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Decay Rate for Supercurrent in Thin Wire
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We present a new evaluation of the fluctuations triggering the decay of
supercurrents. Contrary to the existing treatment available in the literature, our
result emerges in a simple and closed form. This is due to the fact that, in a
polar decomposition A = p €' of the order parameter, we sum over all azimu -
thal paths explicitly, thereby arriving at a fluctuation determinant for the p
variable alone which can be evaluated exactly.

1. INTRODUCTION

The calculation of the resistance of a thin superconducting wire is one of
the most important applications of Feynman’s path integrals to quadratic
fluctuation phenomena in superconductors.' It is therefore disturbing that
the (by now ‘‘classic’’) treatment of Langer, Ambegaokar, McCumber, and
Halperin (LAMH) is technically quite cumbersome and gives an explicit
result only for very small or close to critical currents. What is needed is the
evaluation of a 2 X 2 fluctuation determinant. LAMH proceed by calculating
the infinite product of all eigenvalues of the 2 x 2 Schrodinger problem. We
want to show that a more efficient handling of the path integral reduces the
problem by one dimension and makes it soluble by the Gelfand-Yaglom
method.?

The essential point is that by going to a polar decomposition of the
order parameter

A=pe” (1)
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#The same technique has also been applied to the second type of superflow in 3He—A,2 resulting
from a helical texture.’
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the azimuthal variable is cyclic and its path integral can be performed
exactly.

2. GENERAL DISCUSSION

It is convenient to employ natural units, in which temperatures are
measured in terms of 2f./ky, where f. is the BCS condensation energy

fo=(1/8m’¢d) 1 — T/T.)> x mass density (2)
with length; taken in units of the temperature-dependent coherence
length &,

T —-1/2 7§(3) 1/2 o T —1/2
malr-2) [ (-
T, 487 T. T.

Then the partition function for a thin wire of length I in the regime of
validity of the Ginzburg-Landau equation is given by the path integral*
(oo =cross section of the wire)

Z[j]l= j pDpDy exp [ —%I dz [f{p, 7)—21'72]}

_ J pDpDy exp {
a 1
— dZ[(pz)2—02+§p4+pz(vz)2—2jyz]} (4)

Here a stationary average current

()= (3. y))=]

is established by means of some external source 2jy,. A quadratic
completion permits us to rewrite

L;2 .2

Z(j) =I Dp exp { —%J‘?m dZ[(pz)z—p2+%P4—Z7]}
XIPDY CXP{—% _L:z dzn%z)(n—;féf} (5)

Now, the important observation is that the p dependence of the second
integral is only apparent. By performing the path integral over Dvy, one

*The integral runs over all periodic functions. Its normalization on a discretized z axis with
Z, = He IS

dp(z,) plz,)dy(z,)
DpD~ =
pEPLY U(ﬂ'&.‘T/O’)l/z (reT/a)'/?
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obtains the p-independent result:

L/2 .2

de2<z)(yz-;’5)] 51 (6)

I.—»00

S

—L/2

in the limit of a long wire such that the calculation of Z reduces to a
one-dimensional problem:

ztj1= | Do exp{ -2 LL// dz[(pz)2—p2+%p“~l’;—2z]} (7)

whose semiclassical evaluation will be shown to be extremely simple. In
order to convince ourselves that (6) is true, we introduce an auxiliary space

variable
z dzl
s=| = (8)
—r2p (2)
which has the effect of bringing (6) to the form™
v o Lr2 )
z,=[Dysrexo| ~Z[  dastr-)7] ©)
—L/2
where the limits of integration are determined by
L/2
- dz
- J’ ‘ (10)
2P (2)

Now, if v were a usual quantum mechanical variable, the propagator of (9)
would be’

1
RmiLT/20)"

o (b~ Ya +z’fli>2]

T I (11)

7 €Xp [
With y being defined on a circle, there is an additional sum over indis-
tinguishable, periodically translated end points v, +27m. The statistical
trace is obtained by setting <y, = y,, integrating over one period, and
dropping the factor / in front of L:

z2-(,) peel 22T

For a very long wire, L grows to infinity and the sum over m can be replaced
by an integral. This proves Eq. (6).

*Notice that p(z)Dy(z)=D~vy(s) since ¢ =Az>As = Epz(zn) in the grated form of the
plz)Dvy(z) measure (see footnote on p. 138).
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3. CALCULATION OF Z UP TO QUADRATIC
FLUCTUATIONS

Before starting it is necessary to realize that the integration over the
‘““radial” coordinate p is restricted to positive values. This may be awkward
when it comes to calculations, even for purely quadratic fluctuations. There
is, however, a simple way of extending the integration to the full p axis, from
— o0 to + 20, by the following construction: we rewrite (7) as

L/2 r/2

(278 o T2, o
Z=J Dpexp(——J’ dzg)—f Dpexp(———J dzg)
Pe T —L/2 Pa T —rL/2

and integrat in each piece over all p € (—00, +00). This expression ensures®
that only th. paths remaining completely on the positive p axis contribute,
all others being cancelled by a properly reflected image path of equal energy.

Now we turn directly to the evaluation of the partition function (7). At
the level of the stationary-phase approximation we have to solve the
equation of motion

(13)

p:=—p+p +j’/p’ (14)
There is a finite-energy solution only for j smaller than a critical value
F<jo=2/3V3 (15)

This condition can be ensured by parametrizing the current as*
j=K(1-K%) (16)
The trivial equilibrium solution of (14) can now be written as
p=po=(1-K")'"" (17)

Notice that, due to (6), K is the mean value of the fluctuating . at fixed
P = po:

<‘YZ>ﬂED()=Ol/pz(Z»PEDO:K
The energy of the solution (17) is
G = [ dz (f=2jv.) = ~LE -~ K?? 2K 1= Gk
=—3(1-K*(1+3K?) (18)

*The physical current is related to this dimensionless quantity by a factor
(e/£om)1~ T/ T.)*'? x mass density

Also, 2, is the supercurrent velocity measured in terms of natural units v = 1/mé,
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Therefore, the partition function becomes
Zg =exp [~ (o/T)Gk] (19)

There is no difficulty in incorporating the quadratic fluctuations around the
uniform solution: they contribute the standard oscillator partition function

[2 shiwl/2)] ' - e “%/72 (20)

I.+o0

where o =[2(1 —-3K %1 measures the curvature of the potential at the
minimum with f behaving as

fF=wo—po)’ @1)

This is just the analog of the zero-point energy w/2h in the quantum
mechanical case.

We are now ready to study the decay rate of the supercurrent. It is
triggered by extremal excursion from the equilibrium solution (17). These
are given by

2 w2/2

 ch?(wz/2) (22)

pe=1-K

They correspond to the critical bubbles in the description of nucleation
processes in many first-order phase transitions.” Their contributions to the
classical partition function are

Zy/Zo=exp[—(o/F)F"] (23)

where F’ measures the additional energy due to the presence of a bubble

' L/2 Ls2 1 ].2
k+Fb=I dzg(p2)=J dZ[(pz)2~pz+§p4—‘z]
~L/2 —~L/2 P 0 =pb
——lL(l—Kz)z—Z'KL+i — 4 arctg —— (24)
) / 3@ At

Notice that due to the Ginzberg-Landau condition /T » 1 the Boltzmann
factor is very small, such that such bubbles appear very rarely.

The point is now that the center of the bubble has a reduced order
parameter which allows a quadratic fluctuation of p to hit the origin. There,
the phase becomes undefined and may change by one unit (phase slip).

Let us calculate the quadratic fluctuations for the ratio (23) [in the
numerator they are centered around p,(z) of (22), in the denominator
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around po = 1 — K *]. This gives the functional integrals

J- Dé exp [ij dz 8(—d%+ v(z)+w)8]

J D§ exp [iI da 8(—d+w?)8]

0, 1/2

_[det[—&?ﬁ-‘v(z)+w2]]—l/2_n(h) (25)
L det(-92+w?) A \AG
where
1 d2 4 .2 3-2
virei=s oo(p?+ L) —143p2 20 e
P P P =0 Pb

is the potential which is felt by the quadratic fluctuations in the neighbor-
hood of the bubble. Here A% and A are all eigenvalues of the two
differential operators.

This infinite ratio can be calculated most simply by means of the
Gelfand-Yaglom method: let ¢,(z), ¥o(z) be solutions of the homo-
geneous equations

[—32+v(2)+w . (2) =0 (27)
(=35 + w ) o(z)=0 (28)
with initial conditions
o(—L/2)=0,  Yu(—=L/2)=1 (29a)
wo(—L/2)=0,  ¢o(—L/2)=1 (29b)

Then the ratio of the determinants equals the ratio of the corresponding
(L/2) values,**

det[-87+v(2)+w’] ¢.(L/2)
det (—32+ w?) N Yoll/2)

(30)

In the present case Yo(z)=(1/w) sh w(z + L/2).

*The proof is trivial. On a grated z axis, det { — 8%+ v(z)] is proportional to

2+¢e%on -1 0
Un = e det -1 2+ 601 -1 _
0 -1

which can be developed as ¢y = (2+ ¢ ZDN)Q//N_l — ¢yp—>. This is nothing but the grated form of
—y¢"(z)+v(2)¢(z)=0. The initial conditions (29) follow from ¢ =€e(2+&"v;)—>0, (¢1—
Ya)/e—>1.
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In order to find ¢, (z) we may proceed as follows. First, the derivative of
the bubble solution p;, = (d/dz) p, is certainly a solution of (27) by trans-
lational invariance. Asymptotically it behaves as

3
’

Pb—> e
(1 _K2)1/2

—wl|z|

=tae , zZ > +00 (31)

It may be denoted by :
i(z)=p} (32)

Since it does not yet satisfy the desired initial condition (29a), it has to be
combined with a second linear independent solution. It is convenient to take
advantage of the asymptotic nature of both the boundary conditions (29a),
(29b), and the result of (30). For this reason only the asymptotic behavior of
the second solution needs to be known. But this must be exponentially
increasing together with the opposite symmetry of (32), i.e.,

+w|z]

Yr>ae , zZ = 100 (33)

where we have chosen the prefactor to agree with (32). The proper linear
combination satisfying (29a) is

by = (1/2am)(e“"* Y1+ e "2 y>) (34)
such that we simply have
Yo (L/2)=—1/w (35)
and the ratio of determinants (25) becomes®
det [-a2+v(z)+ w?] 1 ol
= — —2e ¢ 36
det (—83+w2) sh wL_) ¢ (36)

Actually we have committed an error in this calculation. For large length L
there is a very-small-frequency mode with Ao ~e “” which tends to zero
exponentially due to the system becoming translationally invariant for
L —» co. The corresponding fluctuations carry the bubble over the whole axis
ze€(—L/2, L/2). They are not at all small but rather give rise to a ‘“‘volume
factor’’ L. Thus it is not sufficient to include them only to quadratic order. If
one wants to deal with A, correctly, one has to remove it from the ratio of
eigenvalues and treat it separately. Because of its smallness one may
calcul%te Ao to lowest order in perturbation theory. For this reason one
writes

z

J._L/z dz' [ (2)2(2) —(z & 2], (2') (37)

Ao
2a’m

Uno =4, (2)+
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where the denominator is the Wronskian

(2 (2)— a2 (2) =20 w

of the solutions (32) and (33). The limits of integration are chosen such as to
force ¢, to vanish at —L/2. At the eigenvalue A also ,,(L/2) has to vanish.
This gives the condition

L/2 1

Ao = —Za{ j dz'[e " ya(2)p(2)) — e“’”zwl(z')w(z')]} (38)
—L/2

Inserting the decomposition (34) yields

A0==~4a2w[e_wLI

—L/2

L/2 L/2

-1
dz'viz)—et [ dz w%(z')] (39)

—L/2
Now, the second integral is simply half the bubble energy

L/2 L/2

j dzw%<z)=j dz pl? =AF, (40)
—L/2 —L/2

The first integral diverges as e¢“’: thus one obtains the almost-zero
frequency

Ao=4d4a’we “"/(F,/2) (41)
such that the ratio of determinants, with Ao removed, reads
det' [-02+v(z)+w’] [laroAs F,
2 2 = o 2 (42)
det (—o;+w?) | P da”w

and the full ratio (25) may be written in the form

(—4a’w/Fy)' ?ao""? (43)

Let us now properly treat the diverging factor A, '/>. Formally, it is the

result of an expansion of the fluctuation in all eigenmodes

P ::§0y0'+ 2 é%YH (44)

n#0

and a successive integration over all normal variables & The normalized

zero-frequency solution is
1/2

vo=pi/ ([ azei)  =pi/FY? (45)
An infinitesimal translation of the bubble, on the other hand, proceeds via*
p>p+dap +--- (46)

*The dots denote additional pieces ), .o &,y in (46) which do not contribute to the quadratic
fluctuations since they are odd in &
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Therefore we can change the integration measure from & to the position
variable a, with

da =(F,/2) '"? d¢& (47)
The integral which formally leads to Ao '/*
dé —Aobor 1
_—*(VT/(:)UE exp (} == e (48)
may be transformed into
F, )”2 J’ —Aoédo
— —_— 49
(27rT/cr da exp (49)

In this final version the limit A, > 0 may be taken without committing the
same error as before, and results in the “‘volume” factor

1 F, \'"? ,
vl O (50
4]
The final result for (23), therefore, is
Zb Fho')l/z (_4a2(1))1/2 - Fo/T
— = I{—— b 51
Z() (27TT Fb € ( )

The minus sign is the signal for the presence of a mode whose frequency is
negative. That such a mode must be present follows from the fact that p}, is
an antisymmetric wave function of zero frequency.’ There has to be at least
one lower eigenvalue. It corresponds to an instability of the bubble under
phase slips: once the phase slip takes place the bubble disappears in favor of
a uniform solution, with the current reduced or increased by one unit of flux.
From the discussion of nucleation rates in Ref. 7 we know that the formal
imaginary result (51) actually lacks a factor 1/2 since the analytic continua-
tion of the functional integral to negative frequencies requires the selection
of a branch along the upper or lower functional imaginary axis. Only the
upper (say) gives the rate for decay. The opposite complex conjugate
direction is responsible for the return of the system from the saddle point to
the original state in our situation; this corresponds to the current-decreasing
phase slips. Thus we can write for only the current-decreasing part

Z3r avw
:_L 1/26
20 2 2#T/o)

—F,a/T (52)

It is worthwhile stressing that in this formula we have expressed the result of
all quadratic fluctuations in Eq. (4) in terms of the two parameters w and
« which are trivial to read off the asymptotic form of the critical bubble
solution [ph(z) > ae “7.
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Certainly the one-bubble result (52) is only the first term in an expan-
sion of the partition function into many-bubble contributions. The total sum
reads

Z =Zyexp (Z¥YVZy) = Zyexp [i(o/ T)T exp (—Fyo/ T)] (53)

Explicitly, I' is given by

_ LT/o — LT/o w' "’
QaT/a) ? YT QaT/a) 2 1-KH'7?
L s,a(1=3K*"* T

TG K o 59

For K =0 and K ~ 1/\/5 this agrees precisely with the result of McCumber
and Halperin,' who obtain for K =0

3

1 %w ) 1/2 10 ¢~ 2
— — = 4+
r 2(77T/o- _@9'"a-¥K )

LT/o [2(1/2\/5)
2 mT/o

1/2

1/2
] 24?1 =K+ - ) (55)

and the same multiplied with a factor J% (1 —3[('2)7/4 for K —» 1/\/5. Here
(24)'% is the product of all frequency ratios, and Gw /7 T/o)'’? is the factor
from the translational mode.

4. OBSERVATIONAL CONSEQUENCES

The imaginary part of the energy I' gives rise to a rate of phase slip
which was derived in Ref. 9 by using the Fokker—Planck equation as

I/\*‘ll 1 —F o/ T
Rate = r o7
ate T wlT/o € (56)

where A _; is the negative frequency mode via which the decay occurs and 7 is
the relaxation time for the movement of the corresponding normal coor-
dinate:

78§,1/81‘=|A_1|§_1 (57)
The value of A _; can be taken from McCumber and Halperin':

A =31+K)H-[1+KH+3w?]"? (58)
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Therefore the rate of phase slip becomes

_ ! sia(1—-3K%)""
Rate_2‘n'1'[(rrT/o-)1/2 (1—K2)”2]
x{1+K*)—[(1+K*?+3(1-3K?)*]"* e /T (59)

It must be stressed that A _; is the negative eigenvalue in the origina! full 2 < 2
fluctuation problem, i.e., before the path integral over D is performed. The
negative eigenvalue of the final, pure p, determinant is completely unrelated
to this A_q, since one degree of freedom, which is not an eigenmode, has
been eliminated. In order to appreciate this remark, consider the example of
a trivial fluctuation integral with eigenvalues +1 and —1:

dx dy 1 1

N4 [—(xz“yz)]’ig\/——_‘—; (60)
By a variable change
x = (cos 8){ + (sin 8)n, y = —(sin 8)¢ + (cos 8)n (61)
this becomes
D {—(cos 260)[¢ — (tg 26)m T +— nz} (62)
TN cos 26

Now if the integral over ¢ is done, this leaves

(cos 26)'/? I m 2 dn exp (nz/cos 20)= %(cos 26)A1/2(—cos 26)1/2
(63)

and the eigenvalue of the remaining variable n can be anything between 1
and co. In fact, the negative eigenvalue of our fluctuation problem

[+ v(2)+w e =Ay (64)

diverges as —1/K for K - 0, and vanishes as —3w° for K > 1/\/5. The true
negative frequency A_;, on the other hand, moves from —1/2 at K =0 to
—(9/64)w® for K > 1/V3,

In order to extract an observable quantity from the result (59) it is
convenient to consider an ensemble of fluctuating uniform currents jg in
some neighborhood of the external source value j. The exponent of the
partition function (42) can then be split according to

[ az =21 = [ dzt =2y -G =jw2 [ azv. (65)

The first piece can be treated as in the last section, finding the two kinds of
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extremal contributions: those with uniform order parameter

p(z)=po=(1-K?), vo(z) =Kz (66)

and the bubble solutions

p(z)=pp(z),
i 1 w w
= —— = Kz+arct (— e )
v (2) ]ﬂI_L/zdzpi(Z) z+arctg 2KthKZ (67)

The situation can be described most clearly if we imagine the corresponding
currents

ja=K(1—-K?) (68)

to run through a closed wire of length L. Then the values of K are quantized
as
/2

j dz 0,yo(z)=K, L =2mn
~L/2

L/2

J' 8.y,(z) =KoL +2 arctg —— =KL +28..=2mn (69)
—L/2 2K

Notice that K/ is slightly lower than K, which is necessary in order to
accommodate the narrower winding of y,(z) in the bubble region.

As far as the decay rate is concerned, it is important to realize that each
uniform state K, has two neighboring bubble states: K, and K|, 1. The first
leads to a decay of the state K,, into the next lower state K,,_;. The second,
however, is responsible for the decay of the next higher state K,,,; into K,
itself. Therefore it corresponds to a current-increasing transition. Looking
at (65), we see that the free energy of the first bubble is [compare (24)]

G+ F, =G +350w —4jnbw (70)

Its decay rate is therefore precisely given by formula (59).
The current-increasing bubble, on the other hand, is accompanied by a
change of [£{7; dz v.(x) by 2. Therefore its energy has the different value

G;g+Fb~U—jﬁ)4w (71)
Its rate follows formula (59) but with an additional Boltzmann factor
e*(fn“l')47rn'/T (72)

And with a negative sign accounting for its opposite direction.
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Hence the total decay rate of the fluctuating current jg is given by
formula (59) with the factor™

(1 _ e—(fﬁgj)4-n-0'/ T) (73)
If the current j, is set up above j, it decreases, phase slip by phase slip,* until
equilibrium is reached at jg=/.

For applications it is useful to return from our reduced variables o
physical quantities: the physical current density reads

TS = eh (mass densit )(1——)3/2 /
ey s density T ia
4e 4
= £Qfin= @07(: £(2f.)jn (74)
where
Oo=mch/e (75)

is the fundamental unit of flux. Hence, the total physical current through the
wire

I =JPg¢? (76)
satisfies
Ido/c =dmja2f.e o (77)

where 2f.£* was our unit energy. Thus in the absence of an external source,
the Boltzmann factor in (59) becomes

2f.&70 4 1 b, 1
exp (— —w) exp ( I 800)

K.T 3 KuT ' ¢ am

(D() 1
«[1- (~1— )] 78
[ exp c kT (78)

where all quantities are now in arbitrary units.
The net rate of phase slips can directly be seen experimentally since by
Josephson’s relation

dy/ot= e/ A)VV (79)
a rate of phase slips equals 2¢/# times the voltage V across the wire.

1 Ajdzy_ 1 g_e_
21 At 27 h

1% (80)

*For a discussion of the topological aspects of the decay see Kleinert.'"
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5. CONCLUSION

If angular variables can be treated exactly, it is advisable to do so. The
resulting reduction of functional dimensionality may lead to drastic
simplification of the fluctuation problem.

This problem has been shown to become trivial in one dimension: the
full luctuation determinant is derived from only the asympftotic behavior of
the bubble solution.

Certainly, the method presented here is very general and can be applied
to many quasi-one-dimensional systems (e.g., Ref. 2). It will be interesting
to see what corresponding result can be obtained for different dimen-
sionalities.
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