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Absiract. We illusirate the gap type of equation for four-particle vertices discussed recently
by means of a simple soluble model involving N (where N—oc) spin-{ fermions
Wola=1,...,N)in 2 + ¢ space—time dimensions with the interaction —(1/2N)gg|u" Cyf? in
the limit N — oo, The model exhibits a condensate of four-particle clusters if the renormalised
coupling constant g exceads some critical value g..

In recent papers (Kleinert 1981a, b, 1982) we pointed out the use of higher effective
actions I'((7, @) for the understanding of cluster properties in many-body systems. The
symbgl G collects the full particle density and pair correlation function in a 2 x 2 matrix
and & denotes the exact four-particle vertex. The ground state is found by extremising I,
which leads to the equations (Kleinert 1981b)

G=i(iG; ' - VG + }iVGla) ™! (1)
V=WG,a)=a+lic*G*—1a’G* +.... (2)

The first eguation is the standard Hartree—Fock—Bogoljubov gap equation. Previously
(Kleinert 1981b) we argued that the second equation may be considered, by analogy with
(1), as a gap-type equation for the vertex function. There may be non-perturbative
solutions with o being non-zero in channels in which the original potential ' vanishes.
Equation (2) will be the key for understanding the formation of four-particle clusters in
atomic nucle.

It is the purpose of this paper to illustrate the properties of equation (2) by exhibiting a
simple exactly soluble model in which such solutions exist, It consists of N relativistic
fermion fields yr, in 2 + £ space—time dimensions with the Lagrangiantf

F(x) = Pra)id o (x) + (20 /2N Wi (X)CWg (XD (XICy (x) (3)

in the limit N— oo, This limit has the great technical advantage that there are so many
different particles that exchange forces are irrelevant, i.e. there are no Fock terms in
equation (1). Moreover, it can easily be seen that the term VG?ax in (1) is suppressed
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t € is the charge conjugation matrix: C=' -(1 0) with :IF=(EI ) Otherwise our notation follows

Bjorken and Drell {1964},

1 This is a modified Fierz-transformed version of a8 model studied extensively in the literature (Vaks and
Larking 1961, Gross and Meveo 1974, Abarbanel 1977, Muia 1978; also Kleineri 197Ea). Moreover, being in
two space—time dimensions, it is equivalent by a change of ficld variables to a model of different appearance
first used by Mambu and Jona-Lasino {1961e, b) in order to explain prons as Nambu—Coldstone bosons.
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compared with ¥'G by a factor N~ and thus can be neglected. In the expansion (2) only a
single channel survives and the infinite number of terms can be summed to give

WG, a)=a/(1 — iaG?), (4)

We shall see that this equation does indeed have a solution a0 in the four-particle y*
channel where there is no coupling in (3) to any order in perturbation theory if the
renormalised coupling constant g is larger than some critical value g, which is proportional
to &,

In order to see all this consider the generating functional

Z(n, fJ':|=J. D Do exp( iJ. dx (7 + nyr + r,.s?:ﬂ) (5)

and use Stratonovic’s trick (Stratonovic 1958, Kleinert 1977, 1978b, 1979) to introduce a
collective pair field A(x) in analogy to superconductors

Z( J) =j DpDA up( ij dx [103iGa "9, — :;Nmu:tlﬁl*!]

X Hn( 3 J’ dx dy J7 (x)Ga (x, yl.v}{f}] (6)

where we have used a doubled notation for fields and sources

| Ve e
wlom) a5

and abbreviated

SR C 0y —Ax) id
b
or's(g o —aveal i
The integral over fermions can be executed with the result
Zy( fy=c"P
=j DA Exp[ N g (A) + 4 f de dy 3 (x)G 4 (x, }rl.r',(_p}) (8)

where the collective action

o au(A)=—(1/go AP — 4i TrIg(iG5 ") (%)

is the same for all N particles such that we have divided out the factor N. In the limit
N— a0, the field A is squeezed into the extremum, say A{ j), of the exponent and ceases to
fluctuate. Thus the generating functional of the connected Green function B f) is known
up to corrections 1/N as

N~'W )= —f dor (1/2a)| A — 4 Tr IgliGs ") + {ifﬁ-’}j drx dy j3(€)Glx, Yy (»).  (10)

We may go over to the effective action by performing the Legendre transform

I(®)= W) —j dx (GW) 8 o) Yal) (11)
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with dW/dj, =®,(x) being the expectation value of the Fermi fields &, =(gp,), in the
presence of the source j. Using (10) this may be written in the form

N7IT(, &}=—_[' dx (1/2g)|Alx)|® — 4i Tr lg(iG5 ') + N"J dr @, (x)iGy '®u(x)  (12)

where it is understood that A has to be taken at the extremum of I'(®, A), A=A(d).
Expanding in powers of @ gives all one-particle irreducible Green functions of the
theory, in particular a=—4*'/6®HDHDID, which are the vertex functions to be studied
here. Equivalently, one may view I' as an effective potential of both variables, @, and

=A—A(d), and obtain all Green functions by joining together all tree graphs involving
@ and A’ lines. Going back to the undoubled fields, v, ¢, but now without fluctuations,
which we indicate by capital letters, ¥, "W 7, we may write (12) more explicitly as

N-'T(W, P, A)=N"! J' dx [, id¥, — HPCPIA + A*PICYE,)]
—j dx (1/2g0)|AP —4i Trlg(i Gz (13)

such that there are the non-local vertices
AN o (W3C¥,) + (o, P, CPIWICP, + €C + a3y (P, CPI Y] (14)

which follow from the A’ propagators
an=4 VAT A =an
ap =4 iNAA'* =af.

In perturbation theory a;; =gq + O(gd), @, =a;; =0. Here, however, we shall find non-
vanishing solutions for the four-particle vertices o, &;; which signal the presence of an -
particle-like condensate.

In order to calculate @ we first determine the ground state by extremising (12) or (13):

(15)

G D, =0 (16)
0 10 T
Age=14Tr 3 3 G | +(PICY¥, +cC) (17)

where we have used the global gauge invariance under ¥ — ™%, A—e*@ A, to choose A°
real. The first equation implies T @, =0, the second is this model’s version of equation (1)
with A” = §FG, It may be brought to Euclidean form to read

=" 7
(27)? p +M*

(18)
= 4Dub (M/u)

where

b, =(2/DX27)~221(1 — D)~ —(1/7e) + O(e") M=,/(A%) (19)

and u 1s some arbitrary mass parameter.

 Fermi fitlds cannot have a ground-siate expectation value.
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There is a solution for every negative value of the bare coupling g. In two space-time
dimensions, as £— (0, we may introduce a renormalised coupling

_=—+b, (20)
ol B

such that {18) becomes
I/g=b,[1D(M/u) —1] (21)

which is finite in the limit £— 0. As is obvious from {19} a negative g, amounts to g being
larger than some critical &-dependent value g, = —b; ' = 0. For £=0 this means all positive
values. We may now calculate the propagators of A’ by expanding 'in A'=A—A" up to
gquadratic order as

N7IC=—d[(gg " + A + $BAR + N+ 3] (22)

B il T Sl
e Eu
[g.u"+.4 B )

and find

(23)
_ I ~B £0
{ge'+AY-B'\ gi'+4 -B
where 4 and B are the following expressions in Euclidean form (z = g% /M?):
A(z) = —1Db M [(1 + £ (2)— dega(2)] 5
B(z)= —1Db M }ety(2)
with the integrals
sl
J.,I:z}=J dix [zx(1 —x) + 1]~ 4, (25)
0
We verify the Nambu—Goldstone theorem by noticing the g* =0 pole in the propagator
e . i I =1 1 j-
ImA' ImA=——|—+A4=B| ~= aME — 26
N(Eﬂ ' J b N P o

For & =0 there are the finite limits

+A@) =~ “zm B(z) = —— J(2) 27
g | e=02r 7 : R T TY b L=
with
=]
J{z}:J dx lg[zx(1 —x) + 1] + 2= 24 coth # (28)
a
and

#=tanh™" [z/(z + 4)]"2.



Condensation of four-particle clusters: a soluble model 243

Now we see that equation (23) may be inverted to render this model’s version of the
general equation (2) which here has the specific form

sfo )= {2 )

Morcover, this illustrates precisely what we announced in the beginning: the initial
potential is a matrix with vanishing entries in the four-particle channels. The matrix of the
vertices 2, on the other hand, does contain such entries. They are completely non-
perturbative functions of g, as can be seen by solving (21) for M as a function of g and
inserting this into (24). In two dimensions, £ =0 and (21) yields

-1

(29)

M =y exp[—1 —(n/g)] (30)
such that
qi
z:,u_: expl{2n/g) + 1] (31)

and the four-particle vertex becomes
oy =—4n/zz), (32)

displaying non-analytic behaviour for g— 0 at fixed ¢° /&, i.e.,
lg
oty ~——g—y exp|—(2n/g) + 1], (33)
g’/

Thus equation (29) (which is this model’s version of equation (21)) is indeed the
counterpart of the gap equation (17) (which is this model’s version of equation (1)). It
renders non-perturbative ground-state values for the product of four field operators
{urynjry. This may be interpreted as a signal for the presence of a condensate of alpha-like
clusters in the same way as () 0 signals Cooper pairs.

It should be noted that, in the present case, the four-particle condensate arises via the
same dynamical mechanism as the Cooper pairs. It would be instructive to find different
models where either condensate appears separately. As a related problem one may wonder
whether there are theories in which not only certain matrix elements of @ but the whole
interaction can be spontaneously generated. Le. where V= WG, 2)=0 has a non-trivial
vertex solution a. If this happened in one of the presently popular grand unified theories of
weak, electromagnetic and strong interactions it could lead to a determination of all
fundamental parameters (for example, the fine structure constant) with the theory being
completely specified in terms of a single mass scale.
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