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Surface Energy and Textural Boundary Conditions
Between A and B Phases of *He
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The behavior of the order parameter ALi(x) is investigated for a planar
interface between *He-A and ’He-B. Boundary conditions are derived and
the surface energy is calculated in excellent agreement with experiment. Our
energy is 30% lower than a previous estimate which assumed the presence of a
planar phase in the transition region.

1. INTRODUCTION

A necessary step toward the explanation of the nucleation problem
between the A and B phases of superliquid *He is the understanding of the
energetics at the AB interface. Experimentally, the surface tension of the
interface is'*

oas=0. 7§fc (1)

where ¢ = &(1— T/T.)"? is the temperature-dependent coherence lengtht
and f7 is the condensation energy density of the B phase. Neglecting the
curvature of the interface, Cross’ found the theoretical result (see Fig. 1)

Cross — 1 lff (2)

His analysis assumes the presence of a planar phase at the middle of the
interface. Probably due to the good agreement between (1) and (2), the
planar phase has played an import role in subsequent discussions of the AB
interface.’

It is the purpose of this study to point out that there exists a direct path
between the A and B phases in the functional space of the order parameter

* Alexander von Humboldt Fellow.

t€&=17¢(3)/48771" *hv/ ks T,, where vi is the Fermi velocity of the quasiparticles and T,
is the critical temperature. At p =0, 21, 34.36 bar, & =559, 149, 127 A (using m*/m = 3.01,
5.17,5.5).
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which has considerably lower surface energy,
oan=0.77¢fC (3)

in excellent agreement with the experimental results (see Fig. 1).

The minimization of the energy stored in the interface leads to boun-
dary conditions for the textures on both sides. These are found to be the
same as in Cross’ analysis in spite of his path not being minimal.

2. LINEAR INTERPOLATION BETWEEN A AND B PHASES

Consider the simplest possible interpolation between the two phases

Aai(x) = A (x)Aai + K (x)Bai
A,=Apd,®, B.=ApR.(A, 6)e", (4)

O0=A, k=1

where ¢; = ¢§” + i«b?), the d, are the orbital and spin directional
parameters of *He-A, and R.i(7A, ) is the rotation matrix characterizing the
texture in the B phase. Let the interface lie in the yz plane. The problem
consists in finding a path A (x), «(x) which connects phase A at (A, k) = (1, 0)
to phase B at (A, «)=(0, 1) while minimizing the free energy per unit
surface

F={as(f+£, (5)

where f, is the bending energy and f, the nonderivative potential energy.
For simplicity, we shall study only the neighborhood of the polycritical point
(PCP) such that the Ginzburg-Landau approximation can be assumed for
the bending energy f,

fb = %K(afo: aani + 2ax Afx aanx) (6)
with
3 p 3 »p 1
2 2 2 2
=z = e— — - — 7

The potential energy f, is given by

5
fp = I-“I0+BO §1 BnIn (8)
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with the invariants

Io=tr (ATA), I =tr (AA)P
L=[tr (A'A)F, L=tr[(ATA)}A’A)*] 9)
L=tr (ATA), Is = tr [(AAN(AAN)*]

The weak coupling BCS values of 1 and 8, are

nes 10 p 1 ( T) 5
— 1__ —_—
BT e\ T Tee X
_ZB?CS =Bgcs =B?CS =B§CS o _B?CS — 1 (10)

where m* is the effective mass of *He and p/m* is the particle density.

It is well known that the very existence of the A phase requires strong
coupling corrections even close to 7. The dominant effects are due to
paramagnon exchanges (with coupling strength I),* leading to a corrected
parametrization as

B1=B1(1+%8), B=BES(1+%6)
B3=B3(1-358), B.a=B3S(1-558), (11)
Bs=B5S(1+7%8)

with

6

_ 150n2£r£r dq( I )2
7¢(3) Trldo 2pe\1-T+1Iq°/12p;

This parametrization is roughly consistent with experiments on the jumps of
specific heats (see Ref. 5 for a review) if 1?3 receives a small correction
which at melting pressure is

p =1.084y "5 (12)

The correction can probably be neglected at zero pressure and also, it is
hoped, at the polycritical point.
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The condensation energies of the phases A and B are given by*

fﬁ\ = MAE\ =fc/5245,

(13)
fo =3udi=f./(B12+3B34s)
with the Ginzburg-Landau condensation energy
s T )2 1
c=upll——) Y/ 14
f=26(1-72) sy (1)

At the AB phase transition point the energies f2 and f- are equal, which
determines the parameter § of Eq. (11) as

such that the corrected 8 values become

Bl=_0.52, BZ: 105, 6320.99, ﬁ4=0.87, Bs=—1.16
(16)
Let us now study the energy along our path between the A and B
phases.
With the interpolation (4) depending only on x, the bending energy can
be written as

fo =3K[2A5(81 Y +5A5(8k)°
+AaAp(d® - D +h.c.) BA - Bk +2A5|9A - B
+2A7A5(d" - 81)(9x - D* +h.c.)] (17)

where we have introduced for convenience the modified directional
parameters of the A phase

df =d,R.(A,68), &, =d;e (18)

which contain the information on the orientation of the A texture relative to
the B texture. For the potential energy we find

fo=u{AAAP(A7-2)+3A%k% (k7 - 2)
+AaApAc(A 2+ k= 1)(dR - d+h.c.)
+ALARA P [2|dR - BP(281 + Bass)
+((@% - ®)*+h.c.)B24+8B2s + 48235} (19)

*Notice that
BoAa=(1/4B245)A% = f./4B3as = 2/ 4B s

BoAg =[1/6(B12+3B345)1AL = £./9(B12+3B345)> = F2/9(B12+5B345)
:KAZ =362, KAR=3£f2
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where we have made use of the gap sizes

A= w1/ 4B245Bo, A123 =u/6(B12+ %B345)ﬁ0 (20)

to simplify the expression. Close to the transition temperature Tap, the
energies 2 and f2 differ only by a very small amount and we may write

AB/AA=5(1+¢) (21)
where ¢ is given by

Bus _61-(21/40)5
Bi2+3Bass 5 1-38
Putting (21) into the potential energy (19), we get, up to first order in ¢

v=f/fe+1=1+A*A2=2)(1-¢g)+x*(xk*—-2)
+ 2\/%_c1(1 —2e)Ak(A+x2-1),
+A%(1—¢)p(er, c2) (23)

where we have normalized the potential energy by dividing it by the
condensation energy f¢ of phase B and added 1 such that the energy starts
counting at —f%. Thus for the A phase va = ¢ and for the B phase vg = 0. The
function p(c;, ¢2) depends on the directional cosines of the textures

1+e= (22)

ci=d8 - ®Y, =4 -®?, =d®-1 (24)

and it is given explicitly by
plcr, €2) = (1/6B245)[2(cT +¢2)(2B1+ Bass)
+2(C% ‘C§)324+8324+43235] (25)

The effect of £ is to cause an dsymmetry between the potential minima.
There is also an accompanying slight distortion in the shape of the potential
which may be neglected for present considerations'. Therefore we may write
the potential energy approximately as sum of a symmetric part

v=1+A2A2=2)+ k% (x*=2)
+2V3ciac(A? + k2= 1)+ A%k p(cy, c2) (26)
and a symmetry-breaking part
Usg = €A (27)

The symmetric potential has absolute minima with v =0 for (A, k) =(1, 0)
and (0, 1) corresponding to the phases A and B, respectively, and a maxi-
mum at (0, 0), where v =1 (i.e., f, =0), which amounts to the liquid being
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normal at that point. When proceeding from (0, 0) along the diagonal the
energy v decreases from unity and runs through a minimum at

+V3c, \12
A=r=( e ) (28)
2+4\/§c1+p

with a value
—1— (2""/%6‘1)2
2+4\/§c1 +p

(29)

We expect the path of minimal surface energy to cross the diagonal close to
this point. The precise course of the path depends on the properties of the
bending energy (17), which we now discuss.

Let us introduce the directional cosines of the normal to the interface
with respect to the textural dreibein cb'm, d; @ 1 ie.,

1
m = . Ar/|OA],  ms=1-8A/|0A] (30)
2
With the assumption of a planar interface o« has the same direction
9k ||OA |m (31)

except for the sign. We shall now assume that when going from the A to the
B phase the transition is monotonic. Then as A grows, « decreases and
the directional vectors are oriented opposite to each other. Therefore the
bending energy (17) can be written as

fol 12 = 3*{(4=2m3)(0 ) + (10/3)(3k )’
—2VE[c1+2(cim? + camima + csmym3)]|oA - ok} (32)
where we have used, at ¢ =0,
IKAL =3 3KAR=3£f2 (33)

from (7) and (13). Therefore the full energy at the transition point Tap
reads, in the same reduced form as (23),

f=(f+f)/fe+1
= a£2(3A )’ + BE* (9K ) (9k)* + v£2|oA - ak|

'+A2(A2—2)+K2(K2—2)+0')u<'(/\2+Kz— 1)+pA2K2+1 (34)
where we have abbreviated

a=52-m3), B=2
y =—83c1 +2mi(cimy + camy + csms)] (35)

0=2\/§Cl, p =plcy, c2)
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For this energy, we now have to find an extremal path connecting (A, ) =
(1, 0) with (0, 1) for every choice of directional parameters ¢, c2, ¢3, m;, M2,
ms. The resulting surface tension

Y

must be minimized with respect to those parameters. This program is far too
complicated to be pursued analytically. Therefore we prefer an approximate
but much simpler procedure. We first consider the straight diagonal path

Ax)+x(x)=1 ' (36)
For it the energy is simply
Fx)y=AgXar) +Br*(1-2r)? (37)
with
A=a+B+y
=3{22/3-2m2% —2V3[c1+ 2mi(cimy + cama + c3m3) ]} %)
B=2-20+p

= 2—4\/%(.'1 +p(C1, c2)

The energy has the minimal ‘‘kink’’ solution

A(x) = 1—x(x)=3th [3(x/£)(B/A)/*]} (39)
which satisfies
£0.A(x)=(B/A)?A(1-1) (40)

and gives a surface tension
cas=fc J dx [A£%(3,A)*+BA*(1-1)%]

1
=¢22AB)" | aa-n =3Byt @D

0
We now determine optimal textural angles c¢i, ¢, ¢3, mi, ma, ms by
minimizing this energy. A somewhat tedious elaboration yields the results

(.‘1=1, Cz=02=0 (42)

m==1, my=m3=0 (43)
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Fig. 1. The interfacial surface energy between *He phase A and
*He phase B at melting pressure. The solid line depicts our result
TAB~ O.77§ff, while the broken line represents Cross’ calculation
oap = 1.1£fB. The points O and @ are the experimental points for
41+3 um and 91+3 um diameter holes in the grid used in the
experiment by Osheroff and Cross’.

The first line states that the vector d= =dR is aligned with ¢

dR ”d"')(l)= d)(l) cOS (P'+¢(2) sin @ (44)

while the second line fixes the orientation of ¢’ orthogonal to the interface
and that of 1 in the interface:

& || £m, ILm (45)
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Now we can immediately determine the sizes of A and B:
A=2%22/3-6V3}~1.46

p =(1/6B245)[2(2B1 + B23s) + 10B24 +4B23s] = 4.91 (46)
B=2-4V3+p~3.64
such that the surface tension for our straight-line connection becomes

oap=0.77¢¢ (47)

The result is plotted in Fig. 1 as a function of temperature and compared
with the experimental result of Ref. 1 as well as Cross’ earlier calculation.

Certainly, our solution is not truly minimal since we have chosen to
proceed along the diagonal path. It is, however, easy to see that we cannot
have missed the true minimal solution™ by a great amount. If we keep the
same textural boundary conditions (42), (43) and insert these into (28), we
see that the lowest point across the potential barrier lies at

A =k=0.53
with a value
v=~=0.22 (48)
The maximal value on our diagonal path lies only slightly higher,
V|r=r=1/2=0227 - (49)

Figure 2 shows the potential energy. Since the optimal path is the same
as the trajectory of a mass point running through the reversed potential —uv,
it is easy to imagine the smallness of the correction to our path. In fact, it can
easily be seen that the straight-line connection would correspond to the
exact minimum of the energy if the constants in (34) satisfied

«=B, p=3 (50)

with vy and o being as they are under the textural conditions (42)-(43). The
actual values a =12/5, B =2, p =4.91 violate this condition only mildly.

The reader who is familiar with the difficulties in calculating strong
coupling corrections may be critical toward the reliability of our results. It is
gratifying to note that these do not have any appreciable dependence on
which of the strong coupling corrections available in the literature are used.
For example, the 8; implied by calculations of Kuroda and Nagi® are

B1=-0.53, B2=1.02, B3=0.97, 4=0.88, Bs=-1.19

(51)
where we have used the cutoff parameter q./2pr = 0.124 instead of® 0.13 to

*As far as the A, « space is concerned.
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05
_ A
Fig. 2. The potential energy (34) in (A, «) parameter space between A = (1, 0)

and B = (0, 1) phases. Our path along the diagonal is not completely minimal
but obviously is not far from it. Its surface energy is caog =0.77¢ ff.

ensure f* = f° at Tap. These are not appreciably different from our values
(16) and yield, with boundary conditions (42) and (43),

p=514, B=3.88, oas=0.79¢": (52)

instead of our earlier values 4.91, 3.64, and 0.774f%, respectively.

3. COMPARISON WITH CROSS’ CALCULATION

Since our surface energy is so much smaller than Cross’, we may ask
whether our passage across the potential barrier passes through the maxi-
mum anywhere near the planar phase. In order to compare both paths we
modify Cross’ Ansatz for the order parameter in such a way that both his and
our solution can be represented on the same two-dimensional plot. Cross
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chooses the following parametrization:

A [0S X 0 —il3
A =-\~/—5~ 0 cos 8 cos y 0 (53)
0 0 V2 sin x

where A,; =sin 8 cos y. This interpolates between A and the planar phase P
for x =0, 6 €(=/2, 0) and between P and the B phase for § =0, y € (0, xg),
with x5 =sin”'(1/ v 3). The desired modification consists in multiplying the
matrix element A;; by a factor A(y):

S. —_ 1/2
A13"A13h(,\’) =A13 [M] (54)
sin (xs+ x)

This factor does not change the order parameter along Cross’ path.
In order to see that also our linear interpolation is contained in the
modified A,; we chose

A =(A/Ax)(cos x —+v2sin X)s K= (A/AB)\/E sin y (55)

and satisfy the textural boundary conditions by taking the order parameters
for the A and B phases respectively as

1 0 —i 1 0 0
Aa,' = AA =0 0 0 s Ba,‘ = AB 0 1 0 (56)
0 0 O 0 0 1
so that the interpolation between them is
cos x 0 —i(cos x —v2sin x)
A=Al 0 V2siny 0 (57)

0 0 V2 sin x
Now we see that along the curve
cos 6=v2tgy (58)

the linear interpolation (57) is contained in the modified Cross’ Ansatz (53)
and (54), for along this curve

cos x —\/-isin)(

cosx-\/isinx= sin € cos x

sin @ cos y

_J3 sin (xs—x)
sin [cos™! (V2 tg x)] cos x

sin @ cos y (59)
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Fig. 3. The potential as a function of 28/ 7 € (0, 1) and x/ xs € (0, 1), comparing ours with
Cross’ interpolation. Ours corresponds to the diagonal path in the variables shown in
Fig. 2. Cross’ runs along the axes and passes the planar phase at the origin. Notice how
far our interpolation stays away from the planar phase. The height of the mountain is not
a direct measure of the surface tension, since the bending energies have a complicated

dependence on , # (they are simple only in the A, « plane).



Surface Energy and Textural Boundary Conditions 551

But
sin [cos " (V2 tg x)]=[sin (xs—x) sin (xs +x)]"/*/(cos x sin xs) (60)

such that (53) does coincide with (54). The difference between our and
Cross’ paths can be now seen in Fig. 3, where we have plotted the potential
as a function of 8 and y for the modified order parameters (53), (54). Cross’
path runs along the axes through the planar phase at the origin, while ours
following (57) does not come anywhere near it. Notice that our path climbs
higher than that of Cross’ and still has a lower surface tension. The reason is,
of course, the strong 8, y dependence of the bending energy. Contrary to our
A, k path, whose bending energy takes a standard form of classical
mechanics, the potential barrier in 8, ¥ space does not permit an immediate
conclusion, by inspection, as to where it can most easily be traversed.

4. CONCLUSION

We have seen that the straight-line interpolation between the A and B
phases

Agi =A(x)Aq +x(x)B,; (61)
with a “kink’ form for A and «,
1 1 x/B\1/?
A(x)—l—x(x)——a[l——thig(z) ] (62)

leads to a surface tension oap=0.77¢f; in excellent agreement with
experiment.

The textural boundary conditions require that (¢ cos ¢ + ¢ sin @)
and d.R,; (A, 6) both have to point orthogonal to the interface.

At the transition point T = T the order parameter is

1.82 —i
Asi=Aa 0.81 (63)
0.81

(1)

which is quite far from the planar phase. Certainly, the precise value of A,; is
the least dependable of our statements. Since the energy is not the most
sensitive measure of the distance from the true minimal path (just as in
variational calculations of a Schrodinger bound state), it could well be that
the minimal path has significant deviations from ours. However, it appears
highly improbable that the minimal path runs through the functional neigh-
borhood of the planar phase with an energy even lower than that for our
path.
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Our result still throws no light upon the problem of how the B phase
nucleates when cooling the bulk A phase. Even with our improved surface
energy the radius of a critical bubble

re=20as/Ife —fe|=145¢/(f¢ =/ ) (64)
with*
12— B/ fB ~e=~0.17(1- T/ Tas) (65)
becomes
re=9¢/(1— T/ Tap)

Even at the experimental temperature of largest supercooling T — Tag =
—0.4 mK this gives

re=47¢ (66)
The energy of this bubble is enormous,
Ebubble = %W(ZUAB)s/(f? "flca )2
= (16/3)w(0.77)°f2¢’/¢*
~1.8x10°kT (67)

such that thermally activated nucleation in the bulk is excluded. Some other
nucleation mechanism will have to be found.
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*Remember that £ was defined by
£ =(43/100)(8 - 8p)/ (1 —38)

Therefore, interpolating 8 = 8ap + (8. —8apNT — T'ap)/(T. — Tap) with 8,5 =20/43 and
8. =0.56, we find £ =0.17(1 — T/ Tag).



