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Relativistic transition probabilities and form factors have been evaluated in closed form (in terms of
hypergeometric functions) for a model of fundamental particles constructed on the unitary irreducible
representation space of a noncompact dynamical group. Majorana-type equations have been used to project
out irreducible subspaces of the Poincaré group and to specify the transformation properties of the electro-
magnetic current. The magnetic moment of the spin-} ground state in the simplest representation is —3,
and one obtains the observed symmetry Gz () =G (£)/u.

I. INTRODUCTION

N a previous study! we have investigated the problem
of transition probabilities based on noncompact
dynamical groups. The purpose of this paper is to cal-
culate for a relativistic model of elementary particles
constructed on the space of unitary irreducible repre-
sentations of a noncompact dynamical group all transi-
tion probabilities and form factors.

A problem vigorously pursued in recent years con-
cerned itself with an algebraic description of relativistic
mass spectra of a system with internal degrees of
freedom and of its interactions with external fields.
More specifically, the algebraic structure must contain
the Poincaré group P, such that the quantity

P Pr=m?

has a discrete spectrum. Moreover, the levels at rest,
Pu: (m,0,0,0), belong to an irreducible representation
of a noncompact dynamical group G, and represent,
physically, the excited states of the relativistic quan-
tum system. It is clear that we have to do here with a
reducible representation of the Poincaré group contain-
ing a countably infinite number of irreducible represen-
tations of different masses and spins as determined by
the noncompact group G.?

We use, in this and following papers, Majorana-type
equations?® involving infinite-dimensional unitary repre-
sentations of the group G in order to determine the
transformation properties of electromagnetic interac-
tions. The transition probabilities are then calculated
purely group theoretically within the framework of a

* Research sponsored by the Air Force Office of Scientific Re-
search, Office of Aerospace Research, United States Air Force,
under AFOSR Grant, AF-AFOSR-30-65.

1A. O. Barut, second preceding paper, Phys. Rev. 156, 1538
(1967), A. O. Barut and H. Kleinert, preceding paper, ibid. 156,
1541 (1967).

2The Hilbert space is the direct sum 3 JC[m,s], where
5¢[m,s] are the Hilbert spaces of the irreducible representation of
the Poincaré group and the range of the sum is determined by the
representation of the dynamical group G. See A. O. Barut, in
High Energy Physics and FElementary Particles (International
Atomic Energy Agency, Vienna, 1965), and in Non-Compact
Groups in Particle Physics, edited by Y. Chow (W. A. Benjamin,
Inc., New York, 1966).

3 E. Majorana, Nuovo Cimento 9, 335 (1932); I. M. Gel’fand
and A. M. Yaglom, Zh, Eksperim. i. Teor. Fiz. 18, 703 (1948).

156

larger group © containing G, as in the nonrelativistic
case.!

Majorana-type equations have recently been used by
Nambu* to calculate mass spectra and form factors.
Nambu has calculated one form factor in the case of
nonunitary representations of G and finds it to be un-
physical. For the unitary representations he has only
given a mass formula. We present here the calculation
of form factors and transition probabilities based on
infinite-dimensional unitary representations and the
result is physical. We remark that the electric part of the
form factor has also been calculated from the semidirect
product PRISL(6,C) by a different method.?:8

In Sec. IT we give the algebraic content of the solu-
tion, how the irreducible representation of G is extended
to a reducible representations of 8 and how the irre-
ducible parts of the latter are picked up, and finally, the
most general mass spectra allowed by the formalism.
The calculation of form factors and transition form fac-
tors is given in Sec. III and interpreted in Sec. IV. The
present paper deals with the simplest triangular repre-
sentations of the noncompact group. More general
representations and groups are considered in the papers
that will follow.

II. ALGEBRAIC STRUCTURE OF COMBINED
POINCARE GROUP AND DYNAMICAL
GROUP

Let o be the indices, collectively, labeling the irre-
ducible unitary representations of a noncompact dy-
namical group G, containing the homogeneous Lorentz
group as a subgroup. Let p be the continuous labels of
the translation generators, that is the momenta. The
states |a; p) represent then the Poincaré group P in a
reducible way, because the states of an irreducible
representation of P are labeled by p and by the labels
of the little groups O(3) or O(2,1). The indices & contain
those of the little group a great many times. In fact, the
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reduction of G with respect of O(3) [or 0(2,1)] gives
also the possible spin values in the theory.

Because the two invariants of the Poincaré group,
PB2? and W2 define mass and spin, we can single out
particular values of mass and spin from the Hilbert
space |a; p) by the following Poincaré invariant projec-
tion operations

(p*—m?)|e; p)=0, 21
[(W2—m2s(s+1)]|a; p)=0,
whereas a more general equation of the type
(p*+N\V2—K)|a; p)=0, (2.2)

fixes a relation between mass and spin.

These equations are however only kinematical, be-
cause p? and W? being invariant scalar, they do not tell
us the transformation properties of the states (i.e., of
indices @) under pure Lorentz transformations (i.e.,
boost operations). We can write dynamical equations by
passing to linear equations which mix the states |a; p)
in a particular way and specify how the states are to be
boosted. The Majorana equation is of this type

(TP —ma) |a; p)=0, (2.3)

where T'* is a vector operator operating in the infinite
dimensional representation of G. More generally, we can
write

(THP - N keun PP LY —p) s p)=0.  (2.4)

We have in fact a generalization of the Majorana equa-
tion insofar as we can take in (2.3) and (2.4) m,, \, and
© to be an arbitrary function of the invariants m? and
m2S(S+1) subject to restrictions imposed by gauge in-
variance (see Sec. V). This freedom physically means
that a whole class of systems with different mass spectra
have states which are boosted exactly in the same way
under pure Lorentz transformations. This has to be so,
because we only specify by G the possible spins of the
system and by (2.3) the external motion of the system.
This Jeaves still a lot of freedom of internal dynamics
compatible with the same external motion.

The main advantage of the linear equation of the
type (2.3) is that it specifies for us the transformation
property of the electromagnetic interactions. This is
done under the assumption that the minimal electro-
magnetic interactions are obtained by the usual recipe
of replacement

pu— pu—ed,y, (2.5)
where e is the “charge matrix” (see Sec. V). We shall
see in the next section, that (2.5) is the equivalent of
specifying the group element in & that describes the
electromagnetic transitions.

We take in this first paper & to be the simplest pos-
sible case, namely the group SL(2,C), the covering
group of the homogeneous Lorentz group itself, with
generators L; and M ; and consider a triangular represen-
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tation with one vansihing Casimir operator
Q1=L-M=0. (2.6)

This representation can be obtained by writing the gen-
erators in terms of the boson creation and annihilation
operators in the following form

ai
Li=a'o%, a=( ) ,
az

Mi=3%i(ateiCat+aCo'a) ,

(i o)

These operators act on the normalized states
[S,8.)=[(S—S.) [(S+S.) | TV2a,"5 50,155 0). (2.8)

With (2.7), Eq. (2.6) is automatically satisfied, and the

second-order Casimir operator can be evaluated giving

Qo= L2— M?*= (ataata+2a%a)
—(atadta+2a%a+3)=—3.

(2.7)

(2.9)

The unitary representation in question, Eq. (2.7), con-
tains all spins

§=0,1,2,3,--. (2.10)

The representation with the lowest spin So=3% is ob-
tained by acting the operators (2.7) on the lowest state
(«10)). Other unitary representations to be considered
in the following papers contains all spins So, So+1,
So+2,- - -, starting with a lowest spin So=1, £, 2, - --
The vector I'* in (2.3) is uniquely determined in our case
to be

M=gfe+1, TI'=—3%(d'¢’Cat—aCoia). (2.11)

We observe that the quantities L, M, and T* form
the Lie algebra of a larger group: If we identify

3L — (Lig,L13,Las) ’
%Mi — (L14,L24,L34) ’
%I‘i—» (L15,L25,L35) )

1
'Z‘FO - L45 s

(2.12)

we have the commutation relations of a five-dimensional
algebra

[Lab,Lcd:] = i(— 4 veLaa— gadLbc+ gacL sat 4 deac) s
ab,c,d=1,234,5, (2.13)

gn=ge=gun=—+1, gu=gs=—1.

This situation is analogous to that of the nonrelati-
vistic hydrogen atom where the transition operators
and the dynamical group O(4,1) generate a larger group
& which is 0(4,2).! The irreducible representation of
® remains also irreducible for the smaller group G.

The equation (I'*p,—mq) |@; p)=0 generates a whole



1548

set of representations of the Poincaré group. To see this
we go to the rest frame of the system where

(T°po—mo)|; 0)=0. (2.14)
Because the eigenvalues of I'? are
Ire:25+1, (2.15)
the spectrum is calculated from the equation
@S+ 1)m=mo(m2m?S(S+1)); (2.16)

in particular the Majorana case® corresponds to a con-
stant m,o. It will be shown that the form factors are es-
sentially independent of the choice of mo; they will de-
pend on it only through the invariant momentum
transfer ¢.

III. FORM FACTORS

We shall evaluate the electromagnetic vertex under
the assumption (2.5) for the electromagnetic coupling.
Thus we have to evaluate (Fig. 1)

@' |74 0)|esp)= " | TH]a,p).  (3.1)
In the case G=SL(2,c), we label the states by spin S
and its component S,; then
l; p)=15,5:; py=exp(+i3€-M)[S,S.), (3.2)
tanhé=v=p/E, &t=+/(8),
where |S,S.) are pure SL(2,c) states and the exponential
factor is the boost operation to momentum .

Without loss of generality we can go to the rest frame
of the particle p’. We have then to evaluate

(878" | Trexp(+3i€-M)|S,S.).

Let us take first a boost operation in the direction of
positive z axis, i.e.,

(3.3)

e‘l"i’}ESMs .

(3.3

The evaluation of (3.3) can be made quite easy by the
following observation: The operator
M3=%i(a“ala*—aala)=’i(X3"—'X3—)=2K1 (34)
forms together with

I=gfg41=2K; (3.5

and

—I¥=%(alolat+acle)= (X34 X3)=2K,  (3.6)
a Lie subalgebra of 0(2.1) of our big algebra &: 0(3,2).
K+=iXt=%i(atela?), K—=—iX—=—%i(ac'a). (3.7)

la';P'>
F16. 1. The electromagnetic vertex with
composite particles formed according to the
dynamical group.
la; P>
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We find the commutation relations
[K+,K—]=—2K; [K3K*]|=4K*. (3.8)

This particular O(2,1), which we call the transition group
T [in terms of L, of Eq. (2.13) this is the 0(2,1) gener-
ated by Lss, Lss, Lss], commutes with Ljs; hence it
changes the values of S by one unit without changing
S, (Fig. 27).

The representation of G=0(3,1) that we are con-
sidering reduces into a number of discrete O+ represen-
tations with respect to 7:0(2,1). For S.,=0 we have
the representation ©+(¢p= —1); for an arbitrary S,, the
representation is Dt(¢p=—3—.5,) (see Fig. 2). We can
see that also by calculating the Casimir operator of T

Q=J2+T2—J?=(XtX"+K;)—K32. (3.9)
We have
Q1(S=0, S.=0)=¢(¢+1)|0,0)=—2[0,0), (3.10)

and similarly for the other states.
In Eq. (3.3) we need thus the matrix element of a
finite O(2,1) rotation. Notice that the calculation of
transition probabilities involve group elements rather
than infinitesimal generators! The matrix element in
question is
VM| S S V=V o,t(a)|S,S,).

Here we can get the finite group rotation a from the two-
dimensional fundamental representation for which
M 3= 151, hence

a=e¥t(io) = g=Mo1=coshj £ — oy sinh} £.

W=< lf ﬁ): W—1:< (? ﬁ): (313)
+8 a —B a

we identify
a=cosh}{, B=—sinhif. (3.14)

The matrix elements V.%(a) of D+(¢) have the follow-
ing closed form® (with the identification ¢=—31—S,,
m=3%+S, Ref. 8b).
Vs#(a) =04 ,(¢)alsts+bgs—s

XF(S:—S, —8,—S,1+8'—S; —8B),

(3.11)

(3.12)

If we compare this with the spinor group

S K algebra

Fic. 2. Weight dia-
gram for the triangu-
lar representation of
SL(2,C) and the transi-

ti 1 K.
L algebra ion subalgebra

> S,

7 For more detail on the use of O(2,1) subalgebras of noncompact
groups see A. O. Barut, in Lectures in Theoretical Physics (Gordon
and Breach, Science Publishers, Inc., New York, 1967), Vol. 9b.

8 (a) V. Bargmann, Ann. Math. 48, 568 (1947); (b) A. O. Barut
and C. Fronsdal, Proc. Roy. Soc. (London) A287, 532 (1965).
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where
1 I(S'4+1—=S)T(S"+1+S,) 742
0555 = [ G+ TE+1+ ):I . (3.15)
(§'—=S)L T(S+1—8)T(S-+1-+5,)

The hypergeometric function is a polynomial [since
S1, S3 are integers] with the highest power (S—Ss).

For §’<.S, the matrix element is (V—1)7*, that is, one
has to interchange in (3.15):

S8, aca f-—F (3.16)
We have thus
(@9 74(0) | ap) = (5", | T¥|S",S)V 554(@)
= T80 = (S5 | T*| S",S)0555
X (coshd £)=(S+8""+D(—ginh} £) 8"~
5-8: (S;—S)a(—S:—S)x
(1+S"—8)n

[—sinh®GE T, (3.17)

n=0

where (S,—S),=T(S,—S+x)/T(S.—.S), etc.
It remains now to evaluate the matrix elements

(8,8, 4| S,S2). (3.18)

But this is relatively simple, because the Is at most

connect the neighboring S values. We have
(87,51 T0].S,S.) = (25+1)8s sds, 5., (3.19)
(8,8 | 18] 8,S.)=— (S52—S.H)2

X (0s,541+8s7,5-1)85,5,, (3.20)

where Ss=max(5’,S). For the evaluation of the matrix
elements of ' and I'? note that

|S,S.)=[(S+S.) (S—S,) ] 2a5+82q,15-52 0). (3.21)
Hence one has to evaluate matrix elements of the type
—3(0]ay™ a1 {a'o’Ca’ — aCo'a} art"ast™| 0).
One obtains
(8,8, T 8,S.)=3[(S"+S.41)(S"+S.) ]2
X (8gr, s418s7, sp1t0s, 8-108,, 8,-1)
—3[(8'=S.A41)(8"—S.) ]2
X0, s418s,, 8,105, 51057, 8,41)
(8,8:'| 12| 8,82) =3[ (S"+S.+1)(S'+S.) ]/
X0, 54185y, s.41— 0, 5-185,, 5,-1)
=3[08 =S4+ 1)(5'—S.) ]2
X(8s, 84185y, 5,108, 5108, 8,41).
With (3.17) and (3.19)-(3.22) the calculation of the
transition form factor is completed. To simplify the

discussion, we shall go into the center-of-mass frame of
the process

(3.22)

la'p") = |ap)+y

CALCULATION OF RELATIVISTIC TRANSITION PROBABILITIES
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and let p point in the z direction. We then have to con-
sider only the matrix element of I'* and I'? because of
transversality of the photon. The general process is ob-
tained from this configuration by interpreting S; as the
velicity index in the center-of-mass frame.

IV. DISCUSSION AND INTERPRETATION
OF THE RESULTS

We express the result in terms of the invariant mo-
mentum transfer ¢ which is related to the y= E/m of par-
ticle |ap) in center-of-mass frame by

t=(m—m')2—2mm’(v—1), (4.1)
while
tanhé= (y>—1)'/2/y, sinhé=(y>—1)'2,
coshi=vy. (4.2)

We first consider transitions from the ground state
S=0, S,=0. Then

Vs10570(8) =0gr0(coshg £) =5+ (—sinh} ) 5" F gno”,

05"0= +1 )
Fs/loo=1 )
hence
Vs1®(§)=(—tanh3£)s” . (4.3)
cosh}
Thus,
%Slszrogu= Z Vsuo(a)<SlSz,| I"“]S”O) ) (4:.4)
Sl’
Bsrs00°= (25'4+1)V sr0(@)ds.r0, (4.5)
%S’S;’Ws: - Z Vsno(d) (5112_52//2)1/2
S,’SIIS
X5, srr41t0sr, 511108, 820
=—[(8"—1)2—S,/7]"*V 5r_1, o(a)
—[(S"+1)2=S,/2 12V gr41, o(@) . (4.6)

In the center-of-mass coordinate system that we use,
the factors (57,S,/| 2| S”,S,) vanish.

In particular, the form factor of the ground state itself
is given by

oooo®=—V1,0(a)
tanhi¢ sinh§
cosh%s_ (1+coshg)’/2
2 1 1/2 —_ 1 1/2
VZ(W ) _ ﬁ(v )
(14y)32 v+1

, 4.7)



1550

or, in terms of the invariant ¢,

(—t/2m?)1?
Tooo®=V2————. (4.8)
2—1/2m?

On the other hand, the scalar form factor G(¢) is related
to §* by

(o+1)"
%“—G(t)j) P)

In our frame of reference (p+p")=(E+m, 0, O,
(E2—m?)/2) and we obtain

) = ®

G()=
LI PR

Both components @ and §® give the same G(¢) as of
course they should and we get finally

22 2V2
G@t)= =
(DY (2—1/2m?)%02
and
G0)=1.

Spin-1—Form Factor

We consider the representation with the lowest spin
3 and calculate the form factor of this ground state:

Tr=G3[I#0)|33)=2 S/ [T SH)V s 1240
5
From (3.17), because I' is diagonal,

FO=GE )3

For §? we need

1 4

1 = =
P by L

sinhi¢ (y—1)12
V3/2,1/2_1= - ——2—'= —2N2—
(cosh3£)? (y+1)32
Hence,
FO=4(v* =)/ (y+1)*.

On the other hand, usual form factors of a spin-}
particle are defined by, in our normalization wn=1,

(0’1 7#0) | p)= () [F1(O)y*+iK'Fo()aq, Ju(p) ,

where K'=K/2m, and

7
=p'—p, t=¢, UuV"‘E(’Yu’Yv"'YWn);

(p-o/m)'*
u#= <(1J &/m)!1*

K =anomalous magnetic moment.

) Fi(0)=Fa0)=1,

A. O. BARUT AND H.
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In our frame: g=(E—m, 0,0, (E*—m?)'?), {=—2m?

X (y—1), y=E/m. Then
#1720 p)=L[a(p )y u(p) F1+iK'Fi(p')o%qsu(p)]

1
=—[F D2 K'Fy(y—1 1)12
\/2[ 1(y+1)2+ (y—=1) (y+1)12]

vH1\"2
-(5) e
2
and similarly,

@'17%0)] p)=La(@ )y ulp)Frtik' Fat(p')v*u(p)qo]

1
_— 1 —_ 1/2 U 5 —_ _— 1/2
\/??[F (y—=DYV+K'Fy(y—1) (y—1)12]

Notice that

'y—]—l 1/2 qs
<i)’|f°lp>=<1ﬁ’lﬁlp>(——> =4—J3,
y—1 q°

as it should be by current conservation.
In order to separate F; and F» we need an independ-
ent equation. Consider J(0) and the matrix element

5 =570 [5,3)=G, =3[ TS5 Vs 1.
From (3.22) we see that only

sinhi¢
Vapap = —V2———=—
(cosh}§)?

(y—=1)12
VI

(1)
contributes and

#y_—IFII 2>=+V2/2'

Hence
(v 1z
5, 3O = -2
)

On the other hand

@' TH0) | p)="L[a(p" )y u(p)F1+iK'Fau(p') e gu(p) ]

1
=$[(7— D2F 142K Fo(y—1)"2]

y— 1 1/2
(e
2

From J1(0) and J°(0) we can now evaluate Fy and F.
To obtain also the correct absolute values of form fac-
tors, we have to normalize T* in the basic equation
(2.3). The zeroth component I'® is a measure for the
charge of the system. From (3.19) we see that the ma-
trix element of I'Y is proportional to (25S+41). Thus we
have to divide I'* with the Poincaré scalar (2S+1). In
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our case this means dividing Fy, F; by 2. Thus,
2
Gg=F1+—KFy=2N0I——
4m? (y41)32
Gu(®)=F:()+KF:(),
1

Gu=—2I————=—1Gg
(y+1)2

Indeed we find, as we should, that
F1(0)=1 or GE(0)= 1 ,

and Fy(0)=1 gives an anomalous magnetic moment
K = —3$ Bohr magneton, or

GM(0)= "%‘-

The decrease of the form factors in this simple model is
much slower than the experimental form factors of
nucleons (Fig. 3), as this model does not contain enough
states to be completely realistic.

V. GAUGE INVARIANCE

Because we have allowed an arbitrary invariant mass
spectrum to be calculated from Eq. (2.16), the gauge
problem in the electromagnetic minimal coupling (2.5)
is not trivial, as can be seen by the equation

(2| Tu|1)=[K (ms*) — K (m:%) 1(2,p| 1p")50.

Therefore, to guarantee the gauge invariance we modify
the equation multiplying T'* with an operator 4,

(AT*Py+Ko)|e; p)=0,

CALCULATION OF RELATIVISTIC TRANSITION PROBABILITIES
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i
1 6(1), SPIN 0,0nd Ge(t)= 2, SPIN 172
\
\
\
\
\
\
\ Gnuer.
\\
1 ! ! 1 1
[ 2 4 6 8 10,1 in m?
1 2 3 4 5 6,7

F16. 3. Form factors for the spin-zero and spin-} ground states
(without dynamical corrections) for the two irreducible represen-
tations Jo=0 and Jo=3, respectively.

so that K is now a constant. This equation gives again
the same mass spectrum (2.16). Now if we introduce
the electromagnetic coupling, we have to see that the
total charge of each state with different spin and mass
is the same. This is achieved by taking ¢ in (2.5) as a
matrix & so that

(] 84T*| )= constant,

for all the states of the composite system.

VI. CONCLUSIONS

We have presented an exactly soluble model of a com-
posite quantum-mechanical system whose electro-
magnetic interactions can also be completely calculated
in a relativistic way; that is, without making any dipole
or multipole approximations. The model is the simplest
one compatible with relativistic invariance and uses a
generalization of the Majorana equations. The method
can, however, be generalized to more complicated
systems.



