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Cluster effects in bosonic many-body systems are governed by the higher effective action I'[®, G, a3, ag ] whose extre-
ma determine physical configurations of field expectation @, interacting Green’s function G, and three- and four-particle
vertex functions ag, as. The expansion of I" in powers of a3 and «4 leads to a hierarchy of non-perturbative effects. In par-
ticular, each of the variables can be spontaneously generated via a gap-type equation.

Four-particle clusters are known to play an important role in the physics of larger nuclei, very similar to
Cooper pairs in superconductors and superfluid 3He. Recently [1], we have investigated the effective action
whose extrema account for condensation processes of such clusters in arbitrary many-fermion systems. It is the
purpose of this note to extend this discussion to bosons. Here the situation is somewhat more involved since the
products of an odd number of fields can have non-vanishing expectation values. We shall consider the general ac-
tion of a Bose field:

Alo] =30iG5l o~ (1/3) V3000 — (1/4)V 40000 , (1)

where all internal and space—~time indices have been suppressed. The matrix Gy denotes the free-field propagator
Gy = @p. The form (1) incorporates the usual non-relativistic many-body problem (such as 4He) if we understand
¢ to be a doubled field,

{2 =p+=(0 1 )
which combines the usual creation and annihilation operators in a single symbol, if we choose G as the matrix
_ 0 —16; —€
Go (ia, —€ 0 ) ’ 3

and if we set V3 = 0. But also more “collective” field theories of the Landau—De Gennes type for liquid crystals
[2], crystallization processes [3], or pion condensation [4] are contained in the same formalism which will ac-
count for a wide variety of fluctuation phenomena.

Starting point is the well-known generating functional of all connected Green’s functions

WIj,K] = —ilog Z[j,K]= ~ilog [Dpexp(istip] +ijo+3ivKy), 4)
for which the equations of motion lead to the differential equation **
1 Subscripts denote functional differentiation, i.e. Wj = 5 W/67. The equation follows directly from the identity J Do (6/6¢)

exp (A +ijp+3ipKp)=0.
259



Volume 84 A, number 5 PHYSICS LETTERS 3 August 1981

¢Iy"[@C)-3 | ( é) +$ie a\"@)
S Atdr X
erG'"'[aeJ-;—Glas%nifzﬂ”ﬁ

—=¢ -6
=0 ,
__<= A U-=Igs Fig. 1. The integral equation for the effective potential
X —v r[®, G]. The symbols are explained in the figure.
= Y4
i—1 ; 2 . 3 .

An intermediate effective action I'[®, G ] may be introduced as the Legendre transform of W[/, K],
L[®,G]=W[, K]~ W;j—WgK, ©)

by choosing the independent variables ® and G to be the expectation value of the field and the fully interacting
connected Green’s function, respectively, i.e.

=) =W;[/,K]1=2[/,K], G=(Tpp) =2Wg [/, K] —®d. (7
We can then decompose I' [®, G] into a free and an interacting part
[[®,G]=3®iGy @ +3tr(iG;'G) +3itrlogG-1+ TNt [®, G, (8)
and find from eq. (5) the following equation for the interacting part:
ST [@,G] = —(V3/2) (G+ B2)® — (V,/3) [2iG3 ML (1 - 2iG2T i) ~1 + 3G &2 + 9], ©)
whose index contractions are pictured graphically in fig. 1. Since W; and W are not independent but related by
2Wg =Wy +iW} (10)
there is also a constraint on the ®, G dependence of I'nt[& G]:
0=G[rint —2rint —2irit Ge(1 - 2iG2r) i, (11)
which is again pictured in fig. 1. The two equations can be solved iteratively with the lowest-order result [5,6]
It [®, G| = —(1/3) V383 — (1/4) V8% — § V3G — 4 V4G 2 — 5 V,G2 + 551V, G4V,

+5i(V3 +V4®)2G3 + K VIGO+3V, (V3 + V,®)2G5 — 5 i(V3+ VDGO + .. (12)

The expansion can easily be continued by observing that what emerges is precisely the sum of all two-particle irre-
ducible vacuum graphs in which lines stand for the full Green’s function G and vertices with three or four legs for
(1/30) (V3 + V,®),(1/41)V,, respectively. The significance of this effective action is that by definition (6) its de-

rivatives satisfy

Tp=—7—-K®, T,=—3K, (13)
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and amount to I' [®, G] being extremal for vanishing external sources, thereby leading to non-perturbative equa-
tions of motion for ® and G. These are known to account for the condensation of particles as well as of Cooper
pairs.

It is natural to suppose that by continuing the technique of Legendre transforms to multi-particle sources, also
condensation processes of higher clusters will become accessible to simple extremality principles. Therefore we
Legendre transform I [®, G] further with respect to V3 and V:

I'®,G,a;,04] =T [?,G] —Ty, [2,G1V; ~Ty, [9,G]V,, (14)

and choose to define the new variables a3, a4 as the three- and four-particle vertex functions which are obtained
from l"V3 , l"V4 by removing disconnected parts and amputating external legs:

Wy, U, K1=~(1/3) (—~ieyG3 +3G D+ ®3) = ry, [®,6], (15)
Wy, U.K1= —(1/4) (—ioy G* — 3a§G5 —4ia3G3@ + 262 +6G 0P+ ) =T, [,G] .

Obviously , only the interacting part of I' [®,G] is affected by (14) and we find for it the simple Legendre transform

Pint[@, G, a3,04] = — 15 105G° — g5 102G* + GO —5iadG0 + . (16)
By construction, the new effective action I'[®, G, a3, a4 satisfies the “extremality conditions”

Tp=—7—KP+302V;+3 D3V, +3G (V3 + V) — 3 iasG3V, (17
g =—3K+50V,+3 02V + 3GV, —3imG2(V3+ V,®) — i, 3V, —$elG*Y, , (18)
Ty, = —§iG3(V3+ V@) — 303GV, , Ty, =—Lig* V. (19, 20)

The physical situation is given by j = 0, K = KP = chemical potential, V'3, V4 = physical couplings *2,
Explicitly, (17)-{20) lead to the following equations of motion:

Va=o4t3ieg Gla, + ..., 1)
V3t V4@ 310362V, = a3 +iadG? + ., (22)
S=iGy +KP - Gl = (V3 +§ V@) + 56V, —$iasG2(Vy + V@) —bia, GV, — 302GV, (23)
(G +KPYD =1 B2V + 3 B3, +3G (V3 + V@) — 31V, G0y . (24)

This result is displayed graphically in fig. 2.

Notice that the equation for ® has only a finite number of terms due to.l"int being independent of ® [see
(16)]. The equation for  initially involves the whole infinite series for —21"10‘“, which, however, can be resummed
completely by using (19) and (20) due to the homogeneity equation

- L ,
GTE G, a3, 04] —5a3l‘213t+2a4r“a’lt, (25)

which follows directly from counting vertices and lines in the vacuum graphs.
Certainly, eq. (23) is precisely the bosonic version of the time-dependent Hartree—Fock—Bogoliubov self-con-
sistency condition

G=1(Gy' +KP —Z[®,G,03,04])7L . (26)

Eqgs. (21)—(24) can be used to investigate large-amplitude collective excitations, and tunneling phenomena as

*2 Certainly, one could use (15) and add —;CDKCI’(D +Ty, V3t Iy VatoT[®, G, a3, a4]. The new functional rnevie, G, a;s,

a4] would then be truely extremal in all variables, i.e. I' JIOW = T oW = Fgew = I‘gzw =0.
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Fig. 2. The four equations of motion for the field expectation,
the self-energy £ =iGg! + K — iG™!, and the three- and
_< PR -~y ——c four-particle vertex functions a3 and oy, respectively.
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described for Fermi systems in ref. [1], thereby generalizing earlier [6] approaches which were unable to cope
with exchange forces.

The important new feature arising in these equations is the possibility of generating spontaneousty vertex func-
tions even if the action is free, i.e. eqs. (19) and (20) can have non-trivial solutions for V3 = ¥4 =0, This is similar
to the spontaneous generation of mass which is found to lowest approximation ay = V3, a4 = V4, in which case
(26) becomes the standard gap equation. Eqgs. (19) and (20) may be seen as gap-type equations for the vertex
functions a3 and ay .

More details [7] as well as the interesting physical consequences will be discussed elsewhere.
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