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NO PION CONDENSATE IN NUCLEAR MATTER DUE TO FLUCTUATIONS
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We show that if pion condensation occurs in a mean-field theory of infinite nuclear matter, fluctuations completely pre-
vent the formation of a condensate as well as of the associated Goldstone mode. Thus if an increase of opalescence should
ever be observed experimentally, it is these fluctuations which are measured rather than the scattering on the Goldstone
modes. They preserve isotopic symmetry and increase very smoothly as the density passes the formerly critical density.

There are no discontinuities in any thermodynamic quantity.

Since Migdal’s pioneering work [1], much effort
has been invested in deriving the dynamical details and
possible experimental consequences of pion conden-
sates in nuclei [2] . It seems to be an unanimous opin-
ion that a condensate of pions of momentum |q |
~ 21 (1 = pion mass) should appear above some mod-
erate critical density p, ~ 0.5 ©3. In the theory, the
condensate is signalized by the continuous develop-
ment of a non-vanishing expectation value of the pion
field

®~(o/p, — D' expligx)n +c.c.

Experimentally, the transition is expected to announce
itself by a marked critical opalescence due to the
strong massless fluctuations transverse to the direction
n accompanying the spontaneous breakdown of any
continuous symmetry

Up to now, most discussions have been restricted to
classical considerations as far as the pion field is con-
cerned. Little is known [3] about the consequences of
fluctuations in the immediate vicinity of and above p..
It is the purpose of this note to introduce the appro-
priate theoretical techniques for their investigation
and to derive a first result: We show that due to the
many choices of the system as to the direction of ¢
there are so large pretransitional fluctuations that the
second-order phase transition, present at the mean-
field level, is completely wiped out ¥'. A condensate

can no longer form, i.e., all field components of the
pion have zero expectation and isotopic symmetry is
restored. There are certain remnants of the mean field
transition *2. The expectation of the square of the
pion field ((x)2) does approach the mean field behav-
iour p/p, — 1 for p > p_. Moreover, even though the
susceptibilities are drastically modified by becoming
isotropic in isospin, they do grow rapidly in p/p . — 1
> 0 (exponentially for zero and quadratically for finite
temperature) thus reflecting the infinite values of the
transverse components at the mean field level.

Consider an action A describing matter in terms of
some set of elementary particles, i.e., A contains local
quark fields q(x) and others, say G(x), responsible for
binding the quarks. The full quantum field theory is
defined by a generating functional

Z[n, k] = [ Dq(x) DG(x)
(1)
X exp(iA [q,G] +i fdx(ﬁq+qn + kG)) )

*1 Our result has nothing to do with smoothening of the tran-
sition due to finite-size effects which are small compared
with what we discuss here if the nuclear radii R are very
large, in particular R » 1/q..

*2 Just as there is a supercurrent in a thin wire even though
there is no condensate (fluctuation stabilized superconduc-
tivity).
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where n, k are external sources. Only ¢c-number fields
occur and fluctuations are included explicitly rather
than by field operators,

A pion field may be introduced carrying the proper-

ties of the composite Givys7q field via an auxiliary func-

tional integral

Z, x EfD'rr(x)
)
X exp(i fdx[n(x) —g§e) i'ystq(x)] 2) ,

which does not depend on the quark fields since the
variables 7(x) are integrated, at every space—time
point, from —ee to +e0, Thus Z can be multiplied with
(2) without any change and we may describe the
world just as well by Z ;) =ZZ,, .. If we now inte-
grate out all fields g(x), G(x), we remain with a new
partition function [4] *3

Z ynk] = fDn(x) exp(id [, n, k]). €))

Fuctional differentiation with respect to n (in multi-
ples of 3) can now be used to generate any desired nu-
clear density. Setting n = 0 and & = 0 afterwards one
obtains

PZ o= Drt) exp(iPA oy [n]), @

where P4 .y [7] is the collective action of the pion
field at a certain nuclear density p which we shall as-
sume to be symmetric, Z = N,

To lowest approximation, the collective action
PA o[7] can be treated at the classical level at which
one has equations of motion 6°4 . ;/6n(x) = 0 which
are of the Hartree type [4,5] . In the long-wavelength
limit, there are soft pion modes which can be de-
scribed by an expansion in powers of the pion field

L

PA™ [1] =
coll 2 |gol~m lgl<u

7' @)@} - ¢* - 1H)x@)
)

~ $P8(n2)* + O(n®),

3 Some time ago, the same methods have been introduced
into nuclear physics at an even more long distance level:
The nucleon fields have been integrated out in favor of a
nuclear density field thus obtaining Hartree equations plus
their fluctuation corrections [5].
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where the quartic term is some non-local function of
.

The precise form of ﬁ(ﬂg‘)2 depends on the model.
For our qualitative discussion we shall only use [1,2,6]
that for euclidean pion momenta this combination is
positive definite. Second there are “pionic sound”
waves with a kinetic action

c lql
pAZOll[ﬂ] = %l‘lz 2 Tr+(q) (1 - IS | )TT(Q),
Iqol <u,lgl<u 9y ©

which may simply be added to (5).

It was the important observation of Migdal [1,2,6]
that there is a third type of modes which have to be
taken into account because of their low energy: If the
dispersion curve of the “sound’ wave (6), q% = wz(q),
is continued to higher momenta there is a pronounced
minimum atq = g, ~ 2u *4_They have the crucial
property that at a critical density p = p_ ~ 0.5 us,

i.e. in the range of normal nuclear density, w?2(q ) van-
ishes and one can expand in the neighbourhood of p,
and g :

w @) ~al(l —plp,) + 2@ - ¢ )?].

Forp >p,, w2(q o) changes sign signalizing the possi-
ble onset of a phase transition called pion condensa-
tion. In the following we shall investigate the fluctua-
tion properties of this most relevant mode with the ac-
tion close to p, **.

1

PAnlml =5 = @la5-7-(q-q,)"]
onl™ =3 901 <k, 41<1qI<q2 0 ©
9w (7
X(q) — 4 6(r2)
and the partition function
Z.n =fD1r(x) exp(if’Azou[ﬂ] ). ®)

*4 Because of the similarity with superfluid 4He these may be
called “‘pionic rotons”.

We have gone to natural units £g =1, a« = 1, abbreviated 7
=1 — p/p¢ (in analogy with the conventional —(1 — 7/T¢)
factor in statistical mechanics), and restricted the momen-
tum summation to the interval |gl € (g1, ¢2) with q% < qg,
q% > q% outside of which w?2(g) is so large that fluctuations
are irrelevant. We have omitted the terms of order % since
we want to work close to 7 = 0 where 7 remains small of or-

der /—r.

+5



Volume 102B, number 1

For a first rough idea consider the pretransitional
(i.e. 7 R 0) behaviour of the pion propagator at zero
separation (g = iqy)

(na(x)ﬂb(x'))|x=x,

©)
d3q 1
=5, .
B f 'LMK%(”yqﬁ+T+@‘492
The integral can be divided into three parts:
1 9 2q,q-q)-q3~
2J a1+ 2 2
mee A agt7+@-q)

(10)

+q2 1 )
C >
a; +7+(q—q)?

of which the first is a constant, while the second is a
smooth function of 7 > 0. The important contribu-
tion comes from the last part which diverges for 70
as

q2

lo
f 27 (q +T)1/2 4772 &7 (11)
The origin of this divergence lies in the gigantic direc-
tional fluctuations of ¢ for |¢| close to g, which are
degenerate on a whole spherical shell *¢, This is in con-
trast with standard phase transitions where the insta-
bility sets in at ¢ = 0 and fluctuations remain small for
T>40 ((n2) ~c; +cy V7). As usual in quantum field
theory, the regular parts can be absorbed into 7 and
merely change 7 = a7 + b, i.e. the normalization of 7
and the place where it vanishes. This amounts to a re-
normalization of & £, and the critical density p ..

The singular piece, however, has dramatic conse-
quences: If iterated in a Dyson equation it modifies
the full propagator to the same form as (9) but with a
fluctuation corrected value 7; = 7 — K log 7; where K
is a positive constant and the regular piece already has
been absorbed into 7. The sign of 7 decides about the
fate of the pion condensate including fluctuations. But
here we have the following problem: As a function of
7 the corrected value behaves, far above the critical
point, in the same way as before, 7; ~ 7. But as the
previously critical point is approached, 7¢(7) flattens

*6 Notice the surface factor q%.
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and remains positive for all values of r. Thus, the in-
stability is gone and there can no longer be a phase
transition. The learned reader will object that the argu-
ment relies on perturbation theory and breaks down
for |7; — 7| € 7 such that in reality the system may
just end up in a slight shift of the point of transition.
The trouble is, however, of a more fundamental na-
ture and is very much related to the old observation,
in many-body physics, that one-dimensional systems
have a unique ground state, which follows from
Schrédinger theory, and that there are no Goldstone
modes in two dimensions [7]. This might seem aston-
ishing since here the system is 3 + 1-dimensional. The
common point, however, is that the term (9) has ex-
actly the same divergence as occurs in two- or one-di-
mensional systems depending on whether one looks at
the quantum-mechanical or thermal case, and this
gives rise to the fluctuation disaster. Instead of giving
an abstract proof we hope to convince the reader by
treating the full fluctuation problem (10) exactly in
the somewhat academic limit that there are infinitely
many pions, i.e. instead of an isotopic O(3) symmetry
we take O(V) with V- oo, Simultaneously we have to
let § tend to zero as /N with fixed 8. It is an exper-
ience in many-body theory that such results are not
very far of reality if NV is chosen to be 3 at the end.

In order to simplify the algebra we shall replace
the non-local interaction by a local (8/N) f d4x(1r3 )2.
The only difference lies in some angular average over
the directions of g, which can be accounted for by an
effective change in the size of 8. Then the full fluctuat-
ing theory of static fields close to 7 =0 is defined by
the generating functional [8]

Z, il = [ Drx) exp (i o4r ]
(12)
+i a6 m,6)) ZepG WD)
wherej,,a =1, .., N are external sources for each
pion field . In order to perform the path integral we

introduce a collectlve tield [4,5] 0 = (B/N )7r2 and re-
write Z_ 1 [j] as *7

*7 This is an identical reformulation of (14) as can be verified
by a quadratic completion and integration over the o-field
using the same atgument as given after eq. (2).
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Z,_,[i1 = [ Da(x) Dox)
. N

X exp [1(-’2-17; [q% —-wz(q) —olm, + ngd“x o2

+ [t ja(x)na(x)):l : (13)

Notice that o is, in general, non-diagonal in momen-
tum space and #*Mn has to be read as in matrix alge-
bra with g as indices. In the form (13) the D integral
is gaussian and can be executed giving

Z ulil =fDo exp {i [N(ZIE fdx oz(x)
(14)
+ JitrlogiGyl) 57,6, } = exp(iW[/1)-

Here G is the propagator of a p10n in an external o-
field, i.e. in momentum space: 1G = qO — w2(q)

— 0. The important point is the factor N in front of
the brackets. As N - oo, the o-field is squeezed into
the extremum of the exponent, say 0 = Z[j], and can
no longer fluctuate (saddle point theorem). Thus

wijl =N($fdx E(zx) + 2itr log iGgl)

(15)

+ —;—1] aGE J a’

is the exact generating functional of all connected
pion Green’s functions. It is now easy to study the
question of spontaneous symmetry breakdown. For
this we introduce the effective action [8] viaa
Legendre transform I'[®] +j,®, = W[j] with &,
=8W[j]/6j,(x)=iGy j, being the ground-state expec-
tation value of the pion field. Inserting this into (15)
we find the result, exact to leading order &V,

=N . s =1
I[e, 2] (43 fdx E(x) 21 trlog iG3 )
(16)
1
+3@,[q0 —7— (@ - q,)* - Z]2,.
Let us now ask whether there can be a static conden-

sate of momentum q, i.e. &, = <I>°6q 284001 ZE)
= ZC, For this the effective potent1al
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V(@°, £°) = —T'[®°, =°}/VT = —N( o »e2

-1 log(q4 tre@-a R 4E0) 07

+—@+z%¢”

has to be minimal at ® ={0|m,|0) # 0. We see that
this requires 7; =7 + 5t = 32V/3¢°2 0. But differ-
entiating (17) with respect to Z¢ we find the following
equation for 7¢

7 =70+ (B4n) (@2 — 7¢/2) log(r¢/a?).

+4g/17] + (BIN) DS,

where we have used (10) and absorbed the divergen-
cies in a redefinition of coupling constant g and 7. Eq.
(18) leads to precisely the same problem as before
only that now the result is exact (in the limit of large
N). There is no value of 7 (i.e. density) for which 7;
can be forced to vanish. Thus ®F = (0| 7,|0) = 0 and
there can be no condensate nor Goldstone modes.

Notice that eq. (18) makes an exact statement
about the susceptibility of pion fluctuations which is
defined as

84,4X(@),, = Olm (@ m,(@)I0)

(18)

= —[82T[@]/6®,(q)8®, (g)] ;i (19)

=8, Oa/las * 1+ @—4.)).

This is a smooth function in 7, isotropic in isospin.
For p> p_.and g4 =0, q = q, X grows exponentially
n—r1= p/pc — 1 as a washed-out remnant of the two
infinite transverse susceptibilities at the mean-field lev-
el.

For high nuclear temperature the integration over
dg4/2m in (10), (17) has to be replaced by a simple
temperature factor T while setting g, = 0. Then the ef-
fect is even more drastic as we can see from (11): in-
stead of the fluctuation logarithm there is even a
square-root singularity at 7; = 0 and eq. (18) be-
comes

T =15 +(B/2n%)T{2q, log(r¢/q2)
— [(@% — )T} + (BIN) DS . (20)
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For arbitrary temperature one has to sum over
Matsubara frequencies T Z(2q/T)q4=0,+1,+2, ... Tather
than just g, = 0. Again the divergence is of the square-
root type.

The behaviour of the local square of the pion field
can be calculated from V(@) as follows

(2 () = 20V(@)/07] 5o =NZ®JB = N(r; — T)[B. (21)

It is a smooth function of 7. For large £7 it may be
approximated by the mean-field behaviour 0, —NV 7/,
respectively ¥, It will be interesting to see what modifi-
cations arise to this argument from the possibility of
a condensate with lattice texture *°.,

I thank M. Guylassy, H.J. Pirner and W. Weise for
their kind information on the present status of pion
condensation.

8 1t should be mentioned that eq. (18) becomes physically in-
consistent for very laxgé TF~ (¢ exp(8n3/B) indicating an insta-
bility of the limit IV — « of the field theory. This presents
no problem since the initial action (7) may only be used
for r ~ 0.

*9 In cholesteric liquid crystals where fluctuations are simi-
lar the phase transition is saved by a lattice texture (blue
phase) [9].
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