), 4(1)) , (5)
i.e. with p(r) expressed in terms of ¢(¢) via p = 9L /34,
the lagrangian changes only by a total time derivative

8L =(d/dr) Ag(®), 4(1)} (6)

But due to the equations of motion, 8L can always be
evaluated as

oL
8L(q(1), 4() —— 6q u 3—6
_doL. AL, . _dfdL
Y 8q + % 8q = dr(a q) dt(p 8q), (1)

such that comparison with (6) proves

J(#) = p(t) 84(2) — Alq(1), 4(9)) @)

to be a conserved quantity which, if g(¢) is expressed
in terms of p(¢), q(¢), becomes precisely the operator

J(t, p(t), q(t)) generating 5q(t) via (4).

In general, the evaluation of the equations of mo-
tion (2) is a difficult problem such that realizing pg,
qg to be conserved quantities is of no use. It may, how-
ever, happen that there is a finite number of functions
F (p(1), q(t)) which under commutation with H are
transformed linearly among each other:

[H, Fy(p(2), q(2))] = 1Fp(p (1), 4()) By, - ©)

In this case we can calculate the explicit time depen-
dence of the constants of the motion J, of (3) as

Ty = 1,(t, p(®), 9(0)) = e HF (p (1), q(1)) €1
=Fb(p(t)9 Q(t))Rba(t) ) (10)

where the transformation matrix is simply the expo-
nential

R()=¢e . (11)

Since the J, are constants of the motion we may in-
vert (10) as

and obtain the full time dependence of F, from R(¢).
If q(¢) can be extracted from F,(p(¢), q(r)) by
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purely algebraic manipulations, the dynamical problem
is solved.

The solubility of the oscillator may be viewed as a
consequence of this situation: Here H = 3(p2 +¢2) and
the quantities pg, gg themselves can be used as the
functions Fy, F, which are transformed into each other
via (9):

[H,p(] =iq(®), [H,q®O]=~ip(®). (13)

The corresponding conserved quantities are found from
(10) as

Jy=p(t)cost +q(r)sint,
Jo=—p(@)sint +q(t) cost, (14)

which may be inverted to express the motion of p(¢),
q(?) in terms of the constants J;, J,. Conversely, com-
muting J;, J, with g via (4) we find the symmetry
transformations
81q9()=cost, 8,5q(t)=—sinz,

8,p(r) = —cos 1, 15

which leave the action invariant:

§p()= —sint,

sin £

6%L= dt (){cos t} th' (16)

The corresponding Noether currents (8) are again J;,
J, of (14).

Of course, the oscillator and its zero frequency
limit, the free particle, are the only cases where p(?),
q(f) themselves form a closed set under the commuta-
tion rules (9). There are, however, several physical sys-
tems, where some combinations of pg, g5 are known
which, together with the hamiltonian, form a Lie alge-
bra of a group [3—5]. In fact, the oscillator itself is an
example of this; the functions Fy = (o2 — g2), F

4(pq + gp), satisfy, together with 5 = 2H the alge-
bra of 0(2,1): ([Fy, Fy] = —iF5, [F,, F3] = iFy,
[F3,Fy] =iF,). Thus eqgs. (9) read [H, F{] = 2iF,,
[H, F5] = —2iF, and the constants of the motion (10)
become J; = cos 2t Fy+sin2t Fy, Jy = —sin 2t Fy
+cos 2t Fy,J5 = 1 H and form a symmetry group 0(2,1).

Let us now consider a non-trivial problem: The mo-
tion of an electrically and magnetically charged particle
(ey, &) around a fixed center with (e,, g5). The Cou-
lomb problem is a special case of this [4,5]. The hamil-
tonian reads
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H=7r2]2m — ofr, (17)

where € =e ey + 8187, u=€18) — €281, ®=p — uA.
The problem has a simple dynamical group if there is

an additional centrifugal barrier u2/2mr2. It is generated

by the following combinations of (), x (¢):

Fl] = el]k(x X x— ux)k = Gl]ka s

Fis—Fiy =x;,

Fis+ Fiy =xx? - 2m(x* %) + Qu/r) Fy, + W2/r?) x ,
Fig =rm;

Fsg—Fa =7,

FSG +F46 =r1l:2 +,L£2/r ,

F56=x'1l:—i, (18)

which commute according to the rules of 0(4,2) [4,5]:

g=diag.(1,1,1,1,-1,-1).
(19)

The hamiltonian with centrifugal term may be ex-
pressed as

[Fab’ Fac] = igaanc >

Due to the awkward quotient form this does not yet
allow for a simple calculation of constants of the mo-
tion via (9). There is, however, an auxiliary dynamical
problem for which this can be done.

Consider the path integral representation of the
probability amplitude of the system

D3p D3x
(2m)3

b L2 T

. . W o '

X expl:ltf (pq ot 2mr2)dt} (21)
a

We can make p, ¢ additional dynamical variables by

parametrizing the paths in terms of a new pseudo-time

s which is related to £ via

K(xpty, x,t,) =f

t—t,= [ ds'r(s) (22)
0

The the amplitude can be written as [7]
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o Xxp 7))
D3pD3x [ DpyDt
K(xbtb,xata) =rb f ds f (27-[)3 f T
0 xa ta

X exp[i fs [px" —pot' — r(H - py)] ds} . (23
0

In this way the original problem reduces to the zero
pseudo-energy problem with respect to the auxiliary
hamiltonian ¥ = 7(H — p), which drives the motion
of all variables p(s), g(s), py(s), t(s) along the s axis.
But inserting (18) we see that X is indeed contained in
the Lie algebra:

H=0m) WFs+ Faq)— Fsg— Fyg) g — . (24)

Using (19) we can now easily determine 4 of (9), and
find 15 conserved symmetry operators J,;, of (10) via
the “rotation” matrix Rp (s). Notice that the variables
pq(s), £(s) are not part of the Lie algebra but we see
from (24) that also they follow condition (9):

i[3, po(s)] =0,
i3, 105)] = (Fsg — Fye)(5) =1(5) 25)

such that we immediately find p(s) to be a constant
of the motion (as it should, py = F) and #(s) may be
evaluated from (22) after having solved for r(s) = F ¢
— Fs¢ from (12). Since x(s) itself is contained in the
Lie algebra, its motion is given by a pure group “rota-
tion™ matrix in the adjoint representation.

It should be noted that the exponentiation problem
simplifies greatly [4] by observing that, with § = 1log
@2mlpyh),

e—i0F45]Cei0F45 = o /2|p0|/m F56 s po >0 ,
e~i0Fas(ei6Fas =\/2{polfm Fpg, pa<0. (26)

This reveals the bound and continuous states as the
discrete and continuous eigenvectors of Fg¢, Fye,
respectively, within the same irreducible representation,
(18). The transformation is non-unitary due to the de-
pendence of the “angle” § on the energy. This is linked
to the fact that only together the two parts of the spec-
trum form a complete set of states.

If the additional potential u2/2mr? is omitted, the
hamiltonian becomes

¥ = (2m)y~1(Fs¢ + F46) — (Fsg — F46) Pg

—a— #2/2m(F55 —Fy6) (27)
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and the full O(4,2) equations of motion (10) are
again very hard to solve. There is, however, another
group 0(2,1) generated by

Fsg—Fug=r,

Fsg +Fye =rn2,

ﬁ45=x°1t~—i, (28)
for which the auxiliary hamiltonian reads
H=02m)V(Fgg + Fyg) — (Fsg — Fue)pp—a, (29)

such that at least the motion of the radial coordinate
r(s) can be found from a simple 3 X 3 “rotation” ma-
trix *3.

The author is grateful to R. Jackiw for several
stimulating discussions, in particular for pointing out
that, going by the existing literature, the concept of
dynamical groups seems to be completely disconnected
from the symmetry groups in the Noether sense.
Thanks also go to D. Scalapino for his hospitality at
the University of California, Santa Barbara and to
W. Theis for useful comments.

*3 This solution is related to but different from ref. [2]. There,
the square r(¢) is obtained by a group transformation in the
adjoint representation (which is linear in £). Here, 7(s) is
found directly but s(f) involves one further integration, eq.
(22).
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