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In this letter we would like to draw attention to the fact that for a general many-
fermion system, large-amplitude collective excitations, their quasi-classical quantiza-
tion, and barrier penetration processes are described by the extrema of the effective
action I'[¢] which is a functional of the density matrix g (including pair correlations).
In contrast with an earlier path integral approach to the same phenomena in which
the Hartree approximation is the starting point, the expansion of I'[g] according to
fermion loops amounts to the time-dependent Hartree-Fock-Bogoljubov (TDHEFB)
equations and their systematic improvements.

Some years ago, in part I of this paper, the direct use of collective Bose fields was
proposed as a powerful tool in the description of nuclear collective phenomena (1-3).
The ideas were illustrated in a simple solvable model with pure pairing forces. Since
then, much effort has been spent on attempts to make the same (*) or a slightly
modified (°-%) technique applicable to the general many-body situation. The particular
advantage of collective Bose fields consists in a direct access to semi-classical phenom-
ena (*) which apparently play an important role in low-energy nuclear physics.

In the model, the main simplification derives from an immediate introduction of
a fluctuating collective pair field for which a semi-classical expansion is readily available.
When trying to apply the same formalism to a realistic nuclear problem, however,
difficulties arise. The collective field is a hybrid object, as far as % is concerned, and there
is no simple way of extracting a semi-classical expansion in powers of #; in particular,
the first order in # corresponds only to the Hartree approximation and the exchange
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forces (Fock terms), which are so important in many nuclear calculations, can only be
collected after summing up an infinite number of loops in the colleetive quantum field.
In fact, this difficulty was the motivation for attempts to use alternative collective
fields based on coherent states (5-¢).

It is the purpose of this note to point out that the natural solution of this problem
is provided by the effective action functional I'[p], whose extrema give the density
matrix ¢ of the full quantum system (*). This object is well known in quantum ficld
theory and statistical mechanics (°) and its history goes back to the extremal principles
of Lee and Yang (1%).

I'[p] is specified in terms of a graphical expansion aceording to the number of fermion
loops. The lowest contributions lead directly to the time-dependent Hartree-Fock
Bogoljubov (TDHFB) equations. The higher corrections are all simple expressions of o
and can easily be incorporated into the usual iterative procedure of solving the equations.
Large-amplitude collective excitations follow from extremizing I7g].

Let

(D A yl= pr(ed,— &y —Fvytypyry

be the action of an arbitrary many-fermion system with two-body forces. All indiccs
are suppressed since they can immediately be reconstructed if desired. Also the time
variable is treated as an index. The parameter & denotes the single-particle energies
measured from some chemical potential. Because of the fermion nature of % all Green’s
functions involving an odd number of fields vanish. We may then generate all nonzero
ones from the functional (**)

(2) Z[K] Ef@w @yp+ exp [w[w] +3 mKw]

by forming derivatives with respect to the auxiliary source (***)

A —uT
K=( ):—KT.
u A

(*y For notational simplicity, the single symbol ¢ is supposed to include particle- as well as pair-
correlation functions

(t. ¢ (<T"’°‘“"/’B(")> <Twa(t)wﬁ(t’)>)
e, = .
(Tya®ys)>  <Tyut)piee'y

More economically, we use doubled fields ¢, = ((pﬂ) :(Wz) such that
(Pa,L Ya

Qan(f, 1) = (T@paDen(t’)> .

If the potential is instantaneous, only the part of ¢ which is diagonal in the time ¢ index » will enter
the cffective action.

(*) See any modern textbook on gquantum field theory, e.g. D. J. Amir: Field Theory, the
Renormalization Group, and Critical Phenomena (New York, N. Y., 1978); C. NasH: Relalivistic
Quantum Fields (London, 1978).

(**) T. D. LEg and L. N. YANG: Phys. Rev., 113, 1165 (1959); 117, 22 (1960).

(**) In our notation, K¢ stands short for

Jatat’ . Kantt, thputt') .

(***) The symbol T denotes functional transposition, i.e. KX(Z, t') = Kpalt', 1), uTs(t, t')= jpa(t’, ).
The potential ¥ with doubled indices is antisymmetric and equals Faystpiot = 2Vagpys-
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Formally, Z[K] can be calculated by rewriting the exponent in (2) as

1 1 At ©0; + &— pT 1
(3) d[‘p]+§‘pK‘p=§‘P(iat_§+ﬂ 1 )(P——4—! Voope =
| R 1
= #ilix Ay Vopoe
and by removing the interacting part from the integral
(4) Z[K]= exp [—3 y_2 —3—] Z,[K]
6 13K i3K

in such a way that the remaining functional integral is Gaussian and can be perform-
ed to give

: 1
(5) Z,K] =J".])(p exp [% piGet (p] = exp [—2— tr log z'G}l] .

This is the generating functional of the free theory. The notation Gz* has been chosen
for the (2 x 2)-matrix in (3), (5) since the inverse Gy is the conventional Green’s funection
of the fermions in the presence of an external field K.

Expanding Z in powers of 7 results in the standard perturbation series which can
be evaluated in terms of diagrammatic rules. If we form the logarithm (*)

(6) tW[H]=1log Z[K],
then i W[K] consists of the sum of all connected vacuwm graphs involving the propa-

gator G;. Due to the fermion nature of ¢ these are one-particle irreducible (OPI). They
are pictured in fig. 1, each vertex standing for ¢¥V/4!, and each line for pp— Gy .
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(*) We neglect constant factors in Z, i.e. additive constants in .
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Given W[K], it is casy to find the exact density matrix of the system

1 8 .
(7) 5 Qav = SWIK]/5 Ko = —~(-S—I})ab WIK]

as follows from (2) and the general definition of g:

4
(8) Qap = <T@ 0> Efﬂ)sv PaPp XD [iafﬁp] + 3 qutp] .

‘We may therefore introduce the effective action I'[o] of the system as the Legendre
transform

(9) I'fe] = W[K]— % tr (K" 0)|x=rte1

such that (7) amounts to

3I'Te] IK
- T g trab -

10
(10) Sou, 2

Certainly, the auxiliary source K was employed only for the technical reason of
deriving I'[g]. The physical situation is recovered by setting K = 0. Thus we conclude
that a physical density matrix extremizes I'[p] just as mechanical orbits extremize
classical actions. The important difference is, however, that now all quantum correc-
tions are inecluded. That is why Ip] is called the effective action (®).

Let us evaluate the lowcer contributions explicitly: At the one-loop level we have

an WOIK] — —% tr log iG5"

such that from (7)

i 0 10, + & i ey
(12) 0= Gy, K —=idp1— io,— & o =i 1 —1G;" .
Inserting this into (9), we obtain
) )
(13) Il =T9p] + I'Y[p] = %tr (Gyt 07T -3 trlogip—1.

The extremum of this is the density matrix of the free fermion system

(0 io 4 &)
(14) e=G=i\,, . o .

Consider now the two-loop correction 2 in fig. 1:

(15) W(z)[K] = % Vabcd(GK)ab(GK)cd .



FIELD THEORY OF COLLECTIVE EXCITATIONS - II 525

Written in terms of upper and lower components, this contains Hartree, Fock, and
Bogoljubov contributions

(16) — 3Vappol(Gx) ay st (G r)ppor — (Gr)ayst (Grdypypt — (G ) aypy (Gr)pter] -
Now

(17a) 0= GK——% G (VA Gy,

(17b) K =ig1—iGy*+ % Vo,

such that we obtain

(18) F(2)[Q] = _% V abca@ab Qoa == "_JB Voo.
Extremizing this gives (176) for K = 0, i.e.
(19) o= iliG —} Vel ™,

which is just the TDHFB equation.
It is possible but tedious to proceed in this fashion to higher-loop corrections. More
directly we may use the obvious functional identity

5 X
(20) fﬂ)fp —— @ exp [iﬂ[tp] -+ z tquv] =0,
3p 2

work out the differentiations and derive (*)

i i
(21) (65" + K) We+ 5 VWrx + W5 —5 =10,
which becomes with (7) and —iWg, = 0x/2 = Kgl/z — “FQ—QI/4
22 Gyt — 2T L per iy —i
( ) (¢ [ I Q)Q_—g—! (Q + QQ)_ILZO‘

By separating out the trivial parts

(23) I'lel = I'"®[g] + I'®[e] + I"™"[e],

the interacting part satisfies the coupled equations

; 1 i
24 It = —=V — Vota,
(24) e Lele i e9+12 [
(25) o= — 41— 2igel ) = — 4l gy + 2iLgq Qoo .

(*) Functional differentiation is indicated by a subscript, i.e. Wg = (3/8K)W.
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We have found it convenicnt to introduce the quantity o, since it can easily be verified
to be the exact four-particle vertex function of the theory. The index contractions in
these equations are pictured in fig. 2. The solution can be found by iteration. For the
bookkeeping of the indices, this is best done graphically with lines representing the
density matrix ¢ and vertices the potential V. We see that in this way we generate
precisely those vacuum graphs which do not fall into pieces by cutting two lines. These
are called two-particle irreducible (TPI). In fig. 1 the graphs 2), 3a), 4a), 5a), b), ... are
TPI.

+2; /—ln‘l o

Fig. 2. — T o3 XUV,

Notice that this expansion is nonpertubative even though #—1 counts also the
number of explicit V’s in each term (for n# > 1). But the lines are the fully interact-
ing density matrices which themselves contain V to all orders.

By means of (23) the extremality condition I',[¢]= 0 becomes

(26) e = i{ilGy" — Z[gl},

where X[o] stands short for

. 1 '3
(27) Zlel = —2I*[e] = s Ve—5Vela

Equation (26) was first used by Dyson (°) with the prescription that X[p] contains
all those self-energy graphs which are one-particle irreducible (OPI), é.e. which do not
fall apart when cutting one line. But this agrees exactly with our result: differentiating
(3/80)I'[@] corresponds to removing a single line from a TPI vacuum graph. What
remains is a self-energy graph which, moreover, must be OPI.

We are now ready to study large amplitude collective excitations. For any periodic
orbit one chooses some initial density matrix and solves the eigenvalue equation

0 1
(25 (1 o) 6o —Zten w0 =wrw,

where x'(t) are antiperiodic wave functions and »?! the corresponding Bloch-Floquet
indices. Then onc determines

i . , n(® 1
(29) Qab(ti tr) — ? % a)—n-_——xl ¢Xp [—@wn(t—t )] x(ll(t) xg'(t ) (1 O)b,b=

= (exp 16w 71+ 1)+ exp [ e — 01240 40 oo
- b'b
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where the Fermi distribution with imaginary temperature comes from summing the
frequencies w, = 2z(n + 4)/7 (1 =period). This ¢ may again be used in (28) for a
next iteration. (The static case follows from 7 — co where the sum reduces to the
states below the Fermi surface and x(¢) are time-independent wave functions.)

The resulting ¢ can be inserted into the effective action I[g] for a quantization of
the large-amplitude osecillating orbits (or for a determination of the energy in the casc
of static p configurations, E = —I'[p}/T). For this purpose one only has to form the
full quantum propagator as the Fourier transform (%)

oW () N
aE*GXP[’b ()],

ar _
(30) f'i; exp [i[To]l+ ET] =

where 7' is the period. Running through the same orbit many times gives a Green’s
funection

oW /eF f exp [inW(E)] = 0W/OE exp [i W(#)](1 — exp [ W(I2)])~*

n=1

which has pole at W(E,) (n+ % if the orbit has turning points) (7).

Notice that if imaginary-time solutions are known passing through a potential
barrier, exp [— TE]= exp [iI'[p]] gives the amplitude of penetration (*).

It goes without saying that the partial derivatives of I’[p] provide directly for all
Green’s functions via (9), (10). For example

31 Low - Wep— Zou—2xt = — 2
( ) '_Z: - KK'_EQKA_Z' o *‘Z 0o

gives the four-point functions.
It may be useful to point out the connection with the collective action employed
in I. Using (19), we may express the effective action in a two-variable form as

1 T A 1 o )
(32) I, Q]=—§t1’ (EQ)——E'GI‘IOg(%Go —2)—§ Voo + 25 I"™[e].

n==3

Negleeting #» > 3 terms and bringing ¢ to the extremum p[X] we obtain
1 i
(33) rxX1=r[z, o[Z]] = 3 ‘V—IZ'Z;'_E tr log (G — X,

which is precisely the quasi-classical limit of the action discussed in I except that there
Hartree and Fock parts of the potential were absent.
Further developments will be published elsewhere ('!).

% % X
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